JPH039291B2 - - Google Patents

Info

Publication number
JPH039291B2
JPH039291B2 JP57117453A JP11745382A JPH039291B2 JP H039291 B2 JPH039291 B2 JP H039291B2 JP 57117453 A JP57117453 A JP 57117453A JP 11745382 A JP11745382 A JP 11745382A JP H039291 B2 JPH039291 B2 JP H039291B2
Authority
JP
Japan
Prior art keywords
cylinder
intake
valve
signal
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57117453A
Other languages
Japanese (ja)
Other versions
JPS597746A (en
Inventor
Kenji Ikeura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP57117453A priority Critical patent/JPS597746A/en
Publication of JPS597746A publication Critical patent/JPS597746A/en
Publication of JPH039291B2 publication Critical patent/JPH039291B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Description

【発明の詳細な説明】 この発明は、エンジン軽負荷域等で一部気筒の
作動を休止させて部分気筒運転を行なう気筒数制
御エンジンの弁切換制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a valve switching control device for an engine that controls the number of cylinders and performs partial cylinder operation by suspending operation of some cylinders in a light engine load range or the like.

一般に、エンジンを高い負荷状態で運転すると
燃費が良好になる傾向があり、このため多気筒エ
ンジンにおいて、エンジン負荷の小さいときに一
部気筒への燃料の供給をカツトして作動を休止さ
せ、この分だけ残りの稼動側気筒の負荷を相対的
に高め、全体として軽負荷領域の燃費を改善する
ようにした気筒数制御エンジンが考えられた。
(特開55−1648号、特開57−38639号) この種のエンジンの一例として、従来軽負荷域
やアイドリング域で一部気筒への燃料供給をカツ
トする際には、第1図、第2図に示すように、当
該気筒(休止側気筒)の吸気弁1ならびに排気弁
(図示しない)の開作動を規制するものが知られ
ている。
In general, fuel efficiency tends to improve when an engine is operated under a high load. For this reason, in a multi-cylinder engine, when the engine load is light, fuel supply to some cylinders is cut off to stop operation. An engine with controlled number of cylinders was devised that relatively increases the load on the remaining active cylinders by that amount, thereby improving overall fuel efficiency in the light load range.
(Japanese Patent Laid-Open No. 55-1648, Japanese Patent Laid-open No. 57-38639) As an example of this type of engine, when cutting fuel supply to some cylinders in the light load range or idling range, As shown in FIG. 2, a system is known that restricts the opening operation of the intake valve 1 and exhaust valve (not shown) of the cylinder (inactive cylinder).

図において、2はシリンダヘツド、3はロツカ
ーアーム、4はロツカーシヤフト、5,6はロツ
カーシヤフト4をシリンダヘツド2に支持するブ
ラケツト、7はカムシヤフトを示す。
In the figure, 2 is a cylinder head, 3 is a rocker arm, 4 is a rocker shaft, 5 and 6 are brackets that support the rocker shaft 4 on the cylinder head 2, and 7 is a camshaft.

このカムシヤフト7には、バルブスプリング8
と協働して、稼動時の吸入行程でロツカーアーム
3を介して吸気弁1を開閉させるためのプロフイ
ールが付与された第1のカム9と、このカム9の
ベースサークルと同形の真円形をした第2のカム
10とが隣接して形成されている。
This camshaft 7 has a valve spring 8
The first cam 9 is provided with a profile for opening and closing the intake valve 1 via the rocker arm 3 during the intake stroke during operation, and the first cam 9 has a perfect circular shape that is the same shape as the base circle of this cam 9. A second cam 10 is formed adjacent to the second cam 10.

一方、ロツカーアーム3は、ロツカーシヤフト
4に対して揺動可能であるだけでなく、2つのブ
ラケツト5,6の間で軸方向にも移動し得るよう
に支持される。
On the other hand, the rocker arm 3 is supported so that it is not only swingable relative to the rocker shaft 4 but also movable in the axial direction between the two brackets 5 and 6.

そして、ロツカーシヤフト4には、ロツカーア
ーム3と一方のブラケツト5との間で軸方向に摺
動可能な切換リング11が嵌装され、ロツカーア
ーム3はこの切換リング11との間に介装された
第1のバネ12と、他方のブラケツト6との間に
介装された第2のバネ13との張力バランスに応
じて軸方向の位置決めがなされる。
A switching ring 11 that is slidable in the axial direction between the rocker arm 3 and one of the brackets 5 is fitted into the rocker shaft 4. The axial positioning is performed according to the tension balance between the spring 12 of the bracket 6 and the second spring 13 interposed between the bracket 6 of the other bracket.

