JPH039283Y2 - - Google Patents

Info

Publication number
JPH039283Y2
JPH039283Y2 JP1984143434U JP14343484U JPH039283Y2 JP H039283 Y2 JPH039283 Y2 JP H039283Y2 JP 1984143434 U JP1984143434 U JP 1984143434U JP 14343484 U JP14343484 U JP 14343484U JP H039283 Y2 JPH039283 Y2 JP H039283Y2
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient thermistor
thermally conductive
insulating resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984143434U
Other languages
Japanese (ja)
Other versions
JPS6157502U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984143434U priority Critical patent/JPH039283Y2/ja
Publication of JPS6157502U publication Critical patent/JPS6157502U/ja
Application granted granted Critical
Publication of JPH039283Y2 publication Critical patent/JPH039283Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、例えば、ビデオテープレコーダ(以
下VTRと称する。)の回転ヘツドを構成するシリ
ンダの結露防止用発熱装置等に使用される正特性
サーミスタ装置に関する。
[Detailed description of the invention] <Industrial application field> The present invention has positive characteristics, which is used, for example, in a heating device for preventing dew condensation in a cylinder constituting the rotating head of a video tape recorder (hereinafter referred to as VTR). The present invention relates to a thermistor device.

〈従来の技術〉 VTRの録画、再生動作時においては、周辺機
器からの放熱や自己の発熱現象により、回転ヘツ
ド.シリンダはかなりの温度上昇を示す。ところ
が、一旦動作を停止すると、回転ヘツド.シリン
ダの温度が急激に低下し、回転ヘツド.シリンダ
の表面に細かい水滴が付着する結露現象が発生す
る。この結露現象により磁気テープが回転ヘツ
ド.シリンダの表面に密着してしまうため、次に
使用するときに回転ヘツド.シリンダが円滑に始
動できなくなつたり、最悪の場合には磁気テープ
が破断してしまうことがあつた。この結露防止手
段として、第8図及び第9図に示すような正特性
サーミスタ装置が知られている。この第8図に示
す従来例では、アルミニユウム等の熱伝導性の良
好な金属板材を用いて、円弧状曲面に形成された
放熱板1の外周面に、熱伝導性の良好なアルミナ
磁器、ベリリア磁器等から成る耐熱絶縁板2及び
正特性サーミスタ3を順次重ね、これらの部品1
〜3の相互間をエポキシ系接着材で接着した後、
正特性サーミスタ3の上からモールド樹脂4をコ
ーテイングした構造となつている。正特性サーミ
スタ3は例えば円板状の素体31の取付面側に中
間電極32を形成すると共に、他面側にギヤツプ
G1を介して対向する一対の電極33及び34を
設け、該電極33及び34にそれぞれリード線5
及び6を半田付け等の手段によつて接続固定した
構造となつている。7及び8は取付孔である。
<Prior art> During recording and playback operations of a VTR, the rotary head loses heat due to heat radiation from peripheral devices and its own heat generation phenomenon. The cylinder exhibits a significant temperature rise. However, once the operation stops, the rotating head... The temperature of the cylinder drops rapidly and the rotating head. A condensation phenomenon occurs in which fine water droplets adhere to the surface of the cylinder. This condensation phenomenon causes the magnetic tape to rotate. Because it sticks to the surface of the cylinder, the rotating head must be removed the next time it is used. The cylinder could not start smoothly, and in the worst case, the magnetic tape could break. As this dew condensation prevention means, positive temperature coefficient thermistor devices as shown in FIGS. 8 and 9 are known. In the conventional example shown in FIG. 8, a metal plate material with good thermal conductivity such as aluminum is used, and alumina porcelain with good thermal conductivity, beryllia porcelain with good thermal conductivity, A heat-resistant insulating plate 2 made of porcelain or the like and a positive temperature coefficient thermistor 3 are stacked one after another, and these parts 1
~ After gluing 3 together with epoxy adhesive,
It has a structure in which a positive temperature coefficient thermistor 3 is coated with mold resin 4. The positive temperature coefficient thermistor 3 has, for example, an intermediate electrode 32 formed on the mounting surface side of a disk-shaped element body 31, and a gap formed on the other surface side.
A pair of electrodes 33 and 34 are provided facing each other via G1 , and lead wires 5 are connected to the electrodes 33 and 34, respectively.
and 6 are connected and fixed by means such as soldering. 7 and 8 are mounting holes.

第10図は回転ヘツド.シリンダに対する取付
け状態を示す図で、回転ヘツド.シリンダ9に対
して放熱板1の曲面側を密着させ、取付孔7,8
を通したネジ10によつて締付け固定する。
Figure 10 shows a rotating head. This is a diagram showing how the rotary head is attached to the cylinder. The curved side of the heat sink 1 is brought into close contact with the cylinder 9, and the mounting holes 7 and 8 are
Tighten and fix with screws 10 passed through.

〈考案が解決しようとする課題〉 しかしながら、従来のこの種の正特性サーミス
タ装置は、第8図〜第10図に例示した如く、ア
ルミニユウム等の熱伝導性の良好な金属材料で成
る放熱板1の上に、耐熱絶縁板2及び正特性サー
ミスタ3を順次重ねて接着した後、更に全体をモ
ールド樹脂4によつてコーテイングする構造であ
るため、次のような欠点がある。
<Problem to be solved by the invention> However, as illustrated in FIGS. 8 to 10, conventional PTC thermistor devices have a heat dissipation plate 1 made of a metal material with good thermal conductivity such as aluminum. The structure is such that the heat-resistant insulating plate 2 and the positive temperature coefficient thermistor 3 are successively stacked and bonded thereon, and then the entire body is further coated with a molding resin 4, which has the following drawbacks.

