JPH0392815A - Conversion system for laser light intensity distribution - Google Patents

Conversion system for laser light intensity distribution

Info

Publication number
JPH0392815A
JPH0392815A JP23015089A JP23015089A JPH0392815A JP H0392815 A JPH0392815 A JP H0392815A JP 23015089 A JP23015089 A JP 23015089A JP 23015089 A JP23015089 A JP 23015089A JP H0392815 A JPH0392815 A JP H0392815A
Authority
JP
Japan
Prior art keywords
light intensity
intensity distribution
group
spherical aberration
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23015089A
Other languages
Japanese (ja)
Inventor
Osamu Endo
理 遠藤
Atsushi Takaura
淳 高浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP23015089A priority Critical patent/JPH0392815A/en
Publication of JPH0392815A publication Critical patent/JPH0392815A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To vary the light intensity distribution of a laser luminous flux continuously by a single optical system by putting a laser light intensity conversion optical system in zooming operation while specific conditions are satisfied. CONSTITUTION:The light intensity distribution is converted by utilizing a spherical aberration. A 1st group G1 consisting of two lenses L1 and L2 has a positive refractive index and S1(h1)>0, where the spherical aberration when parallel luminous flux is made incident from an incidence side is denoted as S1(h1) for the height h1 of the incident light beam. Further, S2(h2)<0, where S2(h2) is the spherical aberration when parallel luminous flux is made incident on a 2nd group G2 consisting of two lenses L3 and L4 while having positive refracting power from 'projection side' for the height h2 of the light beam. Those spherical aberration conditions are satisfied and the distance between the lenses is varied while the inequalities I and II are satisfied, thereby performing the zooming operation. Consequently, the light intensity distribution of the projection luminous flux can be varied continuously.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーザー光強度分布変換光学系に関する。本
発明はマイクロレンズ製造技術に利用できる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser light intensity distribution conversion optical system. The present invention can be used in microlens manufacturing technology.

[従来の技術] レーザー光束は周知の如く光束断面上に於ける光強度分
布がガウス分布に従っている。このガウス型の光強度分
布は、マイクロレンズの作製の際に有効に利用されてい
る。即ち、基板表面にレ−ザー光束を照射した状態で光
CVDを行うと、基板の温度がレーザー光束のガウス型
強度分布に従った温度分布を持つため、曲面をもったマ
イクロレンズを得ることができる。
[Prior Art] As is well known, the light intensity distribution of a laser beam on a cross section of the beam follows a Gaussian distribution. This Gaussian light intensity distribution is effectively used in the production of microlenses. In other words, if photo-CVD is performed while the substrate surface is irradiated with a laser beam, the temperature of the substrate will have a temperature distribution that follows the Gaussian intensity distribution of the laser beam, making it impossible to obtain microlenses with curved surfaces. can.

[発明が解決しようとする課題コ しかしマイクロレンズのレンズ面形状は、レンズの設計
条件に応じて種々の形状が要求される。
[Problems to be Solved by the Invention] However, the lens surface shape of the microlens is required to have various shapes depending on the design conditions of the lens.

このためマイクロレンズ作製の際の汎用性を考慮すると
、レーザー光束の光束断面上に於ける光強度分布はガウ
ス分布のみならず、非ガウス型の分布も実現できること
が好ましく、また非ガウス型分布も1種類のみならず、
種々の型の分布が実現できることが望ましい。
Therefore, in consideration of versatility when manufacturing microlenses, it is preferable that the light intensity distribution on the beam cross section of the laser beam can be realized not only a Gaussian distribution but also a non-Gaussian distribution. Not only one type,
It would be desirable to be able to achieve different types of distributions.

