JPH0375612A - Optical system for converting distribution of laser beam intensity - Google Patents

Optical system for converting distribution of laser beam intensity

Info

Publication number
JPH0375612A
JPH0375612A JP21105889A JP21105889A JPH0375612A JP H0375612 A JPH0375612 A JP H0375612A JP 21105889 A JP21105889 A JP 21105889A JP 21105889 A JP21105889 A JP 21105889A JP H0375612 A JPH0375612 A JP H0375612A
Authority
JP
Japan
Prior art keywords
group
distribution
spherical aberration
optical system
light intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21105889A
Other languages
Japanese (ja)
Inventor
Osamu Endo
理 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP21105889A priority Critical patent/JPH0375612A/en
Publication of JPH0375612A publication Critical patent/JPH0375612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To convert laser beam intensity and to change the form of the conversion by specifying the focal length and spherical aberration of a Kepler type of 4-element constitution in two groups constituted of a 1st group and 2nd group which are respectively constituted of two elements of lenses and have a positive refracting power. CONSTITUTION:This optical system is made of the 4-element constitution in two groups of the Kepler type. The 1st group G1 is constituted of two elements of the lenses L1, L2 and has the positive refracting power. The 2nd group G2 is also constituted of two elements of the lenses L3, L4 and has the positive refracting poer. If the height of the ray at the exit pupil when the ray made incident at the height h1 of the ray (0<=h1<=3.2mm) on the incident pupil of the 1st group is emitted from the 2nd group, is designated as h2, focal length and spherical aberration of the 1st group, designated respectively as f1, S1(h1), and the focal length and spherical aberration of the 2nd group, designated respectively as f2, S2(h2), equation I to equation V are satisfied during zooming. The beam intensity of the laser beam flux having a Gaussian distribution is converted to the distribution having a flat distribution region in this way; in addition, the continuous change of the diameter of the flat distribution region is possible.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、レーザー光強度分布変換光学系に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a laser light intensity distribution conversion optical system.

[従来の技術] レーザー光束は周知の如く光束断面上に於ける光強度分
布がガウス分布に従っている。このためレーザー光束を
用いる加工技術の精度等に問題があり、かかる問題に鑑
みてレーザー光束断面上における光強度分布を均一化す
る努力がなされている。このような光強度分布の変換を
行うための光学系がレーザー光強度分布変換光学系であ
る。
[Prior Art] As is well known, the light intensity distribution of a laser beam on a cross section of the beam follows a Gaussian distribution. For this reason, there are problems with the accuracy of processing techniques using laser beams, and in view of this problem, efforts are being made to make the light intensity distribution on the cross section of the laser beam uniform. An optical system for converting such a light intensity distribution is a laser light intensity distribution conversion optical system.

レーザー光強度分布変換光学系として比較的成功した例
としては、従来、特開昭63−188115号公報に開
示されたものが知られている。
A relatively successful example of an optical system for converting laser light intensity distribution is that disclosed in Japanese Unexamined Patent Publication No. 188115/1983.

[発明が解決しようとする課題] しかし、上記のレーザー光強度分布変換光学系は、光強
度分布の変換態様が一義的であり、変換されたレーザー
光強度分布は変更も調整もできない。
[Problems to be Solved by the Invention] However, in the above laser light intensity distribution conversion optical system, the conversion mode of the light intensity distribution is unique, and the converted laser light intensity distribution cannot be changed or adjusted.

本発明は上述した事情に鑑みてなされたものであって、
レーザー光強度を変換し、なおかつ変換の態様を変化さ
せることができる新規なレーザー光強度分布変換光学系
の提供を目的とする。
The present invention was made in view of the above-mentioned circumstances, and
The object of the present invention is to provide a novel laser light intensity distribution conversion optical system that can convert laser light intensity and change the conversion mode.

[課題を解決するための手段] 以下、本発明を説明する。[Means to solve the problem] The present invention will be explained below.

