JPH039177B2 - - Google Patents

Info

Publication number
JPH039177B2
JPH039177B2 JP25236587A JP25236587A JPH039177B2 JP H039177 B2 JPH039177 B2 JP H039177B2 JP 25236587 A JP25236587 A JP 25236587A JP 25236587 A JP25236587 A JP 25236587A JP H039177 B2 JPH039177 B2 JP H039177B2
Authority
JP
Japan
Prior art keywords
weight
alloy
corrosion
corrosion resistance
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25236587A
Other languages
Japanese (ja)
Other versions
JPH0196348A (en
Inventor
Hiroyuki Seto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP25236587A priority Critical patent/JPH0196348A/en
Publication of JPH0196348A publication Critical patent/JPH0196348A/en
Publication of JPH039177B2 publication Critical patent/JPH039177B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、溶融金属に対する耐腐食性に優れた
材料に関するものである。 〔従来の技術〕 一般に、亜鉛精錬、亜鉛合金鋳造、亜鉛メツキ
等には、亜鉛を溶融する溶融装置が使用されてい
る。また、この種の溶融装置として、サブマージ
ドメルテイングシステム、ブリツジウオールメル
テイングシステム等が知られている。これらのシ
ステムでは、溶融亜鉛が均一な温度を保つた状態
で、槽内を循環するように構成されており、シス
テム内のポンプ、熱電付保護管、ローラ軸受、板
押えの鋼板等の各種部品は溶融亜鉛に接触乃至は
溶融亜鉛に浸漬されることになる。 一方、このように、溶融亜鉛に接触、浸漬され
る金属部品は溶融亜鉛によつて腐食されることが
知られている。溶融亜鉛による腐食を防止するた
めに、例えば、ポンプをカーボンによつて形成す
ると共に、熱電対保護管、ローラ軸受をセラミツ
クによつて形成し、鋼板にセラミツクコーテイン
グを施すことが提案されている。 更に、このような溶融装置の部品を耐熱材料で
且つ硬質材料であるモリブデン(Mo)とタング
ステン(W)との合金によつて形成することも提
案されている。従来のこの種の合金は重量で70%
のMoを含み、残部がWである化学組成を有して
おり、真空アーク炉を用いた溶解法により生成さ
れている。 〔発明が解決しようとする問題点〕 しかしながら、セラミツク及びカーボンは、耐
熱材料としては優れているが、機械的強度が小さ
く、耐衝撃性や耐摩耗性に乏しく、これらを材料
とした溶融装置部品は、短寿命であるという欠点
がある。このことは部品のコストを上昇させ、し
たがつて、製品の生産コストをも上昇させること
になる。また、一般に機械的強度の大きな金属材
料は、溶融亜鉛に著しく腐食されるので溶融装置
材料として不適当であり、溶融装置や部品の材料
としては、上記したMoとWとの合金のみが市販
されているにすぎない。しかし、市販されている
MoとWとの合金材料は、溶融亜鉛に対して、他
の金属材料より優れた耐腐食性を示すが、セラミ
ツク及びカーボンに比べると耐腐食性が低いた
め、市販のMoとWの合金材料をセラミツク等の
代りに使用することは困難である。 本発明は、上記欠点に鑑みてなされ、機械的強
度が大きく、溶融亜鉛に対して極めて耐腐食性の
優れた材料を提供することを目的とする。 〔問題点を解決するための手段〕 本発明によれば、Moが60〜5重量%で残部が
Wの化学組成を有する合金によつて形成されてい
ることを特徴とする耐腐食性材料が得られる。 本発明に係る耐腐食性材料は、溶融金属に浸漬
される部品として使用でき、且つ粉末冶金法によ
り、焼結材の形に、あるいは塑性加工材の形に成
形されている。 〔作用〕 本発明における耐腐食性材料は、融点がそれぞ
れ略2600℃及び略3400℃と極めて高いMoとWと
の合金からなつている。 この合金の融点は、化学組成にほぼ比例した
2600℃〜3600℃間の融点を有するので、極めて耐
熱性が大きい。 この合金からなる材料を焼結することによつて
得られた焼結材は、Mo60〜5重量%、残部Wの
化学組成の範囲内でMo及びWの割合を可変とす
ると、Wの増加と共に、引張り強さ28(Kgf/mm2
から38(Kgf/mm2)まで増加する。また、上記組
成の焼結材を亜鉛溶湯中に浸漬すると、その減量
速度は0(g/m2hr)であることが確認された。
一方上記焼結材以外の化学組成がMo70重量%以
上では、Moの割合が大きくなるに従つて、減量
速度が2.00(g/m2hr)より大きくなり、また純
タングステンからなる焼結材の減量速度は、0.05
(g/m2hr)である。いずれにしても、Mo60〜
5重量%残部Wの化学組成の合金が耐腐食性にお
いて、優れていることが判明した。 また、圧延により形成された圧延材の場合、そ
の組成がMo60〜5重量%残部Wであれば、Wの
割合が増加するに従い引張り強さが、100(Kgf/
mm2)から140(Kgf/mm2)まで増加することが判つ
た。 また、上記焼結材と同様に亜鉛溶湯中に浸漬さ
れると上記した組成範囲内の圧延材の減量速度
は、0〜0.01(g/m2hr)であつた。一方、上記
組成範囲外の圧延材、例えば、Moが70重量%以
上の圧延材では、その原料速度は、0.105(g/m2
hr)であつた。 従つて、Mo60〜5重量%残部Wの化学組成の
合金によりなる焼結材及び圧延材は、実際の亜鉛
溶湯中において、溶融装置部品の耐熱性を高め、
機械的強度を増加させ、且つ耐腐食性を向上させ
るのに役立つ。 〔実施例〕 次に、本発明の実施例について図面を参照しな
がら説明する。 実施例 1 本発明の実施例1に係る耐腐食性材料はMo−
W合金からなる焼結材によつて形成される。この
場合、まず、平均粒度約2μmのタングステン粉
末と約4μmのモリブデン粉末をMoの化学組成が
5、20、25、30、50、60重量%となるように秤量
し、V型混合機にて混合した。その後、約3ton/
cm2で金型プレスにより成形し、得られた板状の成
形体を約1800℃で高純度水素雰囲気中にて、30時
間焼結を行い、焼結材として厚さ15mmのインゴツ
トを得た。この焼結材の機械的強度及び耐腐食性
を次のようにして調べた。機械的強度については
上記焼結材の引張り試験がJIS B−7702(JIS Z
−2201)に基づく試験片について行われ各試験片
の引張りの強さ、伸びの測定がなされた。また、
耐腐食性については、実際の亜鉛溶融装置部品例
えば、ポンプ等が置かれる条件、すなわち温度
695±10℃にてCd(カドミウム)0.10重量%、Pb
(鉛)14ppmからなる2.7mm/secの定速で流され
た溶湯に、上記焼結材の試験片の全表面を506時
間浸漬した。その後、溶湯から取り出された試験
片を希硫酸にて洗滌し、試験片に付着している亜
鉛を溶解した。そして、溶湯に浸漬前後の試験片
の重量差から減量速度が求められ、耐腐食性の目
安とした。 上記引張り試験、及び上記耐腐食性試験の結果
を表1に示す。表中の、Mo70、75、100、0重
量%の材料、及び硬質黒鉛は、比較の為の参考例
である。