作製するマイクロレンズのレンズ面形状に応じて、基板
上に所望の温度分布を実現する方法として2つのレーザ
ー光束を用いる方法が提案されているが(特開昭62−
260104号公報等)、2つのレーザー光束の使用の
ため光学系が複雑化したり高価なものになったりする問
題がある。
A method using two laser beams has been proposed as a method of realizing a desired temperature distribution on a substrate depending on the lens surface shape of the microlens to be fabricated (Japanese Patent Application Laid-Open No. 1983-1999).
260104, etc.), there is a problem that the optical system becomes complicated and expensive due to the use of two laser beams.

本発明は、上述した事情に鑑みてなされたものであって
、単一の光学系でレーザー光束の光強度分布を連続的に
変換し得る新規な、レーザー光強度変換光学系の提供を
目的とする。
The present invention has been made in view of the above-mentioned circumstances, and aims to provide a novel laser light intensity conversion optical system that can continuously convert the light intensity distribution of a laser beam with a single optical system. do.

[課題を解決するための手段] 以下、本発明を説明する。[Means to solve the problem] The present invention will be explained below.

本発明のレーザー光強度変換光学系は「略平行な光束と
して入射するレーザー光束を、略平行な光束として射出
させ、射出レーザー光束における光束断面上の光強度分
布を、入射レーザー光束の光束断面上の光強度分布と異
ならせる光強度分布変換を、ズーミングにより連続して
行い得るケプラー型の光学系Jであって2群4枚構成で
ある。
The laser beam intensity conversion optical system of the present invention emits a laser beam that is incident as a substantially parallel beam, and changes the light intensity distribution on the beam cross section of the emitted laser beam to the beam cross section of the incident laser beam. This is a Keplerian-type optical system J that can continuously perform a light intensity distribution conversion to differ from the light intensity distribution by zooming, and is composed of four elements in two groups.

「第王群」は、2枚のレンズにより構或され正の屈折力
を持つ。
The "King Group" is composed of two lenses and has positive refractive power.

「第2群jも、2枚のレンズにより構成され正の屈折力
を持つ。
"The second group j is also composed of two lenses and has positive refractive power.

上記第1群に入射側から光線高さh1で入射する光線が
第2群から射出するときの光線高さをh2とし、第1群
に於ける球面収差をs+(h+)、第2群に於ける球面
収差を32(h2)とするとき、これら球面収差の絶対
値は、引数h.,h2に対して単調増加的であり、レー
ザー光強度変換光学系は、(1)  Sエ(hl)>O
且つSz(h2)<0(II)  S+(h+)+32
(h2)l <  0.1なる条件を満足しつつズーミ
ングを行うことができるように構威される。
Let h2 be the ray height when a ray that enters the first group from the incident side at a ray height h1 exits from the second group, and the spherical aberration in the first group is s+ (h+), and the spherical aberration in the second group is When the spherical aberration at 32 (h2), the absolute value of these spherical aberrations is given by the argument h. , h2, and the laser light intensity conversion optical system is (1) SE(hl)>O
and Sz(h2)<0(II) S+(h+)+32
(h2) It is configured so that zooming can be performed while satisfying the condition l < 0.1.

[作  用] レーザー光束の光強度分布の変換に関しては、球面収差
を利用する方法が、APPLIED OPTICS  
第4巻1l号(1965年 1400〜1403頁)に
、また正弦条件を利用する方法が、特開昭63−188
115号公報に開示されている。
[Function] Regarding the conversion of the light intensity distribution of the laser beam, a method using spherical aberration is APPLIED OPTICS.
Vol. 4, No. 1l (1965, pp. 1400-1403) also describes a method using the sine condition in JP-A-63-188.
It is disclosed in Publication No. 115.

しかし、これらはいずれもガウス型の光強度分布を変換
して、均一な光強度分布を得ることを目的としている。
However, all of these methods aim to convert a Gaussian light intensity distribution to obtain a uniform light intensity distribution.

本発明では、球面収差の利用により光強度分布の変換を
行う。
In the present invention, the light intensity distribution is converted by utilizing spherical aberration.