本発明のレーザー光強度分布変換光学系は「略平行な光
束として入射するレーザー光束を、略平行な光束として
射出させ、射出レーザー光束における光束断面上の光強
度分布を、略均一な光強度の平坦分布領域を含む分布に
変換し、かつズーミングにより上記平坦分布領域の径を
連続的に変化させ得る光学系」である。
The laser beam intensity distribution converting optical system of the present invention is designed to convert a laser beam that is incident as a substantially parallel beam to an approximately parallel beam, and change the light intensity distribution on a cross section of the emitted laser beam to a substantially uniform light intensity. An optical system that converts a distribution into a distribution including a flat distribution area and that can continuously change the diameter of the flat distribution area by zooming.

このレーザー光強度分布変換光学系は、ケプラー型の2
群4枚構成である。
This laser light intensity distribution conversion optical system is a Keplerian type 2
It consists of 4 elements in a group.

「第1群」は、2枚のレンズにより構成され正の屈折力
を持つ。「第2群」も、2枚のレンズにより構成され正
の屈折力を持つ。
The "first group" is composed of two lenses and has positive refractive power. The "second group" is also composed of two lenses and has positive refractive power.

そして、第工群の入射瞳に光線高さh1(0≦h、≦3
.2a+m)で入射する光線が第2群から射出するとき
の射出瞳に於ける光線高さをh2とし、第1群に於ける
焦点距離および球面収差を、それぞれf、、 S。
Then, the ray height h1 (0≦h,≦3
.. 2a+m) is the ray height at the exit pupil when it exits from the second group, and the focal length and spherical aberration in the first group are f, S, respectively.

(hi)、第2群に於ける焦点距離および球面収差を。(hi) Focal length and spherical aberration in the second group.

それぞれfz、 5z(hz)とするとき、これらはズ
ーミング中、 (I)  19.9j;7≦f、≦ 20.0(II)
  2.’ZO<l:f、<;  2.66(III)
  S+(hx)>O且つ5z(h2)<。
When fz and 5z (hz) respectively, during zooming, (I) 19.9j; 7≦f, ≦20.0 (II)
2. 'ZO<l:f,<; 2.66 (III)
S+(hx)>O and 5z(h2)<.

(IV)  1si(hx)+5z(hz)l <  
0.02(■)   0.26  ≦S□(ht=3.
2mm)≦ 0.33なる5条件を満足する。
(IV) 1si(hx)+5z(hz)l<
0.02 (■) 0.26 ≦S□ (ht=3.
2mm)≦0.33.

[作  用] ガウス型のレーザー光強度分布を変換して、均一な光強
度分布を得るために球面収差を利用する方法が、APP
LIED 0PTIC5第4巻11号(1965年14
00〜1403頁)に、また正弦条件を利用する方法が
、特開昭63−188115号公報に開示されている。
[Function] APP is a method that utilizes spherical aberration to convert a Gaussian laser light intensity distribution to obtain a uniform light intensity distribution.
LIED 0PTIC5 Volume 4 No. 11 (1965.14
00-1403), and a method using the sine condition is disclosed in Japanese Patent Application Laid-Open No. 188115/1983.

本発明では球面収差を利用する。The present invention utilizes spherical aberration.

2枚のレンズで構成された第1群は正の屈折率を有し、
これに入射側から平行光束を入射させたときの球面収差
を入射光線高さh□に対してS□(hl)とするとき、
s、(ht)>oとする(条件(III))。
The first group consisting of two lenses has a positive refractive index,
When the spherical aberration when a parallel light beam is incident on this from the incident side is S□ (hl) with respect to the incident ray height h□,
s, (ht)>o (condition (III)).

また、2枚のレンズで構成されて正の屈折力を持つ第2
群に「射出側」から平行光束を入射させたときの球面収
差を光線高さh!に対して52 (hz)とするとき、
52(h2)<Oとする。
In addition, the second lens is composed of two lenses and has positive refractive power.
The spherical aberration when a parallel beam of light is incident on the group from the "exit side" is the ray height h! When 52 (hz) for
52(h2)<O.