[Industrial Application Field] The present invention relates to a material with excellent corrosion resistance against molten metal. [Prior Art] Generally, melting equipment for melting zinc is used for zinc refining, zinc alloy casting, galvanizing, etc. Further, as this type of melting apparatus, a submerged melting system, a bridge wall melting system, etc. are known. These systems are configured so that molten zinc circulates within the tank while maintaining a uniform temperature, and various parts within the system such as the pump, thermoelectric protection tube, roller bearing, and steel plate for the plate holder. will come into contact with or be immersed in molten zinc. On the other hand, it is known that metal parts that come into contact with and are immersed in molten zinc are corroded by the molten zinc. In order to prevent corrosion caused by molten zinc, it has been proposed, for example, to form the pump from carbon, form the thermocouple protection tube and roller bearing from ceramic, and apply ceramic coating to the steel plate. Furthermore, it has been proposed that parts of such a melting device be made of an alloy of molybdenum (Mo) and tungsten (W), which are heat-resistant and hard materials. This kind of conventional alloy is 70% by weight
It has a chemical composition of Mo and the balance is W, and is produced by a melting method using a vacuum arc furnace. [Problems to be solved by the invention] However, although ceramics and carbon are excellent heat-resistant materials, they have low mechanical strength, poor impact resistance, and poor abrasion resistance, and melting equipment parts made of these materials cannot be used. has the disadvantage of short life. This increases the cost of the parts and therefore the production cost of the product. In addition, metal materials with high mechanical strength are generally unsuitable as materials for melting equipment because they are severely corroded by molten zinc, and only the alloys of Mo and W mentioned above are commercially available as materials for melting equipment and parts. It's just that. However, commercially available
Alloy materials of Mo and W exhibit better corrosion resistance against molten zinc than other metal materials, but their corrosion resistance is lower than that of ceramics and carbon, so commercially available alloy materials of Mo and W It is difficult to use it in place of ceramics, etc. The present invention was made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a material having high mechanical strength and extremely excellent corrosion resistance against molten zinc. [Means for Solving the Problems] According to the present invention, there is provided a corrosion-resistant material characterized by being formed of an alloy having a chemical composition of 60 to 5% by weight of Mo and the balance being W. can get. The corrosion-resistant material according to the invention can be used as a part that is immersed in molten metal and is shaped by powder metallurgy in the form of a sintered material or in the form of a plastically worked material. [Function] The corrosion-resistant material in the present invention is made of an alloy of Mo and W, which have very high melting points of about 2600°C and about 3400°C, respectively. The melting point of this alloy is approximately proportional to its chemical composition.
It has a melting point between 2600°C and 3600°C, so it has extremely high heat resistance. The sintered material obtained by sintering the material made of this alloy can be produced by varying the proportions of Mo and W within the chemical composition range of 60 to 5% by weight of Mo and the balance W. , tensile strength 28 (Kgf/mm 2 )
