JPH0391948A - Vaporization cooling system integrated circuit device - Google Patents

Vaporization cooling system integrated circuit device

Info

Publication number
JPH0391948A
JPH0391948A JP1228360A JP22836089A JPH0391948A JP H0391948 A JPH0391948 A JP H0391948A JP 1228360 A JP1228360 A JP 1228360A JP 22836089 A JP22836089 A JP 22836089A JP H0391948 A JPH0391948 A JP H0391948A
Authority
JP
Japan
Prior art keywords
integrated circuit
internal space
internal
upper structure
lower structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1228360A
Other languages
Japanese (ja)
Inventor
Mamoru Koseki
小関 護
Yoshiyuki Ishii
義之 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1228360A priority Critical patent/JPH0391948A/en
Publication of JPH0391948A publication Critical patent/JPH0391948A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To simplify the structure of the title device and to prevent the generation of a temperature overshoot by a method wherein the device is provided with an internal space capacity control means, which repeatedly generates the periodical two stable states of enlargement-reduction of an internal space capacity due to a change in the temperature of a liquid coolant. CONSTITUTION:An integrated circuit element 1 is sealed in a lower structure 4 constituting a container with an upper structure 3, which consists of a metal plate having a semispherical recessed part with a flange, along with a refrigeration medium liquid 2, a flange part 3a of the structure 3 is hermetically sealed on the peripheral edge of an opening part of the structure 4 and heat sinks 5 are mounted adjoining the flange part 3a. Moreover, the semispherical recessed part of the structure 3 is inverted and deformed into a projected part corresponding to an increase in an internal pressure and an internal capacity is increased in two stable states. In such a way, when the internal capacity is increased, the internal pressure is reduced, bubbles 6 are generated due to the generation of a boiling point drop, the internal capacity is again reduced from the state of a large capacity to the state of a small capacity and a continuous operation is repeatedly performed. Thereby, the generation of a temperature overshoot is stopped in a single structure.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業状の利用分野1 本発明は、沸騰冷却式集積回路装置に関する。 [従来の技術1 沸騰冷却式集積回路装置では、発熱体である集積回路素
子を、沸点50℃前後の冷媒液と共に、凝縮用空間を持
つ構造体内に封入するのが一般的である。以下、第7図
(a)に示した沸騰熱伝達曲線図を用いて、冷却動作を
説明する.集積回路素子の非動作時は、その温度は室温
であるが、動作時は発熱のため集積回路素子の表面温度
は上昇する。室温状態から集積回路素子に通電を開始し
たとき、冷媒液面の蒸気圧に対応する沸点までは冷媒液
の対流のみにより冷却される。理論的には、この沸点以
上では同図の一点鎖線71に示すごとく沸騰による気泡
の発生により放熱量が増大するはずであるが、実際には
同図の破線72に示すように沸点以上となっても気泡が
発生しない現象(温度オーバシュートと呼んでいる)が
発生し、気化熱による冷却が行えないため冷却効率が低
下する。 従来、温度オーバシュートの防止方法として、例えば特
開昭55−59748号公報記載のように沸騰開始時の
気泡の発生を増進させるために素子壁に多孔質層を設け
ているが、一般的な冷媒であるフロン系冷媒液は、その
表面張力が小さいため、気泡発生の増進効果が十分でな
い場合があった。つまり、初めのうちは多孔質内に吸着
された気泡により効果があるが、沸騰を繰り返すうちに
説泡状態となりその効果は減少してしまう。 また,他の方法として冷媒液中に気泡発生用の補助ヒー
タを設け、発生した気泡を集積回路素子の表面に当てる
ことにより、素子表面からの気泡発生を増進させている
例がある。 【発明が解決しようとする課Ml 上記従来技術は、多孔質層を形成する場合には気泡発生
の増進効果が長続きせず十分でなく、一方、補助ヒータ
を用いた場合には電力損出を伴うと共に構造が複雑化す
ること等から、いずれも温度オーバシュート対策として
不十分であった。 したがって,本発明の目的は、構造シンプルにして温度
オーバシュートの発生のない改良された沸騰冷却式集積