このような球面収差条件を満足する第1.第2群を、上
記条件(VI)を満足するように組み合わせると、実質
的なアフォーカル系が得られる。即ち、この光学系に略
平行な光束を入射させると略平行な光束が射出する。
The first one that satisfies such spherical aberration conditions. When the second group is combined so as to satisfy the above condition (VI), a substantial afocal system is obtained. That is, when a substantially parallel light beam is made incident on this optical system, a substantially parallel light beam is emitted.

第6図を参照すると、入射光線高さhlの光線と射出光
線高さh2の光線とが互いに平行となる条件は、hx、
hxが、図のS及び焦点距離f工、f2と共に、h、=
(f、−5)h1/(f1+s)なる条件を満足するこ
とである。この条件が厳密に成り立つためには、入射光
線高さhlの光線に対する第1群の球面収差S□(h、
)と、射出光線高さh2の光線に対する第2群の球面収
差SR(hz)が、S”り+ (hi)=sz(hx) を満足することが必要であるが、上記条件(VI)が満
足される程度に球面収差5s(ht)、5z(hz)の
絶対値の差が小さければ、射出する光線は略入射光線と
平行になる。
Referring to FIG. 6, the conditions under which the light beam with the incident light beam height hl and the light beam with the exit light beam height h2 are parallel to each other are hx,
hx, together with S and focal length f, f2 in the figure, h,=
(f, -5)h1/(f1+s). In order for this condition to hold strictly, the spherical aberration S□(h,
), and it is necessary that the spherical aberration SR (hz) of the second group for the ray with the exit ray height h2 satisfies the following: If the difference between the absolute values of the spherical aberrations 5s (ht) and 5z (hz) is small enough to satisfy the following, the emitted light ray will be approximately parallel to the incident light ray.

このとき、条件(1)、(II)とともに条件(V)を
満足させると射出光束の光強度分布における平坦分布領
域の径をズーミングにより連続的に変化させることがで
きる。
At this time, if condition (V) is satisfied as well as conditions (1) and (II), the diameter of the flat distribution region in the light intensity distribution of the emitted light beam can be continuously changed by zooming.

[実施例] 以下、具体的な実施例に即して説明する。[Example] Hereinafter, description will be given based on specific examples.

第1図を参照すると、この図に於いて符号G1は第1群
、符号G2は第2群をそれぞれ示している6第1群G1
は2枚のメニスカスレンズLl、L2で構成され、全体
として正の屈折力を有する。第2群G2も2枚のメニス
カスレンズL3.L4で構成され、これも全体として正
の屈折力を有する。
Referring to FIG. 1, in this figure, the symbol G1 indicates the first group, and the symbol G2 indicates the second group. 6 First group G1
is composed of two meniscus lenses Ll and L2, and has positive refractive power as a whole. The second group G2 also has two meniscus lenses L3. L4, which also has positive refractive power as a whole.

入射側(第工図左方)から数えて第i番目のレンズ面の
曲率半径をRj、第i番目のレンズ面間隔をDi、入射
側から数えて第j番目のレンズの屈折率(波長jo&o
oγ灼に対するもの)をNjとするとき、これらは、以
下のようしこ与えられる。
The radius of curvature of the i-th lens surface counting from the incident side (left side of the construction drawing) is Rj, the distance between the i-th lens surfaces is Di, and the refractive index of the j-th lens counting from the incident side (wavelength jo & o
oγ ablation) as Nj, these are given as follows.

i    Ri     Di     j    N
jl   17.512  4.541   1   
2.40285゜961   可変 3  −19.323  9.206   2   2
.404−25.818   可変 5   2.841  2.183   3   2−
406   6.505   可変 7  −5.079  2.393   4   2.
408   −14.598 第1図に示すレンズ配置は、上記可変量が以下の値を取
った状態を示している。
i Ri Di j N
jl 17.512 4.541 1
2.40285°961 Variable 3 -19.323 9.206 2 2
.. 404-25.818 Variable 5 2.841 2.183 3 2-
406 6.505 Variable 7 -5.079 2.393 4 2.
408 -14.598 The lens arrangement shown in FIG. 1 shows a state in which the above variable amount takes the following values.