2枚のレンズで構成された第1群は正の屈折率を有し、
これに入射側から平行光束を入射させたときの球面収差
を入射光線高さh,に対して31(hl)とするとき、
S1(t++)>Oとする。
The first group consisting of two lenses has a positive refractive index,
When the spherical aberration when a parallel beam is incident on this from the incident side is 31 (hl) with respect to the incident beam height h,
Let S1(t++)>O.

また、2枚のレンズで構成されて正の屈折力を持つ第2
群に「射出側Jから平行光束を入射させたときの球面収
差を光線高さh2に対してS 2 ..( h 2 )
とするとき、S2(h2)<Qとする。
In addition, the second lens is composed of two lenses and has positive refractive power.
The spherical aberration when a parallel beam enters the group from the exit side J is S 2 .. ( h 2 ) for the beam height h2.
When it is assumed that S2(h2)<Q.

このような球面収差条件を満足する第l,第2群を上記
条件(II)を満足するように組み合わせると実質的な
アフオーカル系が得られる。即ち、この光学系に略平行
な光束を入射させると略平行な光束が射出する。
If the first and second groups satisfying such spherical aberration conditions are combined in a manner that satisfies the above condition (II), a substantial afocal system can be obtained. That is, when a substantially parallel light beam is made incident on this optical system, a substantially parallel light beam is emitted.

このとき上記球面収差の組合せのため、入射光束におけ
る光束周辺部の光が射出光束では光束断面の中心に近い
部分に射出し、入射光束における光束中心部の光が射出
光束では光束断面の周辺部に近い部分で射出する。これ
によって射出光束の光強度分布は入射光束における光強
度分布とことなったものとなる。上記条件(I). (
II)を満足しつつ、各レンズ間の距離を変化させてズ
ーミングを行うことにより、射出光束の光強度分布を連
続的に変化させることができる。
At this time, due to the above-mentioned combination of spherical aberrations, the light at the periphery of the incident light beam is emitted to a part near the center of the light beam cross section in the output light beam, and the light at the center of the light beam in the input light beam is emitted to the peripheral part of the light beam cross section in the exit light beam. It is ejected at a part close to . As a result, the light intensity distribution of the emitted light beam becomes different from the light intensity distribution of the incident light beam. The above condition (I). (
By performing zooming while changing the distance between each lens while satisfying II), it is possible to continuously change the light intensity distribution of the emitted light beam.

また球面収差を大きく発生させるほど、変換できる領域
を広くとることが可能である。
Furthermore, the larger the spherical aberration generated, the wider the region that can be converted.

[実施例] 以下、具体的な実施例に即して説明する。[Example] Hereinafter, description will be given based on specific examples.

第1図を参照すると、この図に於いて符号G1は第1群
、符号G2は第2群をそれぞれ示している。
Referring to FIG. 1, in this figure, the reference numeral G1 indicates the first group, and the reference numeral G2 indicates the second group.

第1群G1は、2枚のメニスカスレンズLl,L2で構
威され、全体として正の屈折力を有する。第2群G2は
、凸レンズL3と負のメニスカスレンズL4で構成され
、これも全体として正の屈折力を有する。
The first group G1 is composed of two meniscus lenses Ll and L2, and has positive refractive power as a whole. The second group G2 is composed of a convex lens L3 and a negative meniscus lens L4, and also has positive refractive power as a whole.

入射側(第1図左方)から数えて第i番目のレンズ面の
曲率半径をRi、第1番目のレンズ面間隔をD1、入射
側から数えて第j番目のレンズの屈折率(波長1060
0nmに対するもの)をNjとするとき、これらは、以
下のように与えられる。
The radius of curvature of the i-th lens surface counting from the incident side (left side in Figure 1) is Ri, the distance between the first lens surfaces is D1, and the refractive index of the j-th lens counting from the incident side (wavelength 1060
(for 0 nm) as Nj, these are given as follows.