It increases from 38 (Kgf/mm 2 ) to 38 (Kgf/mm 2 ). Furthermore, it was confirmed that when the sintered material having the above composition was immersed in molten zinc, the weight loss rate was 0 (g/m 2 hr).
On the other hand, when the chemical composition of the sintered material other than the above is 70% by weight or more, the weight loss rate becomes higher than 2.00 (g/m 2 hr) as the proportion of Mo increases, and the sintered material made of pure tungsten Weight loss rate is 0.05
(g/m 2 hr). In any case, Mo60~
It has been found that an alloy with a chemical composition of 5% by weight balance W has excellent corrosion resistance. In addition, in the case of a rolled material formed by rolling, if the composition is Mo60 to 5% by weight balance W, as the proportion of W increases, the tensile strength increases to 100 (Kgf/
mm 2 ) to 140 (Kgf/mm 2 ). Further, when immersed in molten zinc like the sintered material, the weight loss rate of the rolled material within the above composition range was 0 to 0.01 (g/m 2 hr). On the other hand, for rolled materials outside the above composition range, for example, rolled materials containing 70% by weight or more of Mo, the raw material speed is 0.105 (g/m 2
hr). Therefore, sintered and rolled materials made of alloys with a chemical composition of Mo60 to 5% by weight with the balance being W increase the heat resistance of melting equipment parts in actual molten zinc.
Helps increase mechanical strength and improve corrosion resistance. [Example] Next, an example of the present invention will be described with reference to the drawings. Example 1 The corrosion-resistant material according to Example 1 of the present invention is Mo-
It is formed from a sintered material made of W alloy. In this case, first, tungsten powder with an average particle size of about 2 μm and molybdenum powder with an average particle size of about 4 μm are weighed so that the chemical composition of Mo is 5, 20, 25, 30, 50, and 60% by weight, and then used in a V-type mixer. Mixed. After that, about 3 tons/
cm 2 by mold press, and the resulting plate-shaped compact was sintered at approximately 1800°C in a high-purity hydrogen atmosphere for 30 hours to obtain an ingot with a thickness of 15 mm as a sintered material. . The mechanical strength and corrosion resistance of this sintered material were examined as follows. Regarding mechanical strength, the tensile test of the above sintered material was conducted in accordance with JIS B-7702 (JIS Z
-2201), and the tensile strength and elongation of each test piece were measured. Also,
Corrosion resistance depends on the conditions in which actual zinc melting equipment parts, such as pumps, are placed, i.e. temperature.
Cd (cadmium) 0.10% by weight, Pb at 695±10℃
The entire surface of the sintered material test piece was immersed for 506 hours in a molten metal containing 14 ppm (lead) flowing at a constant rate of 2.7 mm/sec. Thereafter, the test piece taken out from the molten metal was washed with dilute sulfuric acid to dissolve the zinc adhering to the test piece. Then, the weight loss rate was determined from the difference in weight of the test piece before and after immersion in the molten metal, and was used as a measure of corrosion resistance. Table 1 shows the results of the tensile test and the corrosion resistance test. The Mo70, 75, 100, 0% by weight materials and hard graphite in the table are reference examples for comparison.