この切換リング11は、ロツド14を介してソ
レノイドあるいは油圧シリンダ等で構成されるア
クチユエータ15により駆動され、アクチユエー
タ15の非作動時には第1のカム9にしたがつて
吸気弁1が開閉作動するようにロツカーアーム3
の初期位置を設定している。
This switching ring 11 is driven by an actuator 15 composed of a solenoid or a hydraulic cylinder through a rod 14, and when the actuator 15 is not in operation, the intake valve 1 is opened and closed according to the first cam 9. rotsker arm 3
The initial position of is set.

アクチユエータ15の作動時には、その駆動力
により切換リング11がブラケツト6側へと移動
し、バネ12,13が圧縮されるのに伴つてロツ
カーアーム3が押され、そのフオロワ部16がカ
ム9のベースサークル域にある間に第2のカム1
0へと乗り移る。第2のカム10は第1のカム9
のベースサークルと同径の真円状であるから、こ
の状態ではロツカーアーム3が揺動することはな
く、したがつて吸気弁1は閉弁保持され休止状態
となる。
When the actuator 15 is operated, the switching ring 11 moves toward the bracket 6 due to its driving force, and as the springs 12 and 13 are compressed, the rocker arm 3 is pushed, and its follower portion 16 moves toward the base circle of the cam 9. the second cam 1 while in the area
Transfer to 0. The second cam 10 is the first cam 9
Since it has a perfect circular shape with the same diameter as the base circle, the rocker arm 3 does not swing in this state, and therefore the intake valve 1 is held closed and in a resting state.

図示しない排気弁についても上記と同様の弁機
構が設けられ、したがつてアクチユータ15をエ
ンジンの運転条件に応じて作動させることによ
り、対応する休止側気筒の吸、排気作用が規制、
制御される。
The same valve mechanism as described above is provided for the exhaust valve (not shown). Therefore, by operating the actuator 15 according to the operating conditions of the engine, the intake and exhaust actions of the corresponding cylinder on the idle side are regulated.
controlled.

このアクチユエータ15の作動、即ち吸気弁
1、排気弁の開作動の規制は、制御回路(図示し
ない)からの指令によつてコントロールされ、例
えばエンジンの運転条件を検出する図示しない負
荷センサや回転センサ等からの信号に応じて、軽
負荷域やアイドリング域になると吸、排気弁が閉
止状態に保持される。このとき、休止側気筒の点
火プラグへの点火電流は遮断される。
The operation of the actuator 15, that is, the regulation of the opening operation of the intake valve 1 and the exhaust valve, is controlled by a command from a control circuit (not shown), such as a load sensor or rotation sensor (not shown) that detects the operating conditions of the engine. In response to signals from the engine, etc., the intake and exhaust valves are kept closed in the light load range or idling range. At this time, the ignition current to the spark plug of the cylinder on the idle side is cut off.

このようにして、休止側気筒への燃料と新気の
供給を遮断してその作動を休止させ、残りの稼動
側気筒のみの作動による部分気筒運転が行なわれ
る。
In this way, the supply of fuel and fresh air to the cylinders on the idle side is cut off to suspend their operation, and partial cylinder operation is performed by operating only the remaining cylinders on the active side.

これによれば、休止側気筒内に閉じ込められた
吸気が圧縮、膨張を繰り返すことから、燃費が改
善されるだけでなく、部分気筒運転時のトルク変
動や回転変動の増加は比較的低く抑えられるとい
う利点がある。
According to this, the intake air trapped in the cylinder on the idle side is repeatedly compressed and expanded, which not only improves fuel efficiency, but also suppresses increases in torque fluctuations and rotational fluctuations during partial cylinder operation to a relatively low level. There is an advantage.

しかしながら、このように休止側気筒に吸気を
閉じ込めると、部分気筒運転から通常運転(全気
筒運転)に復帰する際に、吸、排気弁の作動切換
時期によつては、その吸気が未然のままで排気系
に排出されることがあり、排気組成の悪化を招く
という問題があつた。
However, if intake air is trapped in the cylinder on the idle side in this way, when returning from partial cylinder operation to normal operation (all cylinder operation), depending on the switching timing of the intake and exhaust valves, the intake air may remain unused. There was a problem that the exhaust gas composition was deteriorated because it was sometimes discharged into the exhaust system.