1  2   4   6 Di   1.5   18.373  2.131こ
のときの第1群G1の球面収差を第2図(a)に。
1 2 4 6 Di 1.5 18.373 2.131The spherical aberration of the first group G1 at this time is shown in Fig. 2(a).

また第2群G2の球面収差を第2図(b)に示す。こ(
7) ト’i!! 5t(hx=3.2m++)=0.
33 テア’J、勿論条件(VI)は満足されている。
Further, the spherical aberration of the second group G2 is shown in FIG. 2(b). child(
7) To'i! ! 5t (hx=3.2m++)=0.
33 Thea'J, of course condition (VI) is satisfied.

このとき、第1群の焦点距離f工=20.00、第2群
の焦点距離f2 = 2.66である。
At this time, the focal length f of the first group is 20.00, and the focal length f2 of the second group is 2.66.

この状態に於いて、入射側から、第5図1こ実線で示す
ようなガウス型分布5−1を持つ平行レーザー光束を入
射させると、射出光束に於ける光強度分布は、第5図の
曲線5−2のように非ガウス分布型となる。即ちビーム
径12.8mmを持つ入射光束に対し、射出光束はビー
ム径0’、8+++mの領域まで、±0.25%の精度
で強度分布が均一化されている。この領域(半径dOの
領域)を平坦分布領域と称するのである。
In this state, when a parallel laser beam having a Gaussian distribution 5-1 as shown by the solid line in FIG. It becomes a non-Gaussian distribution type as shown by curve 5-2. That is, with respect to the incident light beam having a beam diameter of 12.8 mm, the intensity distribution of the output light beam is made uniform with an accuracy of ±0.25% up to a region with a beam diameter of 0' and 8+++ m. This region (region with radius dO) is called a flat distribution region.

第3図は、上記可変量を以下の如くにしたときのレンズ
配置を示している。
FIG. 3 shows the lens arrangement when the variable amount is set as follows.

1  2   4   6 Di   2−0   17.311  3.5このと
きの第1群G1の球面収差を第4図(a)に、また第2
群G2の球面収差を第4図(b)に示す。
1 2 4 6 Di 2-0 17.311 3.5 The spherical aberration of the first group G1 at this time is shown in Fig. 4(a), and the second
The spherical aberration of group G2 is shown in FIG. 4(b).

このとき、第1群の焦点路!!f□= 19.9t7.
第2群の焦点距離f、=2.20である。また、St 
(ht=3.2mm)=0.26である。
At this time, the focal path of the first group! ! f□=19.9t7.
The focal length f of the second group is 2.20. Also, St.
(ht=3.2mm)=0.26.

この状態に於いて、前述のガウス型分布5−1を持って
入射される平行レーザー光束は、射出光束に於いて第5
図の曲線5−3のように、ビーム径0゜5mmの領域(
半径dlの領域)まで、±0.25%の精度で強度分布
が均一化された光強度分布に変換される。
In this state, the parallel laser beam that enters with the Gaussian distribution 5-1 described above is the fifth in the output beam.
As shown by curve 5-3 in the figure, the area with a beam diameter of 0°5 mm (
The intensity distribution is converted into a uniform light intensity distribution with an accuracy of ±0.25% up to the region of radius dl).

このように、この実施例では第1群、第2群の焦点路!
f、 、f2  の範囲が、 19.9ケ7≦ f、≦20.0  、2.20≦f2
≦2.66の範囲で1条件(III) 、I″i)至(
V)を満足させつつズーミングを行うことができ、この
ズーミングにより射出光束の光強度分布は、略第5図の
曲線5−2゜5−3の間の分布を連続的に変化し、平坦
分布領域の径が連続的に変化する。
In this way, in this embodiment, the focal paths of the first group and the second group!
The range of f, , f2 is 19.9 digits 7≦ f, ≦20.0, 2.20≦f2
1 condition (III) in the range of ≦2.66, I″i) to (
Zooming can be performed while satisfying V), and by this zooming, the light intensity distribution of the emitted light flux changes continuously from the distribution between the curves 5-2 and 5-3 in Fig. 5, and becomes a flat distribution. The diameter of the area changes continuously.