【表】 Moの重量%が小さくなるにつれ、焼結材の機
械的強度は大きくなる。 一方、溶融亜鉛に対する焼結材の耐腐食性は、
Mo60〜5重量%残部Wの組成範囲内で著しく改
善されており、更に焼結材は上記組成範囲内でカ
ーボンに比べて伸びについては同等であるが5倍
〜8倍の引張り強さを示すことが判る。 実施例 2 本発明の実施例2に係る耐腐食性材料はMo−
W合金からなる圧延材によつて形成される。この
場合圧延機は、実施例1で製造された鋳塊と同様
な焼結法により製造されたインゴツトを約900〜
1500℃で熱間圧延して、2mm厚の板に仕上げるこ
とにより得られた。この圧延材の機械的強度につ
いては実施例1と同様なJIS B−7702試験片の引
張り試験により、また、耐腐食性についても実施
例1と同様な、温度965℃±10℃の溶湯に上記圧
延材の試片の全表面を浸漬し、重量差を測定する
方法から減量速度が求められた。上記引張り試験
及び上記耐食性試験の結果を表2に示す。表中
の、Mo 70、75、100、0、重量%の材料及び硬
質黒鉛は、比較の為の参考例である。
[Table] As the weight percentage of Mo decreases, the mechanical strength of the sintered material increases. On the other hand, the corrosion resistance of sintered material against molten zinc is
It is significantly improved within the composition range of Mo60 to 5% by weight balance W, and furthermore, within the above composition range, the sintered material has the same elongation as carbon, but shows 5 to 8 times the tensile strength. I understand that. Example 2 The corrosion-resistant material according to Example 2 of the present invention is Mo-
It is formed from a rolled material made of W alloy. In this case, the rolling mill receives approximately 900 to 900 ingots produced by the same sintering method as the ingot produced in Example 1.
It was obtained by hot rolling at 1500°C and finishing it into a 2 mm thick plate. The mechanical strength of this rolled material was determined by a tensile test using a JIS B-7702 test piece similar to that used in Example 1, and the corrosion resistance was determined by testing the molten metal at a temperature of 965°C ± 10°C as described above in the same manner as in Example 1. The weight loss rate was determined by dipping the entire surface of a specimen of the rolled material and measuring the weight difference. Table 2 shows the results of the tensile test and the corrosion resistance test. The Mo 70, 75, 100, 0, weight% materials and hard graphite in the table are reference examples for comparison.