また、休止側気筒に燃焼後の排気が閉じ込めら
れることもあり、これが全気筒運転への復帰時に
吸気弁より逆流し、燃焼状態を悪化させかねない
という問題点もあつた。
In addition, there was a problem in that exhaust gas after combustion could be trapped in the cylinder on the idle side, and this could flow backwards through the intake valve when returning to full-cylinder operation, potentially worsening the combustion state.

この発明は、このような問題点に着目してなさ
れたもので、エンジンのクランク角を検出する手
段を設け、このクランク信号を基準にして吸、排
気弁の作動切換えを行なうことにより、最適切換
時期を設定し、未燃吸気の排気系への流出や既燃
ガスの吸気系への逆流を防止して機関性能等良好
に維持しながら気筒数の円滑な切換えが得られる
ようにした弁切換制御装置の提供を目的とする。
This invention was made with attention to such problems, and it provides a means for detecting the crank angle of the engine, and switches the operation of the intake and exhaust valves based on this crank signal, thereby achieving optimal switching. Valve switching that allows smooth switching of the number of cylinders while maintaining good engine performance by setting the timing and preventing unburned intake air from flowing into the exhaust system and burned gas from flowing back into the intake system. The purpose is to provide a control device.

以下、本発明を図面に基づいて説明する。 Hereinafter, the present invention will be explained based on the drawings.

第3図は本発明の実施例を示す構成断面図で、
#2は休止側気筒、1,17は吸気弁と排気弁、
15はその吸、排気弁1,17の作動状態を切換
えるアクチユエータ(ソレノイド)である。
FIG. 3 is a cross-sectional view showing an embodiment of the present invention.
#2 is the cylinder on the idle side, 1 and 17 are the intake valve and exhaust valve,
Reference numeral 15 denotes an actuator (solenoid) that switches the operating states of the intake and exhaust valves 1 and 17.

この休止側気筒#2および稼動側気筒(図示し
ない)に接続する吸気通路18に、エンジンの負
荷状態検出手段として吸入空気量を検出するエア
フローセンサ19と、絞弁20の開度を検出する
絞弁センサ21が介装され、吸入ポート22に燃
料供給装置として燃料噴射弁23(気化器でも良
い)が各気筒に対応して設けられる。
An air flow sensor 19 that detects the amount of intake air as engine load state detection means and a throttle valve that detects the opening degree of the throttle valve 20 are connected to the intake passage 18 that connects to the idle cylinder #2 and the operating cylinder (not shown). A valve sensor 21 is interposed, and a fuel injection valve 23 (a carburetor may be used) as a fuel supply device is provided in the intake port 22 corresponding to each cylinder.

また、24は点火プラグ、25はデイストリビ
ユータ、26はイグニツシヨンコイルで、デイス
トリビユータ25にクランク角を検出する手段と
してクランク角センサ27が取付けられる。クラ
ンク角センサ27は各気筒の排気上死点毎にパル
ス信号イを発生すると共に、特定気筒のときに巾
広のパルスとなるように設定される。
Further, 24 is a spark plug, 25 is a distributor, 26 is an ignition coil, and a crank angle sensor 27 is attached to the distributor 25 as means for detecting the crank angle. The crank angle sensor 27 generates a pulse signal A at each exhaust top dead center of each cylinder, and is set to generate a wide pulse when a specific cylinder is selected.

このパルス信号イと、前記吸入空気量信号、絞
弁開度信号、それに回転センサ(図示しない)か
らの回転数信号、冷却水温センサ28からの水温
信号等は、それぞれ入出力回路(I/O)34、
中央処理回路(CPU)31、読出専用記憶回路
(ROM)32、随時読出、書込可能記憶回路
(RAM)33とから構成される制御回路29に
入力される。
This pulse signal A, the intake air amount signal, the throttle valve opening signal, the rotational speed signal from the rotation sensor (not shown), the water temperature signal from the cooling water temperature sensor 28, etc. are connected to input/output circuits (I/O )34,
The data is input to a control circuit 29 that includes a central processing circuit (CPU) 31, a read-only memory circuit (ROM) 32, and a readable/writable memory circuit (RAM) 33.

そして、制御回路29は、前記パルス信号イに
応答して所定クランク角毎に各運転信号よりエン
ジンの運転条件、負荷状態を検出し、判別すると
共に、これらに基づく噴射信号ロにより燃料噴射
弁23を駆動制御し、点火信号ハによりイグニツ
シヨンコイル26の1次側のスイツチ30を断続
して点火動作を制御し、弁制御信号ニによりアク
チユエータ15を切換作動して休止側気筒#2の
吸、排気弁1,17の作動状態を制御する。
Then, in response to the pulse signal A, the control circuit 29 detects and discriminates the operating conditions and load condition of the engine from each operating signal at every predetermined crank angle, and also controls the fuel injection valve 23 with an injection signal B based on these. The switch 30 on the primary side of the ignition coil 26 is turned on and off in response to the ignition signal C to control the ignition operation, and the actuator 15 is switched and activated in response to the valve control signal D to switch the intake of cylinder #2 on the idle side. , controls the operating states of the exhaust valves 1 and 17.