回路装置を提供することにある。 【課題を解決するための手段1 上記本発明の目的は、冷媒液を収容する下部構造体と、
前記下部構造体の開口部周縁を気密封じした上部構造体
と、前記冷媒液中に浸漬された集積回路素子とを有し、
しかも前記下部構造体と前記上部構造体とにより形成さ
れた内部空間容積を前記冷媒液の温度変化により周期的
に拡大一縮小の2安定状態を繰返し生じせしめる内部空
間容積制御手段を具備して成る沸騰冷却式集積回路装置
により, また、上記下部構造体を熱伝導性に優れた材質のもので
構成し、上記集積回路素子を上記冷媒液系外の前記下部
構造体に熱的に接続して構成した沸騰冷却式集積回路装
置により,達成される.そして、上記内部空間容積制御
手段の好ましい形態としては、上記内部空間内の圧力変
動に応じて機械的に形状変形する上部構造体の形状変形
により構成するか、もしくは上記内部空間内の温度変化
に応じて伸縮する形状記憶合金に支持されたベローズ機
構を有する上部構造体の形状変形により構或することが
望ましい。 【作用】 上記内部空間容積が、拡大一縮小の2安定状態間を繰り
返しながら周期的に変化すると、内部容積の変化に対応
して内部圧力が変わる。沸点付近の温度にて内部容積を
小から大に拡大変化させた場合、内部圧力は低下する。 これに対応して、第8図の冷媒R−113(フロンのl
種)の蒸気圧曲線図に示すように、沸点は降下し,気泡
の発生が増進される。このため,温度と放熱量との関係
は、第7図(b)の実線73の様になり、低圧力の沸点
と常圧力の沸点との間に従来の破線72とは対照的な熱
伝達履歴特性を有し、完全に温度オーバシュートの発生
を阻止することができ,冷却効率の低下を防止すること
ができる6そして,内部温度が低下しそれにもとすいて
内部圧力が低下した場合に、内部容積を大から小の状態
に変えることにより、繰返して一連の動作を自動的に行
うことができる. なお、内部容積の変化は短時間内に行うことが必要であ
り、これが緩慢に変化すると、内部圧力と蒸気圧とが平
衡するため沸点降下の効果は期待できない.
[Industrial Field of Application 1] The present invention relates to an evaporative cooling integrated circuit device. [Prior Art 1] In a boiling-cooled integrated circuit device, an integrated circuit element, which is a heating element, is generally enclosed together with a refrigerant liquid having a boiling point of about 50° C. in a structure having a condensation space. The cooling operation will be explained below using the boiling heat transfer curve diagram shown in FIG. 7(a). When the integrated circuit element is not in operation, its temperature is room temperature, but when it is in operation, the surface temperature of the integrated circuit element increases due to heat generation. When the integrated circuit element starts to be energized from room temperature, it is cooled only by the convection of the refrigerant liquid until it reaches the boiling point corresponding to the vapor pressure of the refrigerant liquid level. Theoretically, above this boiling point, the amount of heat dissipated should increase due to the generation of bubbles due to boiling, as shown by the dashed line 71 in the same figure, but in reality, as shown by the broken line 72 in the same figure, the amount of heat dissipated should increase. However, a phenomenon (called temperature overshoot) occurs in which bubbles are not generated even when the temperature is low, and cooling efficiency decreases because cooling cannot be performed using the heat of vaporization. Conventionally, as a method for preventing temperature overshoot, a porous layer has been provided on the element wall to promote the generation of bubbles at the start of boiling, as described in JP-A-55-59748, for example. Since the fluorocarbon-based refrigerant liquid as a refrigerant has a small surface tension, the effect of promoting bubble generation may not be sufficient in some cases. In other words, at first the effect is due to the air bubbles adsorbed within the porous material, but as boiling repeats, the effect becomes bubbling and the effect decreases. In addition, as another method, an auxiliary heater for generating bubbles is provided in the refrigerant liquid, and the generated bubbles are applied to the surface of the integrated circuit element, thereby promoting the generation of bubbles from the surface of the element. Issues to be Solved by the Invention The above prior art is not sufficient because the effect of promoting bubble generation does not last long when a porous layer is formed.On the other hand, when an auxiliary heater is used, power loss is Both of these methods were insufficient as a countermeasure against temperature overshoots, as they also complicated the structure. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an improved boiling-cooled integrated circuit device which has a simple structure and is free from temperature overshoot. [Means for Solving the Problems 1] The object of the present invention is to provide a lower structure that accommodates a refrigerant liquid;
an upper structure in which a periphery of an opening of the lower structure is hermetically sealed; and an integrated circuit element immersed in the refrigerant liquid;
Moreover, it is provided with an internal space volume control means for periodically causing two stable states of expansion and contraction in the internal space volume formed by the lower structure and the upper structure, depending on the temperature change of the refrigerant liquid. In addition, the lower structure is made of a material with excellent thermal conductivity, and the integrated circuit element is thermally connected to the lower structure outside the refrigerant liquid system. This is achieved by the constructed boiling-cooled integrated circuit device. Preferably, the internal space volume control means is configured by deforming an upper structure that mechanically deforms in shape in response to pressure fluctuations in the internal space, or by changing the shape of an upper structure in response to temperature changes in the internal space. It is preferable to construct the structure by deforming the shape of an upper structure having a bellows mechanism supported by a shape memory alloy that expands and contracts accordingly. [Operation] When the volume of the internal space changes periodically, repeating between two stable states of expansion and contraction, the internal pressure changes in response to the change in the internal volume. When the internal volume is expanded from small to large at a temperature near the boiling point, the internal pressure decreases. Corresponding to this, the refrigerant R-113 (Freon l) shown in FIG.
As shown in the vapor pressure curve diagram of the species), the boiling point decreases and the generation of bubbles is promoted. Therefore, the relationship between the temperature and the amount of heat radiation is as shown by the solid line 73 in FIG. It has a hysteresis characteristic and can completely prevent the occurrence of temperature overshoot and prevent a decrease in cooling efficiency6.And when the internal temperature decreases and the internal pressure also decreases By changing the internal volume from large to small, it is possible to repeatedly perform a series of operations automatically. Note that it is necessary to change the internal volume within a short period of time; if the internal volume changes slowly, the internal pressure and vapor pressure will be in equilibrium, and no effect of lowering the boiling point can be expected.