[発明の効果コ 以上、本発明によれば新規なレーザー光強度分布変換光
学系を提供できる。この光学系は上記の如く構成されて
いるので、ガウス型の分布を持つレーザー光束の光強度
を平坦分布領域を含む分布に変換でき、しかも平坦分布
領域の径を連続的に変化させることができる。従って1
例えばマイクロレンズ作製用の光CVD用の光束として
用いるとベレソト型のレンズを作製できる。
[Effects of the Invention] As described above, according to the present invention, a novel laser light intensity distribution conversion optical system can be provided. Since this optical system is configured as described above, it is possible to convert the light intensity of a laser beam having a Gaussian distribution into a distribution that includes a flat distribution area, and also to continuously change the diameter of the flat distribution area. . Therefore 1
For example, if it is used as a light beam for optical CVD for producing microlenses, Beresoth-type lenses can be produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は、本発明を実施例に即して説明する
ための図、第6図は、条件(mを説明するための図であ
る。 彩イ 図 f 2 図 他) (’6) 位) 々z(tn仄) 塵 う 関 f 塵 聞 (^) (ム) A A 馬7許主乎面 冷2解支子佃
Figures 1 to 5 are diagrams for explaining the present invention based on examples, and Figure 6 is a diagram for explaining conditions (m. '6) place) z (tn 仄) dust check f jinmon (^) (mu) A A horse 7ノケケホホホホイイイ

Claims (1)

【特許請求の範囲】 略平行な光束として入射するレーザー光束を、略平行な
光束として射出させ、射出レーザー光束における光束断
面上の光強度分布を、略均一な光強度の平坦分布領域を
含む分布に変換し、かつズーミングにより上記平坦分布
領域の径を連続的に変化させ得る光学系であって、 それぞれが2枚のレンズにより構成され正の屈折力を持
つ、第1群および第2群により構成される、2群4枚構
成のケプラー型であり、 上記第1群の入射瞳に光線高さh_1(0≦h_1≦3
.2mm)で入射する光線が第2群から射出するときの
射出瞳に於ける光線高さをh_2とし、第1群に於ける
焦点距離および球面収差を、それぞれf_1,S_1(
h_1)、第2群に於ける焦点距離および球面収差を、
それぞれf_2,S_2(h_2)とするとき、これら
が、( I )19.957≦f_1≦20.0 (II)2.20≦f_2≦2.66 (III)S_1(h_1)>0且つS_2(h_2)<
0(IV)|S_1(h_1)+S_2(h_2)|≦0
.02(V)0.26≦S_1(h_1=3.2mm)
≦0.33なる条件を満足しつつズーミングを行い得る
、レーザー光強度分布変換光学系。
[Claims] A laser beam that enters as a substantially parallel beam is emitted as a substantially parallel beam, and the light intensity distribution on a cross section of the beam in the emitted laser beam is a distribution that includes a flat distribution area of substantially uniform light intensity. and continuously change the diameter of the flat distribution area by zooming, the optical system comprises a first group and a second group, each of which is composed of two lenses and has a positive refractive power. It is a Keplerian type composed of 4 elements in 2 groups, and the entrance pupil of the first group has a ray height h_1 (0≦h_1≦3
.. Let h_2 be the ray height at the exit pupil when the incident light ray exits from the second group, and let the focal length and spherical aberration in the first group be f_1 and S_1(
h_1), the focal length and spherical aberration in the second group,
When f_2 and S_2(h_2) respectively, these are (I) 19.957≦f_1≦20.0 (II) 2.20≦f_2≦2.66 (III) S_1(h_1)>0 and S_2( h_2)<
0 (IV) | S_1 (h_1) + S_2 (h_2) | ≦0
.. 02(V)0.26≦S_1(h_1=3.2mm)
A laser light intensity distribution conversion optical system that can perform zooming while satisfying the condition of ≦0.33.
JP21105889A 1989-08-16 1989-08-16 Optical system for converting distribution of laser beam intensity Pending JPH0375612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21105889A JPH0375612A (en) 1989-08-16 1989-08-16 Optical system for converting distribution of laser beam intensity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21105889A JPH0375612A (en) 1989-08-16 1989-08-16 Optical system for converting distribution of laser beam intensity