全気筒運転時の各信号波形と、休止側の吸、排
気弁1,17の作動状態を第4図に示す。ただ
し、4気筒エンジンに適用した例で、#1,#4
を稼動側気筒、#2,#3を休止側気筒としてい
る。
FIG. 4 shows the signal waveforms during all-cylinder operation and the operating states of the intake and exhaust valves 1 and 17 on the rest side. However, in the example applied to a 4-cylinder engine, #1, #4
is the active cylinder, and #2 and #3 are the idle cylinders.

排気上死点毎に発生するクランク角センンサ2
7からのパルス信号イを基準に、各気筒#1〜
#4の作動順序(点火順序#1−#3−#4−
#2)にしたがい、それぞれ最適燃料噴射量とな
るように吸入空気量等に応じた噴射信号ロが各燃
料噴射弁23へ順々に指令され、燃料の噴射時期
は例えば各吸入行程の初期に設定される。
Crank angle sensor 2 generated at each exhaust top dead center
Based on the pulse signal A from 7, each cylinder #1~
#4 operating order (ignition order #1-#3-#4-
#2), an injection signal corresponding to the intake air amount etc. is sequentially commanded to each fuel injection valve 23 so as to achieve the optimum fuel injection amount, and the fuel injection timing is set, for example, at the beginning of each intake stroke. Set.

同じくパルス信号イを基準に順々に点火信号ハ
が指令され、デイストリビユータ25により各気
筒#1〜#4の圧縮上死点付近で最適点火が行な
われるように点火時期が設定される。
Similarly, the ignition signal C is sequentially commanded based on the pulse signal A, and the ignition timing is set by the distributor 25 so that optimum ignition is performed near the compression top dead center of each cylinder #1 to #4.

また、弁制御信号ニはOFFで、各アクチユエ
ータ15は初期位置に保たれ、したがつて休止側
気筒#2,#3の吸、排気弁1,17はそれぞれ
通常の開閉動作を行なう。
Further, the valve control signal D is OFF, and each actuator 15 is maintained at the initial position, so that the intake and exhaust valves 1 and 17 of the cylinders #2 and #3 on the idle side perform normal opening and closing operations, respectively.

なお、ホはパルス信号イの立下りに応答して、
制御回路29内でエンジンの運転条件等の検出を
指令する割込信号を示す。
In addition, E responds to the falling edge of pulse signal A,
3 shows an interrupt signal that instructs the control circuit 29 to detect engine operating conditions, etc.

他方、気筒#2,#3の作動を休止する部分気
筒運転時の信号波形と、吸、排気弁1,17の作
動状態を第5図に示す。
On the other hand, FIG. 5 shows the signal waveform during partial cylinder operation in which the operation of cylinders #2 and #3 is suspended, and the operating states of the intake and exhaust valves 1 and 17.

吸入空気量信号、回転数信号等に基づいてエン
ジンの軽負荷域やアイドリング域では、気筒
#2,#3に対応する燃料噴射弁23への噴射信
号ロが遮断されると共に、同じく対応する点火信
号ハがカツトされる。
Based on the intake air amount signal, rotation speed signal, etc., in the engine's light load range or idling range, the injection signal B to the fuel injection valve 23 corresponding to cylinders #2 and #3 is cut off, and the corresponding ignition signal is also cut off. Signal C is cut.

そして、弁制御信号ニがONとなつて各アクチ
ユエータ15が作動し、休止側気筒#2,#3の
吸、排気弁1,17の開作動が規制され、吸、排
気作用が停止される。
Then, the valve control signal N turns ON, and each actuator 15 operates, and the opening operations of the intake and exhaust valves 1 and 17 of the cylinders #2 and #3 on the idle side are regulated, and the intake and exhaust operations are stopped.

このとき、吸、排気弁1,17はともに閉止状
態に保たれるが、例えば燃料供給装置に気化器を
用いた場合、吸気弁1をその吸入行程末期にいく
らか開かせるように構成しても良い。
At this time, both the intake and exhaust valves 1 and 17 are kept closed, but for example, if a carburetor is used as the fuel supply system, the intake valve 1 may be configured to open somewhat at the end of its intake stroke. good.