【実施例】【Example】

以下、本発明の一実施例を図面を用いて詳述する。 実施例■. 第1図(a)は、内部空間容積Vが縮小された状態を示
す沸騰冷却式集積回路装置の断面図で、集積回路素子l
は冷媒液2と共に、鍔の付いた半球状の凹部を有する金
属板からなる上部構造体3と、容器を構成する下部構造
体4内に封入されている。そして、下部構造体4の開口
部周縁には上部構造体3の鍔部3aが気密封じされ、そ
れに隣接して放熱器5が取付けられている。 一方、第1図(b)は、内部圧力の増加に対応して上部
構造体3の半球状の凹部が凸部に反転変形して内部容積
が2安定状態で増加した状態を示す。内部容積が増加す
ると内部圧力が低下し、沸点降下が生じるため気泡6が
発生する.また、内部温度が低下し、内部圧力が低下し
た場合は逆の動作により内部容積が大から小の状態とな
り,繰り返して一連の動作を行うことができる。 なお、上記鍔の付いた半球状の凹部を有する金属板から
なる上部構造体3としては、弾性を有する金属板をブレ
ス或形することにより容易に得ることができる。 そして,上記下部構造体4としては、セラミックス等の
絶縁物やステンレス等の金属で構成される,セラミック
スの場合は絶縁性が良好なため集積回路素子1を取付け
る配線板としても利用できるため、一体化して製造する
ことができるので構造が簡単になる利点がある。また、
ステンレス等の金属で構或する場合にはプレス成形で容
易に製造できる。 更にまた、下部構造体4の開口部の形状は,上部構造体
3が取付けやすいように円形とすることが望ましい。 実施例2. 第2図(a)は,内部空間容積■が縮小された状態を示
す本発明の他の実施例となる沸騰冷却式集積回路装置の
断面図で、集積回路素子1は冷媒液2と共に、金属板の
溶接ベローズ構造を有する上部構造体7と容器を構或す
る下部構造体4とからなる構造体中に封入されている。 そして、図示の通り下部構造体4の円形開口部周縁には
上部構造体7のベローズ部の一端が気密封じされ、さら
に上部構造体7の平板部と集積回路素子1との間には伸
長状態において形状記憶させたコイルバネ状の形状記憶
合金8が取付けられており,集積回路素子1め温度が上
昇するとこの熱が形状記憶合金に伝熱され形状記憶合金
8は伸長する構成となっている。なお、形状記憶合金8
としては、例えばN i − T i系合金等の周知の
ものが使用できる。 一方,第2図(b)は、集積回路索子1の温度上昇に対
応して、形状記憶合金8及び上部構造体7が変形して内
部容積が2安定状態で増加した状態を示す。内部容積が
増加すると内部圧力が低下し、沸点降下が生じるため気
泡6が発生する.また、内部温度が低下し,内部圧力が
低下した場合は逆の動作により内部容積が大から小の状
態となり,繰り返して一連の動作を行うことができる。 なお、上記金属板の溶接ベローズ構造を有する上部構造
体7としては、バネ定数が小さく,体積変化率の大きい
溶接ベローズを用いた。この種の溶接ベローズは、金属
板をディスク状に打ち抜き、その内部と外部とを交互に
溶接した周知のもので、小さな力で大きく変位する特徴
がある。それ故、形状記憶合金8の変形による上部構造
体7の形状変化動作が確実となる.また、溶接ベローズ
の村貿としては,フッ素系冷媒液に侵されに<<,シか
も下部構造体4にはんだ付けの容易なものでベリリウム
銅合金等が望ましい。 本実施例も前記実施例1の場合と同様に、集積回路素子
1の温度上昇に対応して内部容積が急速に変化し気泡の
発生が増進されるので,温度オーバシュートの発生を十
分に防止することができた。 実施例3. 第3図(a)は、内部空間容積Vが縮小された状態を示
す本発明のさらに異なる他の実施例となる沸騰冷却式集
積回路装置の断面図を示したものである6基本的構成は
前記実施例2と同様であるが、集積回路素子1が下部構
造体4の外壁に取f寸けられている点が異なる。この場
合、集積回路素子1は、例えばアルミニウム等の金属や
アルミナ、窒化アルミ等のセラミックスの如き熱伝導性
良好な材質からなる下部構造体4の外壁に,例えば半田
やろう付け等により固定し、ヒートシンク構造を形成す
る。 一方、第3図(b)は、集積回路素子1の温度上昇に対
応して、形状記憶合金8及び上部構造体7が変形して内
部容積が2安定状態で増加した状態を示す。そして、そ
の動作及び効果は前記実施例2と同様であるが、本実施
例の特有な効果として、形状記憶合金8が集積回路素子
1に接触しないため、集積回路素子lへの物理的ストレ
スがかからない利点がある。 実施例4. 第4図(a)は、内部空間容積Vが縮小された状態を示
す本発明のさらに異なる他の実施例となる沸騰冷却式集
積回路装置の断面図を示したものである。基本的構成は
前記実施例1と同様であるが、上部構造体3が、バイメ
タル9で構或されている点が異なる。 一方、第4図(b)は、集積回路素子lの温度上昇によ
る内部圧力の増加及び冷媒蒸気の温度上昇に対応して、
バイメタル9で構成された上部構造体3が変形して内部
容積が2安定状態で増加した状態を示す。そして、その
動作及び効果は前記実施例1と同様であるが、本実施例
の特有な効果として、バイメタル9で構成された上部構
造体3が、内部圧力増加と冷媒蒸気の温度上昇との両方
により変形するため、動作がより確実になる利点がある
。 なお、上部構造体である半球状のバイメタル9は,前記
実施例1の場合と同様にして、プレス成形により容易に
製造することができる。そしてこの場合も下部構造体4
の開口部は、上部構造体が取付けやすいように円形構造
となっている。 実施例5. 本実施例は、沸騰冷却式集積回路装置をプリント配線基
板上に実装する例を示したもので、以下、第5図を用い
て説明する。 前記いずれの実施例の沸騰冷却式集積回路装置も、集積
回路素子の動作時に、上部構造体が拡大一縮小すること
により装置内の体積が増大一減少のサイクルを繰り返す
ため、それに適した実装法の検討が必要である。第5図
は前記実施例2及び3による沸騰冷却式集積回路装置1
0を,プリント回路配線基板ll上に実装した一例を示
したものである。冷却時の沸騰動作を確実にするため,
図示のように溶接ベローズが上側となるように実装する
ことが望ましく、このため、プリント回路配線基板11
は水平に配置されるのが一般的である。 第6図は、このようにして実装した複数枚のプリント回
路配線基板11を、架14に収容した一例を示したもの
である。プリント回路配線基板11上に実装された沸騰
冷却式集積回路装置10は、動作時には容積の増大した
沸騰冷却式集積回路装置l3の状態を考慮して、上側の
プリント回路配線基板11との間に空きスペース12を
設けることにより、接触を防止することができる。
Hereinafter, one embodiment of the present invention will be described in detail using the drawings. Example■. FIG. 1(a) is a sectional view of the boiling-cooled integrated circuit device showing a state in which the internal space volume V is reduced, and the integrated circuit element l
The refrigerant liquid 2 is enclosed in an upper structure 3 made of a metal plate having a hemispherical recess with a flange, and a lower structure 4 forming a container. The flange 3a of the upper structure 3 is hermetically sealed around the opening of the lower structure 4, and the radiator 5 is attached adjacent thereto. On the other hand, FIG. 1(b) shows a state in which the hemispherical concave portion of the upper structure 3 is reversely deformed into a convex portion in response to an increase in internal pressure, and the internal volume increases in a two-stable state. As the internal volume