(イ) 部品点数が多く、これらを互いに適合する形
に製造、加工したうえで、接着して組立てる必
要があるため、製造、加工及び組立の各工程が
面倒で、コスト高になる。特に放熱板1は、そ
の上に重ねられる絶縁板2及び正特性サーミス
タ3を、熱伝導性の良好な状態で、所定位置に
位置決めしなければならないため、取付部分に
凸環部101、平担な取付面102を形成する
必要があり、加工が面倒で、コスト高になる。
(b) There are many parts, and it is necessary to manufacture and process them into mutually compatible shapes and then glue them together, which makes the manufacturing, processing, and assembly processes cumbersome and increases costs. In particular, the heat dissipation plate 1 has a convex ring part 101 and a flat plate on the mounting part because the insulating plate 2 and the positive temperature coefficient thermistor 3 that are stacked on it must be positioned in a predetermined position with good thermal conductivity. It is necessary to form a mounting surface 102 that is difficult to process, resulting in high costs.

(ロ) 放熱板1の上に耐熱絶縁板2を介して正特性
サーミスタ3を取付ける構造であるため、耐熱
絶縁板2が介在する分だけ、正特性サーミスタ
3から放熱板1への熱伝導が悪くなる。
(b) Since the structure is such that the PTC thermistor 3 is mounted on the heat sink 1 via the heat resistant insulating plate 2, heat conduction from the PTC thermistor 3 to the heat sink 1 is reduced by the presence of the heat resistant insulating plate 2. Deteriorate.

(ハ) 放熱板1、耐熱絶縁板2及び正特性サーミス
タ3の各接触面に或る程度の凹凸が発生するこ
とは避けられない。しかもこれらの部品相互間
に接着材を介在させる必要がある。このため部
品相互間の熱伝導が悪くなる。
(c) It is inevitable that some degree of unevenness will occur on the contact surfaces of the heat dissipation plate 1, the heat-resistant insulating plate 2, and the positive temperature coefficient thermistor 3. Moreover, it is necessary to interpose an adhesive between these parts. As a result, heat conduction between the parts becomes poor.

(ニ) アルミニユーム等の金属板で構成された放熱
板1を、少なくとも2点でビス止めして回転ヘ
ツド.シリンダ9に取付ける必要があるため、
取付面積が大きくなり、取付けスペースが狭い
場合には取付ができなくなることがあつた。ま
た取付け作業が面倒になる等の難点もある。
(d) A heat dissipation plate 1 made of a metal plate such as aluminum is fixed with screws at at least two points to attach it to the rotating head. Because it needs to be installed on cylinder 9,
The installation area becomes large, and if the installation space is narrow, installation may not be possible. There are also other drawbacks, such as the installation work being troublesome.

そこで、本考案の課題は、上述する従来の欠点
を除去し、部品点数が少なく、製造、加工及び組
立が容易であり、小型で狭いスペースにも簡単に
取付けることができ、しかも熱伝導性に優れた正
特性サーミスタ装置を提供することである。
Therefore, the object of this invention is to eliminate the above-mentioned conventional drawbacks, have a small number of parts, be easy to manufacture, process, and assemble, be small and easy to install in a narrow space, and have high thermal conductivity. An object of the present invention is to provide an excellent positive temperature coefficient thermistor device.

〈課題を解決するための手段〉 上述した課題解決のため、本考案に係る正特性
サーミスタ装置は、厚み方向に貫通する孔を有し
厚み方向の両面に電極を有する板状の正特性サー
ミスタと、前記正特性サーミスタの前記電極上に
半田付けされたリード線と、前記正特性サーミス
タを被覆する熱伝導性絶縁樹脂とを有する正特性
サーミスタ装置であつて、 前記熱伝導性絶縁樹脂は、前記正特性サーミス
タの全体を、前記孔に対応する部分で厚み方向の
貫通孔が生じ、前記貫通孔の開口する両面側にお
いて、前記リード線及びリード線接続部分の凹凸
を吸収し得る厚みとなるように被覆しており、 前記リード線は、前記貫通孔の開口する両面に
対して側面側となる前記熱伝導性絶縁樹脂の外周
面から外部に導出してあり、 前記貫通孔の開口している前記熱伝導性絶縁樹
脂の少なくとも一面側を被加熱体に対する熱結合
面とし、前記貫通孔内を貫通する取付具によつて
前記被加熱体に締付け固定すること を特徴とする。
<Means for Solving the Problems> In order to solve the above-mentioned problems, the positive temperature coefficient thermistor device according to the present invention includes a plate-shaped positive temperature coefficient thermistor having a hole penetrating in the thickness direction and having electrodes on both sides in the thickness direction. , a positive temperature coefficient thermistor device comprising a lead wire soldered onto the electrode of the positive temperature coefficient thermistor, and a thermally conductive insulating resin covering the positive temperature coefficient thermistor, the thermally conductive insulating resin comprising: The entire positive temperature coefficient thermistor is made such that a through hole is formed in the thickness direction in a portion corresponding to the hole, and the thickness is such that the unevenness of the lead wire and the lead wire connection portion can be absorbed on both sides where the through hole is open. The lead wire is led out from the outer circumferential surface of the thermally conductive insulating resin that is on the side surface of both surfaces where the through hole is open, At least one side of the thermally conductive insulating resin is used as a thermally bonded surface to the heated object, and the heating object is fastened and fixed to the heated object by a fitting that passes through the through hole.