これにより、全気筒運転ならびに部分気筒運転
が行なわれ、第6図にこの全気筒運転から部分気
筒運転に切換る際の制御指令、各タイミングチヤ
ートを示す。
As a result, full-cylinder operation and partial-cylinder operation are performed, and FIG. 6 shows control commands and timing charts when switching from full-cylinder operation to partial-cylinder operation.

クランク角センサ27からのパルス信号イに応
答して、吸入空気量信号、回転数信号等からA点
で軽負荷域等が判断されると、A点で吸入行程が
終了する気筒#3から対応する点火信号ハ、噴射
信号ロが遮断され、同じく弁制御信号ニがONに
切換えられる。そして、次の気筒#2の吸入行程
終了時(B点)に出力されるパルス信号イに応答
して気筒#2に対応する点火信号ハ、噴射信号ロ
が遮断され、弁制御信号ニがONに切換えられ
る。
In response to the pulse signal A from the crank angle sensor 27, if a light load region etc. is determined at point A from the intake air amount signal, rotation speed signal, etc., action is taken from cylinder #3 where the intake stroke ends at point A. The ignition signal C and injection signal B are cut off, and the valve control signal D is also turned ON. Then, in response to the pulse signal A output at the end of the intake stroke of the next cylinder #2 (point B), the ignition signal C and injection signal B corresponding to cylinder #2 are cut off, and the valve control signal D is turned on. can be switched to

また、B点で軽負荷域等が判断されたときは、
気筒#3より気筒#2のほうが先行し、C点、D
点のときはこれらに近いA点、B点よりそれぞれ
上述した制御がなされる。噴射信号ロ、点火信号
ハの点線部は遮断状態を示し、吸、排気弁1,1
7の斜線部Mはその作動の切換領域を示す。
In addition, when it is determined that the light load area etc. is at point B,
Cylinder #2 precedes cylinder #3 and reaches point C and D.
In the case of points, the above-mentioned control is performed from points A and B, which are close to these points. The dotted line parts of injection signal B and ignition signal C indicate the cut-off state, and the intake and exhaust valves 1 and 1
The shaded area M in 7 indicates the switching region of the operation.

この場合、軽負荷域等の判断から各制御指令が
出されるまで応答遅れがあるが、特に吸気弁1の
リスト中に弁切換指令が重ならないように、パル
ス信号イから所定クランク角、もしくは所定時間
後に弁制御信号ニがONとなるように設定され
る。具体的には、クランク角数度毎にパルスを発
生する角度センサ(図示しない)を前記クランク
角センサ27と併用(共用)し、この信号に応じ
て所定パルスだけ弁制御信号ニのON指令を遅ら
せる。あるいは、タイマ(図示しない)を設け、
所定時間遅らせるように構成する。
In this case, there is a response delay from the judgment of the light load range etc. to the issuance of each control command, but in particular, in order to avoid overlapping valve switching commands in the list of intake valve 1, it is necessary to The valve control signal D is set to turn ON after a certain period of time. Specifically, an angle sensor (not shown) that generates a pulse every several degrees of crank angle is used together with the crank angle sensor 27, and in response to this signal, the valve control signal 2 is turned ON by a predetermined pulse. delay. Alternatively, a timer (not shown) may be provided,
It is configured to delay by a predetermined time.

即ち、部分気筒運転に切換るときに、それまで
作動していた休止側気筒#2,#3内の燃焼排気
を排気弁17よりきれいに排出すると共に、吸入
行程で供給された燃料と新気の適正混合気を気筒
#2,#3内に未燃のままで閉じ込める。
That is, when switching to partial cylinder operation, the combustion exhaust in the cylinders #2 and #3 on the inactive side, which had been operating up until then, is cleanly discharged from the exhaust valve 17, and the fuel and fresh air supplied during the intake stroke are discharged cleanly. The proper air-fuel mixture is trapped in cylinders #2 and #3 in an unburned state.

一方、第7図に部分気筒運転から全気筒運転に
復帰する際の制御指令、各タイミングチヤートを
示す。
On the other hand, FIG. 7 shows control commands and timing charts when returning from partial cylinder operation to full cylinder operation.