increases, the internal pressure decreases and the boiling point drops, resulting in bubbles 6. Furthermore, when the internal temperature and internal pressure decrease, the internal volume changes from a large state to a small state by the reverse operation, and a series of operations can be performed repeatedly. The upper structure 3 made of a metal plate having a hemispherical concave portion with a flange can be easily obtained by pressing or shaping an elastic metal plate. The lower structure 4 is made of an insulating material such as ceramics or a metal such as stainless steel.In the case of ceramics, it can be used as a wiring board to which the integrated circuit element 1 is attached due to its good insulation properties. It has the advantage that the structure can be simplified because it can be manufactured in various ways. Also,
If it is made of metal such as stainless steel, it can be easily manufactured by press molding. Furthermore, the shape of the opening of the lower structure 4 is preferably circular so that the upper structure 3 can be easily attached. Example 2. FIG. 2(a) is a cross-sectional view of a boiling-cooled integrated circuit device according to another embodiment of the present invention, showing a state in which the internal space volume (2) is reduced. It is enclosed in a structure consisting of an upper structure 7 having a plate welded bellows structure and a lower structure 4 constituting a container. As shown in the figure, one end of the bellows part of the upper structure 7 is hermetically sealed around the circular opening of the lower structure 4, and there is a space between the flat plate part of the upper structure 7 and the integrated circuit element 1 in an extended state. A shape memory alloy 8 in the form of a coil spring with shape memory is attached thereto, and when the temperature of the integrated circuit element 1 rises, this heat is transferred to the shape memory alloy and the shape memory alloy 8 expands. In addition, shape memory alloy 8
For example, a well-known material such as a Ni-Ti alloy can be used. On the other hand, FIG. 2(b) shows a state in which the shape memory alloy 8 and the upper structure 7 are deformed in response to the temperature rise of the integrated circuit cord 1, and the internal volume increases in two stable states. As the internal volume increases, the internal pressure decreases and the boiling point drops, resulting in bubbles 6. Furthermore, when the internal temperature and internal pressure decrease, the internal volume changes from large to small due to the reverse operation, and the series of operations can be repeated. Note that, as the upper structure 7 having the metal plate welded bellows structure, a welded bellows having a small spring constant and a large volume change rate was used. This type of welded bellows is a well-known type in which a metal plate is punched out into a disk shape and the inside and outside of the bellows are alternately welded, and is characterized by large displacement with a small force. Therefore, the shape change operation of the upper structure 7 due to the deformation of the shape memory alloy 8 is ensured. Furthermore, the material of the welded bellows is desirably a beryllium copper alloy or the like, since it is easily soldered to the lower structure 4 because it is not susceptible to attack by fluorine-based refrigerant liquid. In this embodiment, as in the case of the first embodiment, the internal volume rapidly changes in response to the temperature rise of the integrated circuit element 1, and the generation of bubbles is promoted, so that the occurrence of temperature overshoot is sufficiently prevented. We were able to. Example 3. FIG. 3(a) shows a cross-sectional view of an evaporative cooling integrated circuit device