〈作用〉 熱伝導性絶縁樹脂は、正特性サーミスタの全体
を被覆しているので、表面に活電部が生じない。
このため、従来必要であつた放熱板、絶縁板が不
要になると共に、これらの各部品及び正特性サー
ミスタ相互間の接着工程が不要となり、部品点数
が減少し、製造、加工及び組立が容易になり、コ
ストが安価になる。また、正特性サーミスタと熱
伝導性絶縁樹脂とが一体化されているので、両者
間の熱伝導度が向上し、熱伝導性絶縁樹脂の表面
温度が高くなり、かつ、安定する。
<Operation> Since the thermally conductive insulating resin covers the entire positive temperature coefficient thermistor, no live parts are generated on the surface.
This eliminates the need for heat sinks and insulating plates that were previously required, as well as the need for bonding processes between these components and positive temperature coefficient thermistors, reducing the number of parts and facilitating manufacturing, processing, and assembly. Therefore, the cost becomes cheaper. Furthermore, since the positive temperature coefficient thermistor and the thermally conductive insulating resin are integrated, the thermal conductivity between them is improved, and the surface temperature of the thermally conductive insulating resin becomes high and stable.

熱伝導性絶縁樹脂は、正特性サーミスタの全体
を、孔に対応する部分で厚み方向の貫通孔が生じ
るように被覆してあり、貫通孔の開口している熱
伝導性絶縁樹脂の少なくとも一面側を被加熱体に
対する熱結合面とし、貫通孔内を貫通する取付具
によつて被加熱体に締付け固定したから、貫通孔
内を貫通させた一本の取付具で固定でき、取付ス
ペースが小さくて済む。また、被加熱体に対する
取付が著しく簡単になる。
The thermally conductive insulating resin covers the entire positive temperature coefficient thermistor so that a through hole is formed in the thickness direction at the portion corresponding to the hole, and at least one side of the thermally conductive insulating resin where the through hole is open. is used as the thermal bonding surface for the heated object, and is tightened and fixed to the heated object using a fitting that passes through the through hole, so it can be fixed with a single fitting that passes through the through hole, and the installation space is small. It's done. Furthermore, attachment to the heated body becomes extremely simple.

熱伝導性絶縁樹脂は、貫通孔の開口する両面側
において、リード線及びリード線接続部分の凹凸
を吸収し得る厚みを有しており、リード線は貫通
孔の開口する両面に対して側面側となる熱伝導性
絶縁樹脂の外周面から外部に導出してあるから、
リード線の線径及びリード線を電極に半田付けし
た場合の半田盛り上り等による凹凸による影響を
受けることなく、貫通孔の開口している熱伝導性
絶縁樹脂の少なくとも一面側を、被加熱体に熱的
に密に結合させることができる。
The thermally conductive insulating resin has a thickness that can absorb the unevenness of the lead wire and the lead wire connection part on both sides where the through hole opens, and the lead wire has a thickness that can absorb the unevenness of the lead wire and the lead wire connection part on both sides where the through hole opens. Because it is led out from the outer peripheral surface of the thermally conductive insulating resin,
At least one side of the thermally conductive insulating resin with the through-hole is connected to the heated object without being affected by the wire diameter of the lead wire or unevenness caused by solder build-up when the lead wire is soldered to the electrode. can be closely thermally coupled to the

更に、熱伝導性絶縁樹脂により、取付具による
締付力が吸収緩和されるので、正特性サーミスタ
の破損が防止される。
Furthermore, the thermally conductive insulating resin absorbs and relieves the tightening force exerted by the fixture, thereby preventing damage to the PTC thermistor.

〈実施例〉 第1図は本考案に係る正特性サーミスタ装置の
斜視図、第2図は第1図A1−A1線上における断
面図、第3図は正特性サーミスタの斜視図であ
る。図において、11は正特性サーミスタ、12
は例えばシリコーン樹脂等で成る熱伝導性絶縁樹
脂である。正特性サーミスタ11は第3図に示す
ように、外形d1、厚みt2の素体の略中心部に、厚
み方向に貫通する内径d2の孔111を設けたドー
ナツ円板状に形成されていて、その厚み方向の両
面に電極112及び113を被着形成し、これら
の電極112及び113のそれぞれに、リード線
13及び14を半田付け固定した構造となつてい
る。そして、この正特性サーミスタ12の全体
を、孔111と対応する部分に貫通孔15が形成
され、全体としての外形が、外形D1、内径D2
び厚みt1のドーナツ状となるように、熱伝導性絶
縁樹脂12でモールドしてある。熱伝導性絶縁樹
脂12は、図示するように、貫通孔12の開口す
る両面側において、リード線13及びリード線接
続部分の凹凸を吸収し得る厚みを有している。リ
ード線13は貫通孔15の開口する両面に対して
側面側となる熱伝導性絶縁樹脂12の外周面から
外部に導出してある。正特性サーミスタ11のモ
ールドに当つて、リード線13,14に絶縁被覆
16,17を施し、この絶縁被覆16,17の一
端が熱伝導性絶縁樹脂12内に固着されるように
してモールドすると、リード線13,14が絶縁
被覆16,17によつて補強され、引出し部分で
の断線事故等が防止できる。
<Example> FIG. 1 is a perspective view of a PTC thermistor device according to the present invention, FIG. 2 is a sectional view taken along line A1 - A1 in FIG. 1, and FIG. 3 is a perspective view of the PTC thermistor. In the figure, 11 is a positive temperature coefficient thermistor, 12
is a thermally conductive insulating resin made of, for example, silicone resin. As shown in FIG. 3, the positive temperature coefficient thermistor 11 is formed into a donut disk shape with a hole 111 having an inner diameter d 2 penetrating in the thickness direction approximately at the center of an element body having an outer diameter d 1 and a thickness t 2 . Electrodes 112 and 113 are formed on both sides in the thickness direction, and lead wires 13 and 14 are soldered and fixed to these electrodes 112 and 113, respectively. The entire positive temperature coefficient thermistor 12 is configured such that a through hole 15 is formed in a portion corresponding to the hole 111, and the overall outer shape is donut-shaped with an outer diameter D 1 , an inner diameter D 2 and a thickness t 1 . It is molded with a thermally conductive insulating resin 12. As shown in the figure, the thermally conductive insulating resin 12 has a thickness that can absorb the unevenness of the lead wire 13 and the lead wire connection portion on both sides where the through hole 12 is open. The lead wire 13 is led out from the outer circumferential surface of the thermally conductive insulating resin 12 which is on the side surface of both surfaces where the through hole 15 is opened. When molding the positive temperature coefficient thermistor 11, the lead wires 13 and 14 are coated with insulating coatings 16 and 17, and one end of the insulating coatings 16 and 17 is fixed in the thermally conductive insulating resin 12. The lead wires 13 and 14 are reinforced by the insulating coatings 16 and 17, and accidents such as disconnection at the drawn-out portion can be prevented.

上述のように、正特性サーミスタ12の全体
を、熱伝導性絶縁樹脂12で被覆してあるので、
表面に活電部が生じない。このため、従来必要で
あつた放熱板、絶縁板が不要になるとともに、こ
れらの各部品及び正特性サーミスタ相互間の接着
工程が不要になり、部品点数が減少し、製造、加
工及び組立が容易になり、コストが安価になる。
また、正特性サーミスタ11と熱伝導性絶縁樹脂
12とが一体化されているので、両者間11−1
2の熱伝導度が向上し、熱伝導性絶縁樹脂12の
表面温度が高くなり、かつ、安定する。
As mentioned above, since the entire positive temperature coefficient thermistor 12 is covered with the thermally conductive insulating resin 12,
No live parts are generated on the surface. This eliminates the need for heat sinks and insulating plates that were previously required, as well as the need for bonding processes between these components and positive temperature coefficient thermistors, reducing the number of parts and facilitating manufacturing, processing, and assembly. , and the cost will be low.
In addition, since the positive temperature coefficient thermistor 11 and the thermally conductive insulating resin 12 are integrated, the 11-1
The thermal conductivity of No. 2 is improved, and the surface temperature of the thermally conductive insulating resin 12 becomes high and stable.

VTRの回転ヘツド.シリンダ等に対して装着
するには、第4図に示すように、ネジ等の取付具
18を、ワツシヤ19等を間に挟んで、貫通孔1
5内に貫通させ、回転ヘツド.シリンダ20に締
付け固定するだけで良い。このため、回転ヘツ
ド.シリンダ20等に対する取付作業が非常に容
易になる。しかも、貫通孔15内を貫通させた一
本の取付具18で固定できるので、取付スペース
が小さくて済む利点も得られる。また、シリコン
樹脂等の弾力性のある熱伝導性絶縁樹脂12を、
回転ヘツド.シリンダ20等に対して密着させて
取付けることができるから、密着性が良好にな
り、熱伝導度が向上する。更に、熱伝導性絶縁樹
脂12により、取付具18による締付力が吸収緩
和されるので、正特性サーミスタ1の破損が防止
される。
VTR rotating head. To attach it to a cylinder, etc., as shown in FIG.
5 through the rotary head. It is sufficient to simply tighten and fix it to the cylinder 20. For this reason, the rotating head. Mounting work to the cylinder 20 etc. becomes very easy. Moreover, since it can be fixed with a single fixture 18 passed through the through hole 15, there is an advantage that the mounting space is small. In addition, a resilient thermally conductive insulating resin 12 such as silicone resin,
Rotating head. Since it can be attached closely to the cylinder 20 etc., the adhesiveness is good and the thermal conductivity is improved. Furthermore, the thermally conductive insulating resin 12 absorbs and relieves the tightening force exerted by the fixture 18, thereby preventing damage to the PTC thermistor 1.

熱伝導性絶縁樹脂12は、貫通孔15の開口す
る両面側において、リード線13及びリード線接
続部分の凹凸を吸収し得る厚みを有しており、リ
ード線13は貫通孔15の開口する両面に対して
側面側となる熱伝導性絶縁樹脂12の外周面から
外部に導出してあるから、リード線13の線径及
びリード線を電極に半田付けした場合の半田盛り
上り等による凹凸による影響を受けることなく、
貫通孔15の開口している熱伝導性絶縁樹脂12
の一面側を、被加熱体である回転ヘツド.シリン
ダ20に熱的に密に結合させることができ、熱効
率が高くなる。
The thermally conductive insulating resin 12 has a thickness that can absorb the unevenness of the lead wire 13 and the lead wire connection portion on both sides where the through hole 15 is open. Since the lead wire 13 is led out from the outer peripheral surface of the thermally conductive insulating resin 12 on the side surface thereof, it is affected by the diameter of the lead wire 13 and unevenness caused by solder buildup when the lead wire is soldered to the electrode. without receiving
Thermal conductive insulating resin 12 with through holes 15 open
One side of the head is the rotating head which is the object to be heated. It can be thermally closely coupled to the cylinder 20, resulting in high thermal efficiency.

正特性サーミスタ11としては、上記実施例に
示すものの他にも、種々の構造のものが使用でき
る。例えば第5図に示すように、孔111を開口
させた厚み方向の一面側にギヤツプG1を隔てて
対向する一対の電極114,115を形成すると
共に、この一対の電極114,115のそれぞれ
にリード線13,14を接続し、他面側に一対の
電極114,115に共通に対向する中間電極1
16を形成した構造のもの等であつてもよい。
As the positive temperature coefficient thermistor 11, in addition to the one shown in the above embodiment, those having various structures can be used. For example, as shown in FIG. 5, a pair of electrodes 114 and 115 are formed facing each other with a gap G 1 in between on one side in the thickness direction where the hole 111 is opened, and each of the pair of electrodes 114 and 115 is An intermediate electrode 1 is connected to the lead wires 13 and 14 and is commonly opposed to a pair of electrodes 114 and 115 on the other side.
16 may be used.

次に実測データにより本考案の効果を更に具体
的に説明する。
Next, the effects of the present invention will be explained in more detail using actual measurement data.

まず、次の仕様になる本考案に係る正特性サー
ミスタ装置を用意した。
First, a positive temperature coefficient thermistor device according to the present invention having the following specifications was prepared.

A 正特性サーミスタ キユリー温度 Tc 50 ℃ 常温抵抗値 R20 15.4Ω 形状 第3図に示したドーナツ形状 外径 d1 φ7.0mm 内径 d2 φ4.1mm 厚み t2 1.3mm 電極及びリード線 上、下面にNi無電解メツキによる電極を形成
し、この電極上に0.5φのリード線をそれぞれ半田
付け固定した。
A Positive characteristic thermistor temperature Tc 50 ℃ Room temperature resistance R 20 15.4Ω Shape Donut shape shown in Figure 3 Outer diameter d 1 φ7.0mm Inner diameter d 2 φ4.1mm Thickness t 2 1.3mm Electrode and lead wire Top, Electrodes were formed on the bottom surface by electroless Ni plating, and 0.5φ lead wires were soldered and fixed onto these electrodes.

B 樹脂モールド 上記仕様の正特性サーミスタの全周にシリコー
ンゴム樹脂によるモールドを施し、熱伝導性絶縁
樹脂を形成した。これにより第1図及び第2図に
示した本考案に係る正特性サーミスタ装置が得ら
れる。仕上がり寸法は次の通りである。
B. Resin mold The entire circumference of the positive temperature coefficient thermistor having the above specifications was molded with silicone rubber resin to form a thermally conductive insulating resin. As a result, the positive temperature coefficient thermistor device according to the present invention shown in FIGS. 1 and 2 is obtained. The finished dimensions are as follows.

外径 D1 8.5mmφ 内径 D2 3.1mmφ 厚み t1 4.0mm 〈比較例〉 上記の本考案に係る正特性サーミスタ装置との
比較のため、第8図及び第9図に示す従来構造の
正特性サーミスタ装置を用意した。その仕様は次
の通りである。
Outer diameter D 1 8.5mmφ Inner diameter D 2 3.1mmφ Thickness t 1 4.0mm <Comparative example> For comparison with the positive characteristic thermistor device according to the present invention described above, the positive characteristic of the conventional structure shown in FIGS. 8 and 9 is shown. A thermistor device was prepared. Its specifications are as follows.

a 正特性サーミスタ キユリー温度 Tc 50℃ 常温抵抗値 R20 33Ω 形状 外径 d1 7.0mmφ 厚み t2 1.3mmφ 電極及びリード線 上、下面にNi無電解メツキによる電極を形成
し、この電極上に0.5φのリード線をそれぞれ半田
付け固定した。
a Positive temperature coefficient thermistor temperature Tc 50℃ Room temperature resistance R 20 33Ω Shape Outer diameter d 1 7.0mmφ Thickness t 2 1.3mmφ Electrodes and lead wires Electrodes are formed on the top and bottom surfaces by Ni electroless plating, and on these electrodes Each 0.5φ lead wire was soldered and fixed.

b 絶縁シート 外径 8 mmφ 厚み 0.5mm c 放熱板 厚み 0.8mmのAl板 上述の仕様になる本考案に係る正特性サーミス
タ装置及び従来の正特性サーミスタ装置を、第6
図に示すように回転ヘツド.シリンダの側面に取
付け、結露防止用ヒータとしての評価をした。回
転ヘツド.シリンダは外径が62mmφで、厚みが15
mmのAl製である。そしてこれを−10℃の低温槽
に1時間放置した後、室温24℃の雰囲気中に取出
し、DC12Vを印加してから、回転ヘツド.シリ
ンダ表面の結露が消滅するまでの時間を測定し
た。測定データを次に示す。
b Insulating sheet Outer diameter 8 mmφ Thickness 0.5 mm c Heat sink Al plate with a thickness of 0.8 mm The positive temperature coefficient thermistor device according to the present invention and the conventional positive temperature coefficient thermistor device having the above specifications were
Rotating head as shown in the figure. It was installed on the side of the cylinder and evaluated as a heater to prevent condensation. Rotating head. The cylinder has an outer diameter of 62mmφ and a thickness of 15mm.
Made of mm aluminum. After leaving it in a -10°C low-temperature chamber for 1 hour, it was taken out into an atmosphere at room temperature of 24°C, DC12V was applied, and the rotary head was heated. The time required for the dew condensation on the cylinder surface to disappear was measured. The measurement data is shown below.

〈本考案の正特性サーミスタ装置装着の場合〉 結露消滅までの時間 16分 安定時電力 1.62W 〈比較例の正特性サーミスタ装置装着の場合〉 結露消滅までの時間 26分 安定時電力 0.96W 上記測定データから明らかなように、本考案に
係る正特性サーミスタ装置によれば、結露消滅ま
での時間を、従来例たる比較例を用いた場合よ
り、約10分間も短縮することができる。
<When the positive temperature coefficient thermistor device of the present invention is installed> Time until condensation disappears 16 minutes Stable power 1.62W <When the positive temperature coefficient thermistor device of the comparative example is installed> Time until condensation disappears 26 minutes Stable power 0.96W Above measurement As is clear from the data, according to the PTC thermistor device according to the present invention, the time required for condensation to disappear can be shortened by about 10 minutes compared to the case of using the conventional comparative example.

次に−10℃の低温槽に1時間放置した後、室温
24℃の雰囲気中に取出し、DC12Vを印加した場
合の回転ヘツド.シリンダ表面温度及び電流と、
時間との関係を、第7図に示してある。第7図の
左軸は電流目盛、右軸は回転ヘツド.シリンダ表
面温度目盛である。曲線I1は本考案に係る正特性
サーミスタ装置を装着した場合の、I2は比較例の
正特性サーミスタ装置を装着した場合のそれぞれ
の電流−時間特性である。曲線T1は本考案に係
る正特性サーミスタ装置を装着した場合の、曲線
T2は比較例の正特性サーミスタ装置を装着した
場合の回転ヘツド.シリンダ表面温度−時間特性
をそれぞれ示している。
Next, leave it in a -10℃ cold bath for 1 hour, then room temperature.
The rotating head when taken out into an atmosphere at 24°C and 12V DC applied. Cylinder surface temperature and current,
The relationship with time is shown in FIG. The left axis in Figure 7 is the current scale, and the right axis is the rotating head. This is the cylinder surface temperature scale. Curve I1 is the current-time characteristic when the PTC thermistor device according to the present invention is installed, and curve I2 is the current-time characteristic when the PTC thermistor device of the comparative example is installed. Curve T 1 is the curve when the positive temperature coefficient thermistor device according to the present invention is installed.
T 2 is a rotating head equipped with a comparative positive temperature coefficient thermistor device. The cylinder surface temperature-time characteristics are shown respectively.

この第7図に示すように、本考案に係る正特性
サーミスタ装置によれば、発熱量が大きく、回転
ヘツド.シリンダの温度を従来のものより約5℃
も高く加熱し得る加熱効果の高い正特性サーミス
タ装置を提供することができる。
As shown in FIG. 7, according to the positive temperature coefficient thermistor device according to the present invention, the amount of heat generated is large, and the amount of heat generated by the rotating head is large. The cylinder temperature is about 5℃ higher than the conventional one.
It is possible to provide a positive temperature coefficient thermistor device with a high heating effect and which can be heated to a high temperature.

本考案に係る正特性サーミスタ装置はVTR回
転ヘツドの結露現象防止用として重要な用途があ
るが、これに限らず、他の汎用小型ヒータや或い
は感熱セセンサ等に使用することも可能であるこ
とを付記しておく。
The positive temperature coefficient thermistor device according to the present invention has an important use in preventing dew condensation in VTR rotating heads, but it can also be used in other general-purpose small heaters, heat-sensitive sensors, etc. I would like to add this.

〈考案の効果〉 以上述べたように、本考案によれば、次のよう
な効果が得られる。
<Effects of the invention> As described above, according to the present invention, the following effects can be obtained.

(a) 熱伝導性絶縁樹脂は、正特性サーミスタの全
体を被覆しているので、表面に活電部が生じる
ことがなく、放熱板、絶縁板が不要になると共
に、これらの各部品及び正特性サーミスタ相互
間の接着工程が不要になり、部品点数が減少
し、製造、加工及び組立が容易で、コストの安
価な正特性サーミスタ装置を提供できる。
(a) Since the thermally conductive insulating resin covers the entire positive temperature coefficient thermistor, there are no live parts on the surface, eliminating the need for heat sinks and insulating plates, and eliminating the need for these parts and the positive temperature coefficient thermistor. A bonding process between characteristic thermistors is no longer necessary, the number of parts is reduced, manufacturing, processing, and assembly are easy, and a low-cost positive characteristic thermistor device can be provided.

(b) 正特性サーミスタと熱伝導性絶縁樹脂とが一
体化されて、両者間の熱伝導度が向上し、熱伝
導性絶縁樹脂の表面温度が高く、かつ、安定な
正特性サーミスタ装置を提供できる。
(b) A positive temperature coefficient thermistor and a thermally conductive insulating resin are integrated, improving thermal conductivity between the two, and providing a stable positive temperature coefficient thermistor device with a high surface temperature of the thermally conductive insulating resin. can.

(c) 熱伝導性絶縁樹脂は、正特性サーミスタの全
体を、孔に対応する部分で厚み方向の貫通孔が
生じるように被覆してあり、貫通孔の開口して
いる熱伝導性絶縁樹脂の少なくとも一面側を被
加熱体に対する熱結合面とし、貫通孔内を貫通
する取付具によつて被加熱体に締付け固定した
から、取付スペースが小さくて済み、取付が著
しく簡単なる。このため、回転ヘツド.シリン
ダ等のような高密度実装機器に好適な正特性サ
ーミスタ装置を提供できる。
(c) The thermally conductive insulating resin covers the entire positive temperature coefficient thermistor so that a through hole is formed in the thickness direction at the portion corresponding to the hole. At least one side is used as a thermally bonded surface to the heated object, and since it is fastened and fixed to the heated object by a fitting that passes through the through hole, the installation space is small and the installation is extremely simple. For this reason, the rotating head. A positive temperature coefficient thermistor device suitable for high-density mounting equipment such as cylinders can be provided.

(d) 熱伝導性絶縁樹脂は、貫通孔の開口する両面
側において、リード線及びリード線接続部分の
凹凸を吸収し得る厚みを有しており、リード線
は貫通孔の開口する両面に対して側面側となる
熱伝導性絶縁樹脂の外周面から外部に導出して
あるから、リード線の線径及びリード線を電極
に半田付けした場合の半田盛り上り等による凹
凸による影響を受けることなく、被加熱体に熱
的に密に結合させ、熱効率を向上させ得る正特
性サーミスタ装置を提供できる。
(d) The thermally conductive insulating resin has a thickness that can absorb the unevenness of the lead wire and the lead wire connection part on both sides where the through hole opens, and the lead wire is Since it is led out from the outer peripheral surface of the thermally conductive insulating resin on the side surface, it is not affected by the diameter of the lead wire or unevenness caused by solder buildup when the lead wire is soldered to the electrode. , it is possible to provide a positive temperature coefficient thermistor device that can be thermally closely coupled to a heated object and improve thermal efficiency.

(e) 伝導性絶縁樹脂により、取付具による締付力
を吸収緩和し、正特性サーミスタの破損を防止
した正特性サーミスタ装置を提供できる。
(e) It is possible to provide a positive temperature coefficient thermistor device in which the conductive insulating resin absorbs and relieves the tightening force caused by the fixture and prevents damage to the positive temperature coefficient thermistor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る正特性サーミスタ装置の
斜視図、第2図は第1図A1−A1線上における断
面図、第3図は正特性サーミスタの斜視図、第4
図は回転ヘツド.シリンダに対する本考案に係る
正特性サーミスタ装置の取付け状態を示す図、第
5図は本考案に係る正特性サーミスタ装置に使用
し得る正特性サーミスタの別の実施例における斜
視図、第6図は測定データを得るために用いられ
た回転ヘツド.シリンダと正特性サーミスタとの
結合構造を示す図、第7図は回転ヘツド.シリン
ダ表面温度及び正特性サーミスタ電流−時間特性
図、第8図は従来の正特性サーミスタ装置の分解
斜視図、第9図は同じくその正面断面図、第10
図は回転ヘツド.シリンダに対する取付状態を示
す図である。 3……正特性サーミスタ、11……熱伝導性絶
縁樹脂、15……貫通孔。
Fig. 1 is a perspective view of a PTC thermistor device according to the present invention, Fig. 2 is a sectional view taken along the line A1 - A1 in Fig.
The figure shows a rotating head. A diagram showing how the PTC thermistor device according to the present invention is attached to a cylinder, FIG. 5 is a perspective view of another embodiment of a PTC thermistor that can be used in the PTC thermistor device according to the present invention, and FIG. 6 is a measurement Rotating head used to obtain data. FIG. 7 is a diagram showing the coupling structure between a cylinder and a positive temperature coefficient thermistor. Cylinder surface temperature and PTC thermistor current-time characteristic diagram, Fig. 8 is an exploded perspective view of a conventional PTC thermistor device, Fig. 9 is a front sectional view thereof, and Fig. 10
The figure shows a rotating head. It is a figure which shows the attachment state with respect to a cylinder. 3... Positive temperature coefficient thermistor, 11... Heat conductive insulating resin, 15... Through hole.