Publications (1)

Publication Number Publication Date
JPH0375612A true JPH0375612A (en) 1991-03-29

Family

ID=16599700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21105889A Pending JPH0375612A (en) 1989-08-16 1989-08-16 Optical system for converting distribution of laser beam intensity

Country Status (1)

Country Link
JP (1) JPH0375612A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201229B1 (en) 1998-03-09 2001-03-13 Fujitsu Limited Light intensity converter
US6356395B1 (en) 1998-09-14 2002-03-12 Fujitsu Limited Light intensity distribution converting device and optical data storage apparatus
JP2006317508A (en) * 2005-05-10 2006-11-24 Yokogawa Electric Corp Light intensity distribution correction optical system and optical microscope using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6201229B1 (en) 1998-03-09 2001-03-13 Fujitsu Limited Light intensity converter
US6356395B1 (en) 1998-09-14 2002-03-12 Fujitsu Limited Light intensity distribution converting device and optical data storage apparatus
US6469838B2 (en) 1998-09-14 2002-10-22 Fujitsu Limited Illumination device having light intensity distribution converting elements
JP2006317508A (en) * 2005-05-10 2006-11-24 Yokogawa Electric Corp Light intensity distribution correction optical system and optical microscope using the same
EP1722263A3 (en) * 2005-05-10 2007-06-13 Yokogawa Electric Corporation Optical system for providing a uniform intensity distribution and optical microscope
EP1950599A1 (en) 2005-05-10 2008-07-30 Yokogawa Electric Corporation Optical system with cylindrical lenses for providing a uniform intensity distribution and optical microscope
US7446957B2 (en) 2005-05-10 2008-11-04 Yokogawa Electric Corporation Optical system and optical microscope
US7567388B2 (en) 2005-05-10 2009-07-28 Yokogawa Electric Corporation Optical system and optical microscope

Similar Documents

Publication Publication Date Title
EP0156141B1 (en) Prism optics and optical information processing apparatus
US4863250A (en) F.θ lens system
KR950014906A (en) Projection Optical System and Projection Regulator
JP2000352665A5 (en)
CN105388591B (en) The big target surface in large aperture type monitoring camera and its imaging method round the clock
JPH0375612A (en) Optical system for converting distribution of laser beam intensity
JPS6039613A (en) Zoom lens system of high variable magnification including wide angle range
JPS6281615A (en) Lens for optical coupling
EP0341868A3 (en) Objective lens for optical disk system and optical head using the same
JPS57135913A (en) Zoom lens
JPS6461714A (en) Wide-angle lens with long back focus
JPH0392815A (en) Conversion system for laser light intensity distribution
JPH0798430A (en) F-theta lens
JPS58126512A (en) Large-aperture telephoto lens
JPS5451826A (en) Photographic lens
JPS56132306A (en) Small-sized zoom lens
JPS56144411A (en) Collimating optical system
JPS63305315A (en) Apochromatic lens
JPS5710109A (en) Two-group constitution ftheta lens system
JPS62235914A (en) Telephoto lens system
JPH06222265A (en) Stereoscopic projective lens
JPS5536863A (en) Telephoto lens
US4840472A (en) Reflecting/refractive optical system
RU2233462C2 (en) Projection wide-aperture lens
RU2014641C1 (en) Wide-angle fast catadioptic lens