【表】 表2からも明らかな通り、Moの重量%が小さ
くなるにつれて、圧延材の機械的強度は大きくな
る。一方Mo60〜5重量%、残部Wの化学組成の
合金は溶融亜鉛に対して、実施例1における試験
結果と同様に、極めて優れた耐腐食性を示し。且
つ引張り試験において1%以上の伸びを示すこと
が判明した。上記組成範囲内の化学組成を有する
圧延材の引張り強さはカーボンに比べて20倍〜28
倍であつた。 第1図には焼結材の引張り強さとMoの含有量
との関係が曲線11で示され他方、実施例2の圧
延材の引張り強さとMoの含有量が曲線12で示
されている。 また、第2図には、焼結材の減量速度とMoの
含有量との関係が曲線13で示され、更に、圧延
材の減量速度とMoの含有量との関係が曲線14
で示されている。減量速度は耐腐食性を規定する
因子であり、減量速度の値が小さい程、耐腐食性
が優れていることを示す、 上記焼結材及び圧延材は、実施例1に関連して
説明したように、粉末冶金法で製造されている
が、エレクトロンビームやアーク溶解法により製
造された材料についても、機械的強度が大きく、
優れた耐腐食性を示す結果が得られた。 〔効果〕 以上述べたとおり、本発明においては、Mo60
〜5重量%で残部がWの化学組成の合金であれ
ば、製法が粉末冶金法又は溶解法による焼結物、
鋳塊、あるいは鋳塊から鍛造、圧延等の塑性加工
された部品すべてに適用できる耐腐食性材料が得
られる。この耐腐食性材料は、溶融亜鉛に対する
耐腐食性において優れ、さらに機械的特性におい
て極めて優れている。したがつて亜鉛の精錬、合
金鋳造や亜鉛メツキ等の溶融装置の部品の寿命が
長くなり、亜鉛等の金属製品の生産コストを低減
することが可能である。
[Table] As is clear from Table 2, as the weight percentage of Mo decreases, the mechanical strength of the rolled material increases. On the other hand, an alloy having a chemical composition of 60 to 5% by weight of Mo and the balance being W exhibited extremely excellent corrosion resistance against molten zinc, similar to the test results in Example 1. Moreover, it was found that it exhibited an elongation of 1% or more in a tensile test. The tensile strength of rolled materials with a chemical composition within the above composition range is 20 to 28 times that of carbon.
It was twice as hot. In FIG. 1, a curve 11 shows the relationship between the tensile strength of the sintered material and the Mo content, while a curve 12 shows the relationship between the tensile strength and the Mo content of the rolled material of Example 2. In addition, in FIG. 2, the relationship between the weight loss rate of the sintered material and the Mo content is shown by curve 13, and the relationship between the weight loss rate of the rolled material and the Mo content is shown by curve 14.
is shown. The weight loss rate is a factor that determines corrosion resistance, and the smaller the value of the weight loss rate, the better the corrosion resistance. Although materials manufactured using the powder metallurgy method, such as those manufactured using the electron beam or arc melting method, also have high mechanical strength,
Results showed excellent corrosion resistance. [Effect] As stated above, in the present invention, Mo60
If the alloy has a chemical composition of ~5% by weight and the balance is W, it is a sintered product manufactured by powder metallurgy or melting.
A corrosion-resistant material can be obtained that can be applied to ingots or all parts that have been plastically worked from ingots by forging, rolling, etc. This corrosion-resistant material has excellent corrosion resistance against molten zinc and also has excellent mechanical properties. Therefore, the life of parts of melting equipment for zinc refining, alloy casting, galvanizing, etc. is extended, and it is possible to reduce the production cost of metal products such as zinc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図本発明の実施例に係る合金の引張り強度
を示す図、第2図本発明の実施例に係る合金の減
量速度示す図である。
FIG. 1 is a diagram showing the tensile strength of an alloy according to an example of the present invention, and FIG. 2 is a diagram showing a weight loss rate of an alloy according to an example of the present invention.