according to another embodiment of the present invention in which the internal space volume V is reduced.6The basic configuration is This embodiment is similar to the second embodiment, except that the integrated circuit element 1 is mounted on the outer wall of the lower structure 4. In this case, the integrated circuit element 1 is fixed to the outer wall of the lower structure 4 made of a material with good thermal conductivity, such as a metal such as aluminum, or a ceramic such as alumina or aluminum nitride, by, for example, soldering or brazing, Form a heat sink structure. On the other hand, FIG. 3(b) shows a state in which the shape memory alloy 8 and the upper structure 7 are deformed in response to the temperature rise of the integrated circuit element 1, and the internal volume increases in two stable states. The operation and effect are the same as those of the second embodiment, but the unique effect of this embodiment is that the shape memory alloy 8 does not come into contact with the integrated circuit element 1, so that no physical stress is applied to the integrated circuit element 1. It has the advantage of not costing anything. Example 4. FIG. 4(a) is a sectional view of an evaporative cooling integrated circuit device according to still another embodiment of the present invention, showing a state in which the internal space volume V is reduced. The basic structure is the same as that of the first embodiment, except that the upper structure 3 is made of bimetal 9. On the other hand, FIG. 4(b) shows that in response to an increase in internal pressure due to a rise in temperature of integrated circuit element l and a rise in temperature of refrigerant vapor,
This figure shows a state in which the upper structure 3 made of bimetal 9 is deformed and its internal volume increases in two stable states. The operation and effect are the same as those of the first embodiment, but the unique effect of this embodiment is that the upper structure 3 made of bimetal 9 prevents both an increase in internal pressure and a rise in the temperature of refrigerant vapor. This has the advantage of making the operation more reliable. Note that the hemispherical bimetal 9 that is the upper structure can be easily manufactured by press molding in the same manner as in the first embodiment. And in this case as well, the lower structure 4
The opening has a circular structure to facilitate attachment of the upper structure. Example 5. This embodiment shows an example in which an evaporative cooling type integrated circuit device is mounted on a printed wiring board, and will be described below with reference to FIG. 5. In the boiling-cooled integrated circuit devices of any of the above embodiments, when the integrated circuit element is operated, the upper structure expands and contracts, causing the internal volume of the device to repeat a cycle of increase and decrease. It is necessary to consider FIG. 5 shows the evaporative cooling type integrated circuit device 1 according to the embodiments 2 and 3.
0 is mounted on a printed circuit wiring board ll. To ensure boiling operation during cooling,
It is desirable to mount the welded bellows on the upper side as shown in the figure, and for this reason, the printed circuit wiring board 11
are generally arranged horizontally. FIG. 6 shows an example in which a plurality of printed circuit wiring boards 11 mounted in this manner are housed in a rack 14. During operation, the evaporative cooling type integrated circuit device 10 mounted on the printed circuit wiring board 11 has a space between it and the upper printed circuit wiring board 11, taking into consideration the state of the evaporative cooling type integrated circuit device l3 whose volume has increased. By providing the empty space 12, contact can be prevented.