軽負荷域等から例えばA点にて高負荷域等に入
つたことが判断されると、このA点で吸入行程が
終了する気筒#3からパルス信号イに同期して、
対応する点火信号ハ、噴射信号ロの供給が再開さ
れ、所定クランク角(所定時間)後に同じく弁制
御信号ニがOFFに切換えられる。そして、次に
気筒#2への点火信号ハ、噴射信号ロの供給が再
開され、弁制御信号ニがOFFに切換えられる。
また、B点では気筒#2が先行し、C点、D点で
はこれらに近いA点、B点から制御が行なわれ
る。
When it is determined that the light load range has entered the high load range, for example, at point A, synchronizing with pulse signal A, from cylinder #3 whose intake stroke ends at point A,
The supply of the corresponding ignition signal C and injection signal B is resumed, and after a predetermined crank angle (predetermined time), the valve control signal D is also switched OFF. Then, the supply of ignition signal C and injection signal B to cylinder #2 is restarted, and valve control signal D is switched to OFF.
Further, at point B, cylinder #2 takes the lead, and at points C and D, control is performed from points A and B, which are close to these points.

したがつて、全気筒運転に復帰するときに、前
述したように休止側気筒#2,#3に閉じ込めた
未燃の混合気は膨張行程で必らず燃焼した後、排
気弁15より排出される。そして、次の吸入行程
から繰り返される燃焼サイクルへと続けられる。
Therefore, when returning to full-cylinder operation, the unburned air-fuel mixture trapped in the idle cylinders #2 and #3 is necessarily burned in the expansion stroke and then exhausted from the exhaust valve 15 as described above. Ru. The combustion cycle then continues from the next intake stroke.

このように、クランク角センサ27のパルス信
号イに基づいて各制御を行なうことにより、点
火、燃料噴射および吸、排気弁1,17の作動切
換時期を最適に設定でき、即ち全気筒運転から部
分気筒運転への移行時には、休止側気筒#2,
#3に未燃の混合気(適正空燃比)が閉じ込めら
れ、全気筒運転への復帰時には、その混合気を燃
焼させてから気筒#2,#3の作動が開始され
る。
In this way, by performing each control based on the pulse signal A of the crank angle sensor 27, the ignition, fuel injection, and operation switching timing of the intake and exhaust valves 1 and 17 can be optimally set. When transitioning to cylinder operation, the idle cylinder #2,
An unburned air-fuel mixture (appropriate air-fuel ratio) is trapped in #3, and when returning to full-cylinder operation, the air-fuel mixture is combusted before operation of cylinders #2 and #3 is started.

このため、気筒数切換時に未燃混合気が排出さ
れて排気組成を阻害したり、燃焼後の排気が吸気
系に逆流して稼動側気筒#1,#4の焼結を悪化
させるようなことは防止され、機関状態、排気状
態を良好に保ちながら的確に全気筒運転、部分気
筒運転の切換えを行なうことができる。
Therefore, when switching the number of cylinders, unburned air-fuel mixture is discharged and disturbs the exhaust composition, and exhaust gas after combustion flows back into the intake system, worsening sintering in active cylinders #1 and #4. It is possible to accurately switch between full cylinder operation and partial cylinder operation while maintaining good engine and exhaust conditions.

また、休止側気筒#2,#3に混合気を閉じ込
めて部分気筒運転時のトルク変動等良く低減され
ると共に、この混合気を燃焼させつつ全気筒運転
へ復帰させるので、円滑な作動が得られ、加速時
等の機関応答性が著しく向上する。
In addition, by trapping the air-fuel mixture in cylinders #2 and #3 on the idle side, torque fluctuations during partial cylinder operation are effectively reduced, and since this air-fuel mixture is combusted while returning to full-cylinder operation, smooth operation is achieved. This significantly improves engine response during acceleration.

なお、前記弁制御信号ニによる吸、排気弁1,
17の作動切換時期は、その切換応答時間が考慮
され、例えば排気弁17の切換えが間に合わない
場合には、吸、排気弁1,17の作動切換えアク
チユエータ15をそれぞれ別々に設け、排気弁1
7の切換えを早めに設定する。
Note that the intake and exhaust valves 1,
17 is determined by taking into consideration the switching response time. For example, if the exhaust valve 17 cannot be switched in time, separate operation switching actuators 15 are provided for the intake and exhaust valves 1 and 17, and the exhaust valve 1
Set the switching of 7 early.

第8図、第9図は本発明の他の実施例で、6気
筒エンジンに適用し、燃料供給装置に気化器を用
いている。ただし、#1〜#3は稼動側気筒、
#4〜#6は休止側気筒、作動順序は#1−#5
−#3−#6−#2−#4で、第8図は全気筒運
転時の各タイミングチヤート、第9図は部分気筒
運転から全気筒運転へ切換るときのタイミングチ
ヤートを表わす。
FIGS. 8 and 9 show other embodiments of the present invention, which are applied to a six-cylinder engine and use a carburetor as the fuel supply device. However, #1 to #3 are operating cylinders,
#4 to #6 are the cylinders on the idle side, and the operating order is #1 to #5.
-#3-#6-#2-#4, FIG. 8 shows each timing chart during all cylinder operation, and FIG. 9 shows a timing chart when switching from partial cylinder operation to all cylinder operation.

クランク角センサ27から各気筒の排気上死点
毎にパルス信号イが発生され、これに応答してエ
ンジンの運転状態を検出、判別する。そして、例
えば部分気筒運転から全気筒運転へ切換るときに
a点で軽負荷域等に入ると、吸入行程途中である
気筒#4への点火信号ハの遮断が解除され、次の
b点もしくはその次のc点のパルス信号イに応答
して対応する弁制御信号ニがOFFに切換えられ
る。その後、b〜d点で気筒#5、d〜f点で気
筒#6への点火信号ハの遮断が解除され、c、d
点で気筒#5、f、g点で気筒#6に対応する弁
制御信号ニがOFFに切換えられる。b、c点で
軽負荷域等に入れば気筒#5から同様の制御がな
される。
A pulse signal A is generated from the crank angle sensor 27 at each exhaust top dead center of each cylinder, and in response to this, the operating state of the engine is detected and determined. For example, when switching from partial cylinder operation to full cylinder operation, if the light load range is entered at point a, the cutoff of the ignition signal c to cylinder #4, which is in the middle of the intake stroke, is released, and the next point b or In response to the pulse signal A at the next point c, the corresponding valve control signal D is switched OFF. After that, the cutoff of the ignition signal C to cylinder #5 is released at points b to d, and to cylinder #6 at points d to f, and c, d
At point #5, f, and point g, the valve control signal corresponding to cylinder #6 is switched OFF. If the engine enters the light load range at points b and c, similar control is performed starting from cylinder #5.

エンジン回転数が比較的高い場合、吸、排気弁
1,17の切換応答時間が相対的に長くなるの
で、第10図に示すように各制御は早めに設定す
ることが良い。
When the engine speed is relatively high, the switching response time of the intake and exhaust valves 1 and 17 becomes relatively long, so it is preferable to set each control early as shown in FIG. 10.

これによれば、特に燃料の遮断制御等必要ない
ので、容易になると共に、各排気上死点毎に出力
されるパルス信号イのみに基づいて上記制御を行
えば良く、したがつて高精度の角度センサあるい
はタイマ等使用せずとも気筒数の最適な切換制御
ができる。
According to this, there is no particular need for fuel cutoff control, etc., making it easy to perform, and the above control can be performed only based on the pulse signal A output at each exhaust top dead center. Optimal switching control of the number of cylinders can be performed without using angle sensors or timers.

以上説明した通り、本発明によれば、一部気筒
の吸、排気弁の開作動を規制して部分気筒運転を
行なうようにした気筒数制御エンジンにおいて、
エンジンの負荷状態を検出する手段と、クランク
角を検出する手段を設け、検出負荷に基づく吸、
排気弁の作動切換えをクランク信号に同期して制
御するようにしたので、点火、燃料供給等に対す
る最適切換時期を設定でき、運転性能、排気性能
を良好に維持しながら気筒数の切換えを的確に行
なえるという効果がある。
As explained above, according to the present invention, in a cylinder number control engine in which partial cylinder operation is performed by regulating the opening operations of the intake and exhaust valves of some cylinders,
A means for detecting the load state of the engine and a means for detecting the crank angle are provided, and the suction and intake based on the detected load are
Since the exhaust valve operation switching is controlled in synchronization with the crank signal, the optimal switching timing for ignition, fuel supply, etc. can be set, and the number of cylinders can be switched accurately while maintaining good driving performance and exhaust performance. There is an effect that it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸気弁または排気弁の開作動を規制す
る弁機構の一例を示す平面図、第2図はその概略
正面図、第3図は本発明の実施例を示す構成断面
図、第4図〜第7図はそれぞれ本発明の各信号波
形と吸、排気弁の作動状態を示すタイミングチヤ
ート図、第8図〜第10図はそれぞれ本発明の他
の実施例のタイミングチヤート図である。 1……吸気弁、3……ロツカーアーム、9……
第1のカム、10……第2のカム、11……切換
リング、15……アクチユエータ、17……排気
弁、19……エアフローセンサ、20……絞弁、
21……絞弁センサ、23……燃料噴射弁、24
……点火プラグ、25……デイストリビユータ、
26……イグニツシヨンコイル、27……クラン
ク角センサ、29……制御回路、30……スイツ
チ。
FIG. 1 is a plan view showing an example of a valve mechanism that regulates the opening operation of an intake valve or an exhaust valve, FIG. 2 is a schematic front view thereof, FIG. 7 to 7 are timing charts showing respective signal waveforms and operating states of the intake and exhaust valves of the present invention, and FIGS. 8 to 10 are timing charts of other embodiments of the present invention, respectively. 1...Intake valve, 3...Rotzker arm, 9...
First cam, 10... Second cam, 11... Switching ring, 15... Actuator, 17... Exhaust valve, 19... Air flow sensor, 20... Throttle valve,
21... Throttle valve sensor, 23... Fuel injection valve, 24
...Spark plug, 25...Distributor,
26...Ignition coil, 27...Crank angle sensor, 29...Control circuit, 30...Switch.