i    Ri     Di     j    N
j1.   17.512   4.541    1
    2.402   85.961   可変 3   −19.323   9.206    2 
   2.404   −25.818   可変 5    14.004     3.262    
 3     2.406   −5.450   可
変 7    −2.867     4.433    
 4     2.408    −12.468 第1図に示すレンズ配置は、上記可変量が以下の値を取
った状態を示している。
i Ri Di j N
j1. 17.512 4.541 1
2.402 85.961 Variable 3 -19.323 9.206 2
2.404 -25.818 Variable 5 14.004 3.262
3 2.406 -5.450 Variable 7 -2.867 4.433
4 2.408 -12.468 The lens arrangement shown in FIG. 1 shows a state in which the above variable amount takes the following values.

1   2    4    6 Di   2.00   18.30    3.00
このときの、第1群の球面収差を第2図(a)に、また
第2群の球面収差を第2図(b)に示す。このとき、勿
論条件(II)は満足されている。
1 2 4 6 Di 2.00 18.30 3.00
At this time, the spherical aberration of the first group is shown in FIG. 2(a), and the spherical aberration of the second group is shown in FIG. 2(b). At this time, condition (II) is of course satisfied.

この状態に於いて、入射側から、第5図に実線で示すよ
うなガウス型分布5−1を持つ平行レーザー光束を入射
させると、射出光束に於ける光強度分布は第5図の曲線
5−2のように非ガウス分布型となる。
In this state, when a parallel laser beam having a Gaussian distribution 5-1 as shown by the solid line in Figure 5 is input from the input side, the light intensity distribution in the emitted beam will be as shown by curve 5 in Figure 5. -2, it becomes a non-Gaussian distribution type.

このとき、第1群の焦点距離fr=19.957、第2
群ら焦点距離f2=3.532である。
At this time, the focal length fr of the first group is 19.957, the focal length of the second group is
The group focal length f2=3.532.

第3図は、上記可変量を以下の如くにしたときのレンズ
配置を示している。
FIG. 3 shows the lens arrangement when the variable amount is set as follows.

i     2       4       6Di
     1. 50    20. 30     
 2. 06このときの第1群の球面収差を第4図(a
)に、また第2群の球面収差を第4図(b)に示す。こ
のとき、条件(H)はSt(To) + Sz(h2)
l<0.01 と極めて良好に満足されている。
i 2 4 6 Di
1. 50 20. 30
2. 06The spherical aberration of the first group at this time is shown in Figure 4 (a
), and the spherical aberration of the second group is shown in FIG. 4(b). At this time, the condition (H) is St(To) + Sz(h2)
l<0.01, which is extremely well satisfied.

この状態に於いて、入射側から、第5図に実線で示すよ
うなガウス型分布5−1を持つ平行レーザー光束を入射
させると、射出光束に於ける光強度分布は第5図の曲線
5−3のような分布となる。
In this state, when a parallel laser beam having a Gaussian distribution 5-1 as shown by the solid line in Figure 5 is input from the input side, the light intensity distribution in the emitted beam will be as shown by curve 5 in Figure 5. -3 distribution.

このとき、第1群の焦点距離f,=20.OO、第2群
の焦点距離r2=5、00である。
At this time, the focal length of the first group f,=20. OO, the focal length of the second group r2=5,00.

この実施例では、第1群、第2群の焦点距離f,,f2
の範囲が、 19.95≦f1≦20.0 ,3.5≦f2≦5.0
の範囲では、条件(I). (II)を満足させつつズ
ーミングを行うことができ、このズーミングにより射出
光束の光強度分布は、略第5図の曲線5−2. 5−3
の間の分布を連続的に変化する。
In this embodiment, the focal lengths of the first group and the second group are f,, f2
The range is 19.95≦f1≦20.0, 3.5≦f2≦5.0
Condition (I). Zooming can be performed while satisfying (II), and by this zooming, the light intensity distribution of the emitted light beam is approximately as shown in curve 5-2 in FIG. 5-3
Continuously change the distribution between.