【発明の効果】【Effect of the invention】

以上詳述したように、本発明によれば、単純な構造によ
り温度オーバシュートの発生を阻止できるので、冷却効
率の低下を防止でき、常時,高い冷却効果を維持するこ
とが可能となった。
As described in detail above, according to the present invention, since the occurrence of temperature overshoot can be prevented with a simple structure, a decrease in cooling efficiency can be prevented and a high cooling effect can be maintained at all times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図及び第4図は、それぞれ本発明
の一実施例を示す沸騰冷却式集積回路装置の断面図、第
5図は、同じく本発明の一実施例を示す沸騰冷却式集積
回路装置をブリンント配線回路基板上に実装した状態を
示す斜視図、第6図は,それを複数枚架に収容した状態
の正面図、第7図は、沸騰冷却動作を説明する沸騰熱伝
達曲線図,そして第8図は、沸点温度低下の一例を示す
冷媒R−113の蒸気圧曲線図である。 図において、 1・・・集積回路素子 3・・・上部構造体 5・・・放熱器 7・・・溶接ベローズ上部構造体 8・・・形状記憶合金コイルばね 2・・・冷媒液 4・・・下部構造体 6・・・気泡 9・・・バイメタル上部構造体 10・・・沸騰冷却式集積回路装置 11・・・プリンント配線回路基板 12・・・空きスペース
1, 2, 3, and 4 are cross-sectional views of a boiling-cooled integrated circuit device each showing an embodiment of the present invention, and FIG. 5 similarly showing an embodiment of the present invention. A perspective view showing a state in which an evaporative cooling type integrated circuit device is mounted on a blind wiring circuit board, FIG. 6 is a front view of a state in which a plurality of integrated circuit devices are housed in a rack, and FIG. 7 is an illustration of the evaporative cooling operation. A boiling heat transfer curve diagram, and FIG. 8 is a vapor pressure curve diagram of refrigerant R-113 showing an example of a decrease in boiling point temperature. In the figure, 1... integrated circuit element 3... upper structure 5... radiator 7... welded bellows upper structure 8... shape memory alloy coil spring 2... refrigerant liquid 4...・Lower structure 6...Bubble 9...Bimetal upper structure 10...Boiling cooling type integrated circuit device 11...Printed wiring circuit board 12...Empty space

Claims (1)