Claims (1)

【特許請求の範囲】 1 Moが60〜5重量%で残部がWの化学組成を
有する合金によつて形成されていることを特徴と
する耐腐食性材料。 2 溶融金属に浸漬される部品として使用される
ことを特徴とする特許請求の範囲第1項記載の耐
腐食性材料。 3 粉末冶金法により、焼結材の形に成形されて
いることを特徴とする特許請求の範囲第1項又は
第2項記載の耐腐食性材料。 4 塑性加工材の形に成形されていることを特徴
とする特許請求の範囲第1項記載の耐腐食性材
料。
[Scope of Claims] 1. A corrosion-resistant material characterized by being formed of an alloy having a chemical composition of 60 to 5% by weight of Mo and the balance being W. 2. The corrosion-resistant material according to claim 1, which is used as a part that is immersed in molten metal. 3. The corrosion-resistant material according to claim 1 or 2, which is formed into a sintered material by a powder metallurgy method. 4. The corrosion-resistant material according to claim 1, which is formed into the shape of a plastically worked material.
JP25236587A 1987-10-08 1987-10-08 Corrosion-resistant material Granted JPH0196348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25236587A JPH0196348A (en) 1987-10-08 1987-10-08 Corrosion-resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25236587A JPH0196348A (en) 1987-10-08 1987-10-08 Corrosion-resistant material

Publications (2)

Publication Number Publication Date
JPH0196348A JPH0196348A (en) 1989-04-14
JPH039177B2 true JPH039177B2 (en) 1991-02-07

Family

ID=17236281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25236587A Granted JPH0196348A (en) 1987-10-08 1987-10-08 Corrosion-resistant material

Country Status (1)

Country Link
JP (1) JPH0196348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016797A1 (en) * 1993-12-14 1995-06-22 Kabushiki Kaisha Toshiba Molybdenum-tungsten material for wiring, molybdenum-tungsten target for wiring, process for producing the same, and molybdenum-tungsten wiring thin film

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511300B2 (en) * 2004-09-29 2010-07-28 株式会社アライドマテリアル Tungsten alloy having oxidation resistance and method for producing the same
JP5579480B2 (en) * 2010-04-01 2014-08-27 山陽特殊製鋼株式会社 Molybdenum alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995016797A1 (en) * 1993-12-14 1995-06-22 Kabushiki Kaisha Toshiba Molybdenum-tungsten material for wiring, molybdenum-tungsten target for wiring, process for producing the same, and molybdenum-tungsten wiring thin film

Also Published As

Publication number Publication date
JPH0196348A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
KR100334519B1 (en) Disperse hardened platinum material, method of manufacturing and using the material
JP5852585B2 (en) Magnesium alloy having excellent ignition resistance and mechanical properties and method for producing the same
US11466344B2 (en) High-performance corrosion-resistant high-entropy alloys
JP2002173732A (en) High entropy multicomponent alloy
CN110804711A (en) High-entropy alloy powder and preparation method and application of laser cladding layer
Loto et al. Corrosion resistance of low SiC particle variation at low weight content on 1060 aluminum matrix composite in sulfate-contaminated seawater
Xia et al. The influence of low levels of zinc, calcium, gadolinium, strontium, and zirconium on the corrosion of magnesium for wrought applications
JPS63140059A (en) High-strength aluminum alloy
EP0132371A2 (en) Process for making alloys having a coarse elongated grain structure
JPH039177B2 (en)
JP2019094530A (en) Mold material for casting, and copper alloy material
WO2017022597A1 (en) Aluminum alloy thermal spray material and thermal spray film
JPH0748658A (en) Material for sacrificial electrode for preventing corrosion excellent in corrosion resistance
An et al. Hot-roll bonding of Al-Pb bearing alloy strips and hot dip aluminized steel sheets
US4883112A (en) Method of casting and mold making
JPS62182239A (en) Cu alloy for continuous casting mold
US3834900A (en) Strip casting aluminum alloy
JPS62182238A (en) Cu alloy for continuous casting mold
JP2936899B2 (en) Titanium alloy with excellent corrosion resistance and workability to non-oxidizing acids
JP2003147492A (en) Ti-CONTAINING Fe-Cr-Ni STEEL HAVING EXCELLENT SURFACE PROPERTY, AND CASTING METHOD THEREFOR
Gee et al. Effect of Carbon in Titanium Metal Ingots
JPS602641A (en) Amorphous nickel alloy having high resistance to pitting corrosion, crevice corrosion and general corrosion
RU2315124C2 (en) Tin-and-zinc bronze for manufacture of wire
JPS6144930B2 (en)
JPS62107050A (en) Fin material of al base alloy containing fe for heat exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees