JPH039171B2 - - Google Patents

Info

Publication number
JPH039171B2
JPH039171B2 JP723687A JP723687A JPH039171B2 JP H039171 B2 JPH039171 B2 JP H039171B2 JP 723687 A JP723687 A JP 723687A JP 723687 A JP723687 A JP 723687A JP H039171 B2 JPH039171 B2 JP H039171B2
Authority
JP
Japan
Prior art keywords
cooling body
rotary cooling
metal
aluminum
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP723687A
Other languages
Japanese (ja)
Other versions
JPS63176439A (en
Inventor
Yoshitatsu Ootsuka
Shigemi Tanimoto
Kazuo Toyoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP723687A priority Critical patent/JPS63176439A/en
Publication of JPS63176439A publication Critical patent/JPS63176439A/en
Publication of JPH039171B2 publication Critical patent/JPH039171B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、共晶系不純物を含むアルミニウ
ム、ケイ素、マグネシウム、鉛、亜鉛等の各種金
属を精製してより高純度の金属を製造する装置に
用いられる回転冷却体に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention is used in an apparatus for producing metals of higher purity by refining various metals such as aluminum, silicon, magnesium, lead, and zinc containing eutectic impurities. The present invention relates to a rotary cooling body.

従来技術とその問題点 たとえば、アルミニウムと共晶を生成する不純
物を含む精製すべきアルミニウムを、偏析凝固の
原理を利用して、より高純度に精製する方法が知
られている。そして、このような方法の実施に使
用する装置としては、第7図に示すように、溶融
アルミニウム(A)を保持するためのるつぼ1と、中
空回転軸2の下端に取付けられかつるつぼ1内に
入れられて溶融アルミニウム(A)中に浸漬される回
転自在の回転冷却体30とよりなり、回転冷却体
30が上端から下方に向つて徐々に細くなつたテ
ーパ状となされたものが用いられている。そし
て、アルミニウムを溶融した後、この溶融アルミ
ニウム(A)をるつぼ1内に入れるとともに常にその
凝固温度を越えた温度に加熱保持しておき、この
加熱された溶融アルミニウム(A)中に冷却体30を
浸漬し、この冷却体30の表面温度を上記凝固温
度以下に保持し、この冷却体30を回転させて凝
固界面近傍に排出された不純物を分散混合させる
ことにより、液相中における凝固界面近傍の不純
物濃化層の厚さを薄くし、その結果上記不純物濃
化層での液相中の温度勾配を大きくしながら、冷
却体30の周面により純度の高いアルミニウムを
晶出させることによりアルミニウムを精製する方
法が公知となつている(特開昭57−82437号公報
参照)。そして、冷却体30の周面に晶出した高
純度アルミニウムの冷却体30からの除去は、特
公昭61−47889号公報に記載された装置を用いて
行なうのが最も効率的である。この装置は、上枠
部材に垂直に取り付けられた上下動自在のロツド
と、ロツドの左右両側に配置されかつ前後方向に
のびる左右1対の回転軸、両回転軸の前端にそれ
ぞれ先端が相互に反対側の回転軸を向くように固
定され、かつ非作動時は先端が回転軸よりも上方
に位置している金属凝固塊掻落し爪、および両回
転軸の後端にそれぞれ固定された軸回転レバーよ
りなり、ロツドが下降したときにレバーが回転さ
せられて、回転軸を介して金属凝固塊掻落し爪の
先端が下方に回転するようになされている金属凝
固塊掻落し装置と、金属凝固塊掻落し装置の下方
において後部上端を中心として揺動自在に取付け
られるとともに前端に冷却体支持台が設けられ、
ロツドが下降したときに前端が上方に回転させら
れる冷却体支持装置とを備えており、ロツドが所
定距離下降したときに支持台がほぼ水平状態とな
り、さらにロツドが下降すると、支持台が水平状
態を保つたままで金属塊掻落し爪の先端が回転軸
よりも下方まで回転するようになつたものであ
る。
Prior Art and its Problems For example, a method is known in which aluminum to be purified, which contains impurities that form a eutectic with aluminum, is purified to a higher purity by utilizing the principle of segregation solidification. As shown in FIG. 7, the apparatus used to carry out such a method includes a crucible 1 for holding molten aluminum (A), a hollow rotating shaft 2 attached to the lower end of the crucible 1; It consists of a rotatable rotary cooling body 30 that is placed in a container and immersed in molten aluminum (A), and the rotary cooling body 30 has a tapered shape that gradually becomes thinner from the upper end downward. ing. After melting the aluminum, the molten aluminum (A) is put into the crucible 1 and kept heated to a temperature that exceeds its solidification temperature, and a cooling body 3 is placed in the heated molten aluminum (A). The surface temperature of the cooling body 30 is kept below the solidification temperature, and the cooling body 30 is rotated to disperse and mix the impurities discharged near the solidification interface in the liquid phase. By reducing the thickness of the impurity-concentrated layer and increasing the temperature gradient in the liquid phase in the impurity-concentrated layer, aluminum of higher purity is crystallized on the circumferential surface of the cooling body 30. A method for purifying is known (see JP-A-57-82437). It is most efficient to remove the high purity aluminum crystallized on the circumferential surface of the cooling body 30 from the cooling body 30 using the apparatus described in Japanese Patent Publication No. 47889/1989. This device consists of a vertically movable rod that is attached vertically to the upper frame member, a pair of left and right rotating shafts that are placed on the left and right sides of the rod and extend in the front and back direction, and the tips of the two rotating shafts are connected to each other at the front ends. A metal coagulum scraping claw is fixed to face the rotating shaft on the opposite side, and its tip is located above the rotating shaft when not in operation, and a rotating shaft is fixed to the rear end of both rotating shafts. A metal coagulation scraping device consisting of a lever, which is rotated when a rod is lowered so that the tip of a metal coagulum scraping claw is rotated downward via a rotating shaft, and a metal coagulation device. It is mounted below the lump scraping device so as to be swingable around the rear upper end, and a cooling body support is provided at the front end.
The cooling body support device rotates the front end upward when the rod descends, and when the rod descends a predetermined distance, the support base becomes almost horizontal, and when the rod further descends, the support base becomes horizontal. The tip of the metal lump scraping claw can now rotate below the rotation axis while maintaining the same position.

ところで、上記精製方法において、液相中にお
ける凝固界面近傍の不純物濃化層の厚さを薄く
し、その結果上記温度勾配を大きくして精製効率
を向上するためには、冷却体30と溶融アルミニ
ウム(A)との相対速度が大きくなることが条件の1
つである。しかしながら、冷却体30の回転に伴
つて溶融アルミニウム(A)も冷却体の回転方向と同
方向に流れて渦流が発生するので、上記相対速度
の増大には限度があり、精製効率の向上にも限度
がある。しかも冷却体30の回転数を大きくすれ
ば遠心力が増大して冷却体30の周面に晶出した
高純度アルミニウムが付着しにくくなつて生産性
が低下するという問題がある。そこで、この問題
を解決するために、るつぼ1の内周面に、溶融ア
ルミニウム流速低下用邪魔板4が円周方向に所定
間隔をおいて複数設けられている装置が公知とな
つている(実公昭61−38912号公報参照)。この装
置では、精製効率の一層の向上が図れるが、次の
ような問題が生じる。すなわち、邪魔板4が存在
すると、上記流速が部分的に異なり、その結果、
第7図に矢印(Y)で示すような冷却体30の周
面に沿う溶融アルミニウム(A)の上昇流が発生して
液面が激しく波立ち、溶融アルミニウム(A)中に空
気が巻込まれ、この空気とアルミニウムとが反応
してAl2O3からなる滓が大量に発生する。したが
つて、除滓作業が必要となるとともに、上記滓が
飛散してるつぼ1の内面に付着し、作業に支障を
きたす。さらに、大量の滓が発生する結果、精製
効率を低下させるおそれがある。
By the way, in the above purification method, in order to reduce the thickness of the impurity concentrated layer near the solidification interface in the liquid phase and increase the temperature gradient as a result, improving the purification efficiency, it is necessary to Condition 1 is that the relative speed with (A) is large.
It is one. However, as the cooling body 30 rotates, the molten aluminum (A) also flows in the same direction as the rotational direction of the cooling body, creating a vortex, so there is a limit to the increase in the relative speed, and it is difficult to improve the refining efficiency. There are limits. Moreover, if the rotational speed of the cooling body 30 is increased, centrifugal force increases, making it difficult for crystallized high-purity aluminum to adhere to the circumferential surface of the cooling body 30, resulting in a decrease in productivity. In order to solve this problem, a device is known in which a plurality of baffles 4 for reducing the flow rate of molten aluminum are provided on the inner peripheral surface of the crucible 1 at predetermined intervals in the circumferential direction (in practice). (See Publication No. 61-38912). Although this apparatus can further improve purification efficiency, the following problems arise. That is, when the baffle plate 4 exists, the flow velocity is partially different, and as a result,
An upward flow of molten aluminum (A) along the circumferential surface of the cooling body 30 as shown by the arrow (Y) in FIG. This air and aluminum react to generate a large amount of slag consisting of Al 2 O 3 . Therefore, a slag removal operation is required, and the slag scatters and adheres to the inner surface of the crucible 1, causing trouble in the operation. Furthermore, a large amount of slag is generated, which may reduce purification efficiency.

そこで、精製効率の低下を防ぐ目的で、本出願
人は、先に、るつぼと、上下動自在の回転冷却体
とよりなり、るつぼ内に入れられた溶融金属中に
回転冷却体を浸漬し、回転冷却体を回転させなが
らその周面により純度の高い金属を晶出させる金
属の精製装置に用いられる回転冷却体であつて、
溶融金属面よりも下方に位置する部分の上部が溶
融金属流下方案内部となされ、溶融金属流下方案
内部が下広がり形状である金属の精製装置用回転
冷却体を提案した。この回転冷却体を使用すれ
ば、金属の精製時に回転冷却体を回転させると、
この回転冷却体の近傍においては、液面付近に、
溶融金属流下方案内部に沿う下降流が生じる。し
たがつて、液面における波立ち、溶融金属の飛散
等の発生が防止され、その結果空気中の酸素とア
ルミニウムとの反応の結果生じるAl2O3からなる
滓の量が少なくなり、滓が大量に発生する結果起
きる問題が未然に防止される。
Therefore, in order to prevent the refining efficiency from decreasing, the applicant first immersed the rotary cooling body into the molten metal placed in the crucible, which consisted of a crucible and a rotary cooling body that could move up and down. A rotary cooling body used in a metal refining device that crystallizes highly pure metal from the circumferential surface of the rotary cooling body while rotating the rotary cooling body,
We have proposed a rotary cooling body for a metal refining device in which the upper part of the portion located below the molten metal surface serves as a molten metal flow downward guide section, and the molten metal flow downward guide section has a shape that spreads downward. If you use this rotary cooling body, when you rotate the rotary cooling body when refining metal,
In the vicinity of this rotary cooling body, near the liquid surface,
A downward flow is created along the molten metal flow downward guide. Therefore, the occurrence of ripples on the liquid surface, scattering of molten metal, etc. is prevented, and as a result, the amount of slag consisting of Al 2 O 3 produced as a result of the reaction between oxygen in the air and aluminum is reduced, and a large amount of slag is generated. Problems that occur as a result of this can be prevented before they occur.

しかしながら、この回転冷却体を用いて処理を
行なつた場合、溶融金属流下方案内部の外周面に
も高純度金属が晶出することがある。そして、溶
融金属流下方案内部の外周面に高純度金属が晶出
した場合には、上述した公知の装置を用いて高純
度金属を回転冷却体の周面から除去することはで
きず、高純度金属の回転冷却体からの除去が困難
になるという問題が生じる。
However, when processing is carried out using this rotary cooling body, high purity metal may also crystallize on the outer peripheral surface of the molten metal flow downward guide section. If high-purity metal crystallizes on the outer circumferential surface of the molten metal flow downward guide section, the high-purity metal cannot be removed from the circumferential surface of the rotary cooling body using the above-mentioned known device, and A problem arises in that the metal becomes difficult to remove from the rotary cooling body.

この発明は上記実情に鑑みてなされたものであ
つて、精製処理のさいに溶融金属の液面からの飛
散および液面における波立ちを防止しうるととも
に、得られた高純度金属塊の除去、回収を公知の
装置を用いて容易に行ないうる金属の精製装置用
回転冷却体を提供することを目的とするものであ
る。
This invention was made in view of the above circumstances, and is capable of preventing the scattering of molten metal from the liquid surface and ripples on the liquid surface during refining treatment, and the removal and recovery of the obtained high-purity metal lump. It is an object of the present invention to provide a rotary cooling body for a metal refining device, which can be easily carried out using known equipment.

問題点を解決するための手段 この発明による金属の精製装置用回転冷却体
は、るつぼと、上下動自在の回転冷却体とよりな
り、るつぼ内に入れられた溶融金属中に回転冷却
体を浸漬し、回転冷却体を回転させながらその周
面により純度の高い金属を晶出させる金属の精製
装置に用いられる回転冷却体であつて、溶融金属
面よりも下方に位置する部分の上部が下広がり形
状の溶融金属流下方案内部となされ、溶融金属流
下方案内部の外周面を加熱するヒータが内蔵せし
められているものである。
Means for Solving the Problems A rotary cooling body for a metal refining device according to the present invention is composed of a crucible and a rotary cooling body that is movable up and down, and the rotary cooling body is immersed in molten metal placed in the crucible. This is a rotary cooling body used in metal refining equipment that crystallizes highly pure metal from its circumferential surface while rotating the rotary cooling body, and the upper part of the part located below the molten metal surface expands downward. The molten metal flow downward guide section is shaped like a molten metal flow downward guide section, and has a built-in heater that heats the outer circumferential surface of the molten metal flow downward guide section.

実施例 以下、この発明の実施例を、図面を参照しなが
ら説明する。以下の実施例は、この発明の回転冷
却体を高純度アルミニウムの製造装置に適用した
ものである。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the rotary cooling body of the present invention is applied to an apparatus for producing high-purity aluminum.

第1図および第2図において、高純度アルミニ
ウムの製造装置は、黒鉛製溶湯保持るつぼ1と、、
上下動自在の中空回転軸2と、中空回転軸2の下
端に取付けられた中空回転体3と、円周方向に所
定間隔をおいてるつぼ1の内周面に着脱自在に固
定された複数の溶融アルミニウム流速低下用邪魔
板4とよりなる。
In FIGS. 1 and 2, the high-purity aluminum manufacturing apparatus includes a graphite melt holding crucible 1,
A hollow rotating shaft 2 that can freely move up and down, a hollow rotating body 3 attached to the lower end of the hollow rotating shaft 2, and a plurality of hollow rotating bodies 3 that are detachably fixed to the inner peripheral surface of the crucible 1 at predetermined intervals in the circumferential direction. It consists of a baffle plate 4 for reducing the flow rate of molten aluminum.

回転冷却体3は、第2図に詳しく示すように、
黒鉛、セラミツクス等からつくられかつ上端から
下方に向つて徐々に太くなかつ長さの中間部から
下端に向つて徐々に細くなつている有底筒状本体
5と、本体5の上端開口を塞ぐ鋼製蓋6とよりな
る。本体5における上端から下方に向つて徐々に
太くなつた部分が溶融アルミニウム流下方案内部
7となされている。また、本体5の内部には、そ
の高さの中間部でかつ最大径部分よりも若干下方
の高さ位置において内部を上下に仕切る隔壁8が
一体的に設けられている。隔壁8には後述する冷
却流体吹出部材14が通りうる雌ねじ孔9が形成
されている。蓋6には貫通孔11が形成されてお
り、中空回転軸2がこの貫通孔11を通つて本体
5内の高さの中間部まで伸びている。回転軸2の
下端部外周面には雄ねじ12が形成されており、
この雄ねじ12が雌ねじ孔9にねじ嵌められてい
る。中空回転軸2の内部には冷却流体供給管13
が配置されている冷却流体供給管13の下端に
は、これと連通するように冷却流体吹出部材14
が取付けられている。吹出部材14は、上下両端
が閉鎖されるとともに、周壁に多数の冷却流体吹
出口16が均一に分布するように形成された円筒
状体15と、円筒状体15の上部閉鎖壁に上方突
出状に一体的に設けられ、かつ円周状体15の内
外を連通させる連通管17とよりなる。そして、
連通管17の上端が冷却流体供給管13の下端に
接続されている。隔壁8よりも上方の部分におい
て、本体5の内周面と冷却流体供給管13との間
には、2重構造の円筒状体よりなるヒータ収納部
材18が配置されている。ヒータ収納部材18
は、内外両周壁18a,18bおよび内外両周壁
18a,18b間の空間の上下両端開口を塞ぐ上
下両閉塞壁18cよりなる。そして、内外両周壁
18a,18b間において、本体5の内周面を全
周にわたつて覆うように電気ヒータ19が巻回さ
れている。また、ヒータ収納部材18の上部閉塞
壁18cには蓋6を貫通して上方に伸びた2本の
ヒータ線引出管20が接続されており、電気ヒー
タ19の両端が引出管20を通つて外部に伸びて
いる。
As shown in detail in FIG. 2, the rotary cooling body 3 is
A bottomed cylindrical main body 5 made of graphite, ceramics, etc., which gradually becomes thinner from the upper end downward and gradually narrower from the middle part of the length toward the lower end, and a steel body 5 that closes the upper end opening of the main body 5. It consists of a lid 6. A portion of the main body 5 that gradually becomes thicker downward from the upper end serves as a molten aluminum flow downward guide portion 7. Moreover, a partition wall 8 is integrally provided inside the main body 5 at a height position slightly below the maximum diameter part and at an intermediate part of the height thereof to partition the inside into upper and lower parts. The partition wall 8 is formed with a female screw hole 9 through which a cooling fluid blowing member 14 (described later) can pass. A through hole 11 is formed in the lid 6, and the hollow rotating shaft 2 extends through the through hole 11 to a mid-height portion within the main body 5. A male thread 12 is formed on the outer peripheral surface of the lower end of the rotating shaft 2.
This male screw 12 is screwed into the female screw hole 9. A cooling fluid supply pipe 13 is provided inside the hollow rotating shaft 2.
A cooling fluid blowing member 14 is connected to the lower end of the cooling fluid supply pipe 13 in which the cooling fluid supply pipe 13 is arranged.
is installed. The blow-off member 14 includes a cylindrical body 15 whose upper and lower ends are closed, and which is formed so that a large number of cooling fluid blow-off ports 16 are uniformly distributed on the peripheral wall, and an upwardly protruding shape on the upper closing wall of the cylindrical body 15. A communication pipe 17 is provided integrally with the circumferential body 15 and communicates the inside and outside of the circumferential body 15. and,
The upper end of the communication pipe 17 is connected to the lower end of the cooling fluid supply pipe 13. In a portion above the partition wall 8, between the inner circumferential surface of the main body 5 and the cooling fluid supply pipe 13, a heater storage member 18 made of a double-layered cylindrical body is arranged. Heater storage member 18
consists of both inner and outer circumferential walls 18a, 18b and upper and lower closing walls 18c that close openings at both upper and lower ends of the space between the inner and outer circumferential walls 18a, 18b. An electric heater 19 is wound around the entire inner peripheral surface of the main body 5 between the inner and outer peripheral walls 18a and 18b. Further, two heater wire lead-out pipes 20 extending upward through the lid 6 are connected to the upper closing wall 18c of the heater storage member 18, and both ends of the electric heater 19 are connected to the outside through the lead-out pipes 20. It is growing to

このような構成において、溶解炉(図示略)で
溶解されたFe、Si、Cu、Mgなどの共晶不純物を
含む精製すべき溶融アルミニウム(A)がるつぼ1に
送り込まれる。るつぼ1内に入れられる溶融アル
ミニウム(A)の量は一定である。このとき、回転冷
却体3は上昇位置にあつてるつぼ1の外にある。
るつぼ1内に所定量の溶融アルミニウム(A)が入れ
られた後、回転冷却体3がその上端と最大径部分
との間に液面が来るように溶融アルミニウム(A)中
に浸漬される。そして、回転冷却体3の内部に、
供給管13の下端に取付けられた吹出部材14の
吹出口16から冷却流体を供給しつつ回転冷却体
3を回転させる。また、電気ヒータ線19に通電
して、溶融アルミニウム流下方案内部7の外周面
を加熱する。すると、回転冷却体3の外周面にお
ける最大径部分よりも下方における、下方に向つ
て細くなつたテーパ状部分3aだけに、まず平滑
な凝固面を有する高純度の初晶アルミニウムが晶
出する。共晶不純物は液相中に排出されて凝固界
面近傍の液相中に共晶不純物の不純物濃化層がで
きる。回転冷却体3の回転によつて溶融アルミニ
ウム(A)も回転冷却体3の回転方向と同方向に流れ
るが、邪魔板4によつて溶融アルミニウム(A)の流
速が低下させられるので、回転冷却体3と液相と
の相対速度、すなわち回転冷却体3の周速と溶融
アルミニウム(A)の流速との差はかなり大きくな
る。したがつて、界面近傍に形成された不純物濃
化層と他の大部分の液相との撹拌混合が効果的に
行なわれ、不純物濃化層中の不純物が液相全体に
分散せられて不純物濃化層の厚さが薄くなり、こ
の部分での温度勾配も大きくなる。しかも、邪魔
板4により溶融アルミニウム(A)の乱流も発生し、
これによつても不純物濃化層は薄くされる。この
状態で凝固を進行させると、冷却体3の上記テー
パ状部分3aの外周面だけに元のアルミニウムよ
りもはるかに高純度のアルミニウム塊が得られ
る。
In such a configuration, molten aluminum (A) to be purified containing eutectic impurities such as Fe, Si, Cu, and Mg melted in a melting furnace (not shown) is fed into the crucible 1. The amount of molten aluminum (A) placed in the crucible 1 is constant. At this time, the rotary cooling body 3 is in the raised position and outside the crucible 1.
After a predetermined amount of molten aluminum (A) is placed in the crucible 1, the rotary cooling body 3 is immersed in the molten aluminum (A) so that the liquid level is between its upper end and its maximum diameter. Then, inside the rotary cooling body 3,
The rotary cooling body 3 is rotated while supplying cooling fluid from the outlet 16 of the outlet member 14 attached to the lower end of the supply pipe 13 . Further, the electric heater wire 19 is energized to heat the outer circumferential surface of the molten aluminum flow downward guide section 7 . Then, first, high-purity primary crystal aluminum having a smooth solidified surface crystallizes only in the downwardly tapered tapered portion 3a below the maximum diameter portion on the outer circumferential surface of the rotary cooling body 3. The eutectic impurities are discharged into the liquid phase, forming an impurity-concentrated layer of the eutectic impurities in the liquid phase near the solidification interface. Due to the rotation of the rotary cooling body 3, the molten aluminum (A) also flows in the same direction as the rotational direction of the rotary cooling body 3, but since the flow velocity of the molten aluminum (A) is reduced by the baffle plate 4, the rotational cooling is The difference in the relative speed between the body 3 and the liquid phase, that is, the peripheral speed of the rotary cooling body 3 and the flow velocity of the molten aluminum (A), becomes considerably large. Therefore, the impurity concentrated layer formed near the interface is effectively stirred and mixed with most of the other liquid phase, and the impurities in the impurity concentrated layer are dispersed throughout the liquid phase and become impurities. The thickness of the concentrated layer becomes thinner, and the temperature gradient in this region also becomes larger. Moreover, turbulent flow of molten aluminum (A) is also generated by the baffle plate 4,
This also makes the impurity concentrated layer thinner. If solidification is allowed to proceed in this state, an aluminum lump with much higher purity than the original aluminum is obtained only on the outer circumferential surface of the tapered portion 3a of the cooling body 3.