【特許請求の範囲】 1、冷媒液を収容する下部構造体と、前記下部構造体の
開口部周縁を気密封じした上部構造体と、前記冷媒液中
に浸漬された集積回路素子とを有し、しかも前記下部構
造体と前記上部構造体とにより形成された内部空間容積
を前記冷媒液の温度変化により周期的に拡大−縮小の2
安定状態を繰返し生じせしめる内部空間容積制御手段を
具備して成る沸騰冷却式集積回路装置。 2、冷媒を収容する下部構造体と、前記下部構造体の開
口部周縁を気密封じした上部構造体と、前記下部構造体
に少なくとも熱的に接続された集積回路素子とを有し、
しかも前記下部構造体と前記上部構造体とにより形成さ
れた内部空間容積を前記冷媒の温度変化により周期的に
拡大−縮小の2安定状態を繰返し生じせしめる内部空間
容積制御手段を具備して成る沸騰冷却式集積回路装置。 3、上記内部空間容積制御手段が、上記内部空間内の圧
力変動に応じて機械的に形状変形する上部構造体の形状
変形により構成されて成る請求項1もしくは2記載の沸
騰冷却式集積回路装置。 4、上記内部空間容積制御手段が、上記内部空間内の温
度変化に応じて伸縮する形状記憶合金に支持されたベロ
ーズ機構を有する上部構造体の形状変形により構成され
て成る請求項1もしくは2記載の沸騰冷却式集積回路装
置。
[Scope of Claims] 1. A lower structure housing a refrigerant liquid, an upper structure hermetically sealing the periphery of an opening of the lower structure, and an integrated circuit element immersed in the refrigerant liquid. , and the volume of the internal space formed by the lower structure and the upper structure is periodically expanded and contracted by the temperature change of the refrigerant liquid.
An evaporative cooling type integrated circuit device comprising internal space volume control means for repeatedly producing a stable state. 2. A lower structure that accommodates a refrigerant, an upper structure that hermetically seals the periphery of an opening of the lower structure, and an integrated circuit element that is at least thermally connected to the lower structure;
Further, the boiling device is provided with an internal space volume control means for repeatedly causing two stable states of expansion and contraction in the internal space volume formed by the lower structure and the upper structure, depending on temperature changes of the refrigerant. Cooled integrated circuit device. 3. The evaporative cooling integrated circuit device according to claim 1 or 2, wherein the internal space volume control means is configured by deforming an upper structure mechanically deforming the shape in response to pressure fluctuations within the internal space. . 4. The internal space volume control means is configured by deforming an upper structure having a bellows mechanism supported by a shape memory alloy that expands and contracts in response to temperature changes in the internal space. boiling cooled integrated circuit device.
JP1228360A 1989-09-05 1989-09-05 Vaporization cooling system integrated circuit device Pending JPH0391948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1228360A JPH0391948A (en) 1989-09-05 1989-09-05 Vaporization cooling system integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1228360A JPH0391948A (en) 1989-09-05 1989-09-05 Vaporization cooling system integrated circuit device

Publications (1)

Publication Number Publication Date
JPH0391948A true JPH0391948A (en) 1991-04-17

Family

ID=16875239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1228360A Pending JPH0391948A (en) 1989-09-05 1989-09-05 Vaporization cooling system integrated circuit device

Country Status (1)

Country Link
JP (1) JPH0391948A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518477A (en) * 2004-10-29 2008-05-29 スリーエム イノベイティブ プロパティズ カンパニー Variable position cooling system
US10149408B2 (en) 2016-07-14 2018-12-04 Fujitsu Limited Liquid immersion bath for electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008518477A (en) * 2004-10-29 2008-05-29 スリーエム イノベイティブ プロパティズ カンパニー Variable position cooling system
US10149408B2 (en) 2016-07-14 2018-12-04 Fujitsu Limited Liquid immersion bath for electronic device

Similar Documents

Publication Publication Date Title
TW495660B (en) Micro cooling device
US7486515B2 (en) Fluid circulator for fluid cooled electronic device
US5283715A (en) Integrated heat pipe and circuit board structure
KR0159980B1 (en) Heat-pipe type cooling apparatus
WO1999053255A1 (en) Plate type heat pipe and cooling structure using it
JPH02125457A (en) Heat transfer device
CN101389200A (en) Miniature fluid cooling system and miniature fluid driving device
JPH10267571A (en) Plate type heat pipe and cooling structure using the same
WO1999034438A1 (en) Heat sink
JPH05243441A (en) Heat dissipating device
AU602522B2 (en) Apparatus and method for compensation of thermal expansion of cooling fluid in enclosed electronic packages
KR20050117482A (en) Printed circuit board with built-in cooling apparatus and method therefor
JP4508939B2 (en) Electronic heating element cooling device
JPH0391948A (en) Vaporization cooling system integrated circuit device
JP4278720B2 (en) Plate heat pipe
JP3777539B2 (en) X-ray generator
WO2007115241A2 (en) Low cost boiling coolers utilizing liquid boiling
JPH11317482A (en) Heat sink
JP2004162733A (en) Valve coping with high temperature
JPH03273669A (en) Semiconductor device with cooling mechanism
JP2001251079A (en) Method for producing heat sink using heat pipe and method for producing heat pipe
JP3959428B2 (en) Stereo heat pipe radiator
JP2562180B2 (en) Boiling cooling type semiconductor device
JPS6219073B2 (en)
CN106793671B (en) Heat radiation unit