[発明の効果] 以上、本発明によれば新規なレーザー光強度分布変換光
学系を提供できる。この光学系は上記の如く構威されて
いるので、ガウス型の分布を持つレーザー光束の光強度
を非ガウス型分布に変換でき、しかも分布の形状を連続
的に変化させることができる。従って、マイクロレンズ
作製用の光CVD用の光束の光強度分布調整に有効に利
用することができる。
[Effects of the Invention] As described above, according to the present invention, a novel laser light intensity distribution conversion optical system can be provided. Since this optical system is constructed as described above, it is possible to convert the light intensity of a laser beam having a Gaussian distribution into a non-Gaussian distribution, and also to continuously change the shape of the distribution. Therefore, it can be effectively used for adjusting the light intensity distribution of a light beam for optical CVD for manufacturing microlenses.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は、本発明を実施例に即して説明する
ための図、第5図は、実施例による光強度分布の変換例
を説明するための図である。 寸 ’Ll−4嵌超
1 to 4 are diagrams for explaining the present invention according to an embodiment, and FIG. 5 is a diagram for explaining an example of conversion of light intensity distribution according to the embodiment. Size'Ll-4 fit

Claims (1)

【特許請求の範囲】 1、略平行な光束として入射するレーザー光束を、略平
行な光束として射出させ、射出レーザー光束における光
束断面上の光強度分布を、入射レーザー光束の光束断面
上の光強度分布と異ならせる光強度分布変換を、ズーミ
ングにより連続して行い得るケプラー型の光学系であっ
て、 それぞれが2枚のレンズにより構成され正の屈折力を持
つ、第1群および第2群により構成される、2群4枚構
成であり、 上記第1群に入射側から光線高さh_1で入射する光線
が第2群から射出するときの光線高さをh_2とし、第
1群に於ける球面収差をS_1(h_1)、第2群に於
ける球面収差をS_2(h_2)とするとき、これらの
球面収差の絶対値は引数の増加とともに単調増加的であ
り、 ( I )S_1(h_1)>0且つS_2(h_2)<
0(II)|S_1(h_1)+S_2(h_2)1<0
.1なる条件を満足しつつズーミングを行い得る、レー
ザー光強度分布変換光学系。 2、請求項1に於いて、 第1群の焦点距離をf_1、第2群の焦点距離をf_2
とするとき、ズーミングに伴うこれら焦点距離の変化領
域が、 19.95≦f_1≦20.0、3.5≦f_2≦5.
0であることを特徴とする、レーザー光強度分布変換光
学系。
[Claims] 1. A laser beam that enters as a substantially parallel beam is emitted as a substantially parallel beam, and the light intensity distribution on a cross section of the beam in the emitted laser beam is calculated as the light intensity on the cross section of the incident laser beam. It is a Keplerian-type optical system that can continuously transform the light intensity distribution by zooming to make it different from the distribution. It is composed of 4 elements in 2 groups, and the ray height when the ray enters the first group from the incident side at a ray height h_1 and exits from the second group is h_2, and the ray height in the first group is h_2. When the spherical aberration is S_1 (h_1) and the spherical aberration in the second group is S_2 (h_2), the absolute values of these spherical aberrations increase monotonically as the argument increases, and (I) S_1 (h_1) >0 and S_2(h_2)<
0(II) | S_1(h_1)+S_2(h_2)1<0
.. A laser light intensity distribution conversion optical system that can perform zooming while satisfying the following condition. 2. In claim 1, the focal length of the first group is f_1, and the focal length of the second group is f_2.
Then, the range of changes in focal length due to zooming is as follows: 19.95≦f_1≦20.0, 3.5≦f_2≦5.
1. A laser light intensity distribution conversion optical system characterized in that the intensity distribution is 0.
JP23015089A 1989-09-05 1989-09-05 Conversion system for laser light intensity distribution Pending JPH0392815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23015089A JPH0392815A (en) 1989-09-05 1989-09-05 Conversion system for laser light intensity distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23015089A JPH0392815A (en) 1989-09-05 1989-09-05 Conversion system for laser light intensity distribution