Claims (1)

【実用新案登録請求の範囲】 (1) 厚み方向に貫通する孔を有し厚み方向の両面
に電極を有する板状の正特性サーミスタと、前
記正特性サーミスタの前記電極上に半田付けさ
れたリード線と、前記正特性サーミスタを被覆
する熱伝導性絶縁樹脂とを有する正特性サーミ
スタ装置であつて、 前記熱伝導性絶縁樹脂は、前記正特性サーミ
スタの全体を、前記孔に対応する部分で厚み方
向の貫通孔が生じ、前記貫通孔の開口する両面
側において、前記リード線及びリード線接続部
分の凹凸を吸収し得る厚みとなるように被覆し
ており、 前記リード線は、前記貫通孔の開口する両面
に対して側面側となる前記熱伝導性絶縁樹脂の
外周面から外部に導出してあり、 前記貫通孔の開口している前記熱伝導性絶縁
樹脂の少なくとも一面側を被加熱体に対する熱
結合面とし、前記貫通孔内を貫通する取付具に
よつて前記被加熱体に締付け固定すること を特徴とする正特性サーミスタ装置。 (2) 前記正特性サーミスタは、厚み方向の一面側
にギヤツプを隔てて対向する一対の電極を形成
して該一対の電極のそれぞれにリード線を接続
し、他面側に前記一対の電極に共通に対向する
中間電極を形成したもので成ることを特徴とす
る実用新案登録請求の範囲第1項に記載の正特
性サーミスタ装置。 (3) 前記熱伝導性絶縁樹脂は、シリコン樹脂で成
ることを特徴とする実用新案登録請求の範囲第
1項または第2項に記載の正特性サーミスタ装
置。
[Claims for Utility Model Registration] (1) A plate-shaped positive temperature coefficient thermistor having a hole penetrating in the thickness direction and having electrodes on both sides in the thickness direction, and leads soldered onto the electrodes of the positive temperature coefficient thermistor. A positive temperature coefficient thermistor device having a wire and a thermally conductive insulating resin that covers the positive temperature coefficient thermistor, wherein the thermally conductive insulating resin covers the whole of the positive temperature coefficient thermistor so that the thickness of the positive temperature coefficient thermistor is increased at a portion corresponding to the hole. A through hole is formed in the direction, and both sides of the opening of the through hole are coated with a thickness that can absorb the unevenness of the lead wire and the lead wire connection part, and the lead wire is It is led out from the outer circumferential surface of the thermally conductive insulating resin that is on the side surface side with respect to both open surfaces, and at least one side of the thermally conductive insulating resin where the through hole is open is directed toward the heated object. A positive temperature coefficient thermistor device, characterized in that the positive temperature coefficient thermistor device has a thermal coupling surface and is fastened and fixed to the heated body by a fitting that passes through the through hole. (2) The positive temperature coefficient thermistor has a pair of electrodes facing each other across a gap formed on one surface in the thickness direction, a lead wire connected to each of the pair of electrodes, and a lead wire connected to the pair of electrodes on the other surface. A positive temperature coefficient thermistor device according to claim 1, characterized in that the positive temperature coefficient thermistor device comprises intermediate electrodes that are commonly opposed to each other. (3) The PTC thermistor device according to claim 1 or 2, wherein the thermally conductive insulating resin is made of silicone resin.
JP1984143434U 1984-09-20 1984-09-20 Expired JPH039283Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984143434U JPH039283Y2 (en) 1984-09-20 1984-09-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984143434U JPH039283Y2 (en) 1984-09-20 1984-09-20

Publications (2)

Publication Number Publication Date
JPS6157502U JPS6157502U (en) 1986-04-17
JPH039283Y2 true JPH039283Y2 (en) 1991-03-08

Family

ID=30701730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984143434U Expired JPH039283Y2 (en) 1984-09-20 1984-09-20

Country Status (1)

Country Link
JP (1) JPH039283Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2518219C2 (en) 2008-11-07 2014-06-10 ТАЙКО ЭЛЕКТРОНИКС ДЖАПАН Г.К., Япония Positive temperature coefficient device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726226U (en) * 1971-04-12 1972-11-24

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49143743U (en) * 1973-04-11 1974-12-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726226U (en) * 1971-04-12 1972-11-24

Also Published As

Publication number Publication date
JPS6157502U (en) 1986-04-17

Similar Documents

Publication Publication Date Title
JPH0868699A (en) Thermister sensor
JPH039283Y2 (en)
JPH0211764Y2 (en)
JPS63247547A (en) Heating element for fluid medium
JPS6330158Y2 (en)
JPH0115124Y2 (en)
JPS5927066Y2 (en) Resin-encapsulated semiconductor device
JPS631421Y2 (en)
JPS601508Y2 (en) Ceramic heater device
JPH0664054U (en) Antifreeze heater for water heater
JP2542819Y2 (en) Resistor
JPS626642Y2 (en)
JPH0512961Y2 (en)
JPS6246274Y2 (en)
JPS5885787U (en) constant temperature heating element
JP3007342U (en) PTC thermistor for temperature detection
JPH0334881Y2 (en)
JPH034038Y2 (en)
JP2568355Y2 (en) Temperature switch
JPS5916102U (en) Positive characteristic thermistor
JPH0235198Y2 (en)
JPS5818763B2 (en) Opposed variable resistor
JPS6081602U (en) Positive characteristic thermistor device
JPS637930Y2 (en)
JPS6029391U (en) constant temperature heating element