Claims (1)

【特許請求の範囲】[Claims] 1 軽負荷域等で吸気弁ならびに排気弁の開作動
が規制され作動を休止する休止側気筒と、常時作
動する稼動側気筒とを備えた多気筒エンジンにお
いて、エンジンの負荷状態を検出する手段と、ク
ランク角を検出する手段とを設け、クランク信号
に応じ所定クランク角毎に負荷状態を検出すると
共に、検出負荷に基づく前記吸、排気弁の開作動
の規制ならびに規制解除をクランク信号に同期し
て指令する制御回路を備えたことを特徴とする気
筒数制御エンジンの弁切換制御装置。
1. Means for detecting the load state of an engine in a multi-cylinder engine equipped with a dormant cylinder whose operation is suspended by restricting the opening operation of the intake valve and exhaust valve in a light load range, etc., and an operating cylinder which is constantly operated. , a means for detecting a crank angle is provided, and the load condition is detected at every predetermined crank angle according to the crank signal, and regulation and release of the opening operation of the intake and exhaust valves based on the detected load are synchronized with the crank signal. What is claimed is: 1. A valve switching control device for an engine that controls the number of cylinders, comprising a control circuit that issues commands based on the number of cylinders.
JP57117453A 1982-07-06 1982-07-06 Valve switching controlling apparatus for engine with controlled number of operating cylinder Granted JPS597746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57117453A JPS597746A (en) 1982-07-06 1982-07-06 Valve switching controlling apparatus for engine with controlled number of operating cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57117453A JPS597746A (en) 1982-07-06 1982-07-06 Valve switching controlling apparatus for engine with controlled number of operating cylinder

Publications (2)

Publication Number Publication Date
JPS597746A JPS597746A (en) 1984-01-14
JPH039291B2 true JPH039291B2 (en) 1991-02-08

Family

ID=14712027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57117453A Granted JPS597746A (en) 1982-07-06 1982-07-06 Valve switching controlling apparatus for engine with controlled number of operating cylinder

Country Status (1)

Country Link
JP (1) JPS597746A (en)

Also Published As

Publication number Publication date
JPS597746A (en) 1984-01-14

Similar Documents

Publication Publication Date Title
JP4859515B2 (en) Engine valve deterioration judgment method
KR20070074654A (en) Control apparatus and control method for internal combustion engine
JP6123759B2 (en) Engine control device
JP3939079B2 (en) Variable valve timing control device for internal combustion engine
JP4140242B2 (en) Control device for internal combustion engine
US6691506B2 (en) Device and method for controlling variable valve timing of internal combustion engine
JP2004124754A (en) Engine starter
JP2004124753A (en) Engine starter
JPH08303268A (en) Changeover method of charge of cylinder in internal combustion engine
JP2004293444A (en) Starting device of engine
JPH039291B2 (en)
JP2001241340A (en) Contol device for internal combustion engine
JPH07217463A (en) Cylinder reduction control device for multi-cylinder internal combustion engine
JPH07217460A (en) Intake and exhaust valve open/close timing control device for internal combustion engine
JPH0338414B2 (en)
JP2007132284A (en) Intake device for internal combustion engine
JP2004162617A (en) Control device for internal combustion engine
JP4103664B2 (en) Engine starter
JPH09166030A (en) Combustion controller for internal combustion engine
JPS5915648A (en) Control device for changing over number of cylinder
JPS58220969A (en) Ignition controller of internal-combustion engine
JPH0226049B2 (en)
JPH0229847B2 (en)
JP2000179366A (en) Cylinder cutting-off engine controller
JPH0842375A (en) Controller of multi-cylinder internal combustion engine