Publications (1)

Publication Number Publication Date
JPH0392815A true JPH0392815A (en) 1991-04-18

Family

ID=16903377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23015089A Pending JPH0392815A (en) 1989-09-05 1989-09-05 Conversion system for laser light intensity distribution

Country Status (1)

Country Link
JP (1) JPH0392815A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201229B1 (en) 1998-03-09 2001-03-13 Fujitsu Limited Light intensity converter
US6356395B1 (en) 1998-09-14 2002-03-12 Fujitsu Limited Light intensity distribution converting device and optical data storage apparatus
JP2004233814A (en) * 2003-01-31 2004-08-19 Konica Minolta Holdings Inc Beam shaping optical system, laser beam machine, and optical pickup device
JP2006317508A (en) * 2005-05-10 2006-11-24 Yokogawa Electric Corp Light intensity distribution correction optical system and optical microscope using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201229B1 (en) 1998-03-09 2001-03-13 Fujitsu Limited Light intensity converter
US6356395B1 (en) 1998-09-14 2002-03-12 Fujitsu Limited Light intensity distribution converting device and optical data storage apparatus
US6469838B2 (en) 1998-09-14 2002-10-22 Fujitsu Limited Illumination device having light intensity distribution converting elements
JP2004233814A (en) * 2003-01-31 2004-08-19 Konica Minolta Holdings Inc Beam shaping optical system, laser beam machine, and optical pickup device
JP2006317508A (en) * 2005-05-10 2006-11-24 Yokogawa Electric Corp Light intensity distribution correction optical system and optical microscope using the same
EP1722263A3 (en) * 2005-05-10 2007-06-13 Yokogawa Electric Corporation Optical system for providing a uniform intensity distribution and optical microscope
EP1950599A1 (en) * 2005-05-10 2008-07-30 Yokogawa Electric Corporation Optical system with cylindrical lenses for providing a uniform intensity distribution and optical microscope
US7446957B2 (en) 2005-05-10 2008-11-04 Yokogawa Electric Corporation Optical system and optical microscope
US7567388B2 (en) 2005-05-10 2009-07-28 Yokogawa Electric Corporation Optical system and optical microscope

Similar Documents

Publication Publication Date Title
US5044706A (en) Optical element employing aspherical and binary grating optical surfaces
KR100321084B1 (en) Optical intensity converters, optical devices and optical disc devices
JP2721095B2 (en) Re-imaging optical system using refractive and diffractive optical elements
US5493441A (en) Infrared continuous zoom telescope using diffractive optics
CN108646391B (en) Optical imaging lens
US4550973A (en) Achromatic holographic optical system
JPH1090596A (en) Optical system with grating element and image pickup device formed by using the same
JPH01154101A (en) Spherical plano-convex lens
JP3833754B2 (en) Electronic camera with diffractive optical element
JPH0392815A (en) Conversion system for laser light intensity distribution
JPS6039613A (en) Zoom lens system of high variable magnification including wide angle range
JP3860261B2 (en) Diffractive optical element having diffractive surfaces on both sides
TWI839976B (en) Optical lens assembly
US4974947A (en) Refractive index distribution type meniscus lens and optics
JPS63188115A (en) Beam shaping optical system
JP4393252B2 (en) Diffractive optical element and optical system having the same
TWI718448B (en) Optical lens assembly
JPH08234097A (en) Optical lens system
JPH0375612A (en) Optical system for converting distribution of laser beam intensity
JPS5814109A (en) Collimator lens system
JPS61173215A (en) Collimator lens
KR100277210B1 (en) Infrared afocal zoom telescope
CN110333601B (en) High-resolution imaging system with micro-optical element
JPS54150144A (en) Optical system for optical laser scanning
JP3655697B2 (en) Ranging device