このとき、冷却体3の近傍においては、最大径
部分よりも下方のテーパ状部分3aに沿つて溶融
アルミニウム(A)の上昇流が生じるが、最大径部分
よりも上方、すなわち溶融アルミニウム流下方案
内部7に沿つて第1図に矢印Xで示すような下降
流が生じる。したがつて、液面に激しい波立ちが
起きるのが防止され、空気中の酸素とアルミニウ
ムとの反応の結果生じるAl2O3よりなる滓の量が
少なくなる。
At this time, in the vicinity of the cooling body 3, an upward flow of molten aluminum (A) occurs along the tapered portion 3a below the maximum diameter portion, but above the maximum diameter portion, that is, at the downward guide portion for the molten aluminum flow. 7, a downward flow as shown by the arrow X in FIG. 1 occurs. Therefore, severe ripples on the liquid surface are prevented, and the amount of slag made of Al 2 O 3 produced as a result of the reaction between oxygen in the air and aluminum is reduced.

上記実施例においては、この発明の回転冷却体
がアルミニウムの精製装置に使用された場合が示
されているが、他の金属の精製装置にも使用可能
である。また、上記実施例においては、るつぼ1
の内周面に邪魔板4が設けられているが、邪魔板
4は必ずしも必要としない。
In the above embodiment, the rotary cooling body of the present invention is used in an aluminum refining apparatus, but it can also be used in other metal refining apparatuses. In addition, in the above embodiment, the crucible 1
Although a baffle plate 4 is provided on the inner circumferential surface of the body, the baffle plate 4 is not necessarily required.

発明の効果 この発明の高純度金属の製造装置用回転冷却体
によれば、溶融金属面よりも下方に位置する部分
の上部が下広がり形状の溶融金属流下方案内部と
なされたものであるから、この回転冷却体の近傍
においては、液面付近に、溶融金属流下方案内部
に沿う下降流が生じる。したがつて、液面におけ
る波立ち、溶融金属の飛散等の発生が防止され、
その結果空気中の酸素とアルミニウムとの反応の
結果生じるAl2O3からなる滓の量が少なくなり、
滓が大量に発生する結果起きる問題が未然に防止
される。また、溶融金属流下方案内部の外周面を
加熱するヒータが内蔵せしめられているから、こ
の回転冷却体を使用して金属の精製を行なうさい
に、下広がり形状の溶融金属流下方案内部の外周
面に高純度金属塊が付着凝固するのを防止するこ
とができる。したがつて、回転冷却体からの高純
度金属塊の除去、回収を、公知の装置を用いて簡
単に行なうことができる。
Effects of the Invention According to the rotary cooling body for a high-purity metal manufacturing apparatus of the present invention, the upper part of the portion located below the molten metal surface serves as a molten metal flow downward guide portion with a downwardly expanding shape. In the vicinity of this rotary cooling body, a downward flow is generated near the liquid surface along the molten metal flow downward guide section. Therefore, the occurrence of ripples on the liquid surface, scattering of molten metal, etc. is prevented,
As a result, the amount of Al 2 O 3 slag produced as a result of the reaction between oxygen in the air and aluminum is reduced.
Problems resulting from the generation of large amounts of slag are prevented. In addition, since a heater is built-in to heat the outer peripheral surface of the molten metal flow downward guide section, when refining metal using this rotary cooling body, the outer peripheral surface of the molten metal flow downward guide section with a downwardly expanding shape is heated. It is possible to prevent high-purity metal lumps from adhering to and solidifying. Therefore, high-purity metal lumps can be easily removed and recovered from the rotary cooling body using known equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による回転冷却体を使用した
アルミニウムの精製装置の垂直断面図、第2図は
回転冷却体の拡大垂直断面図、第3図は従来の回
転冷却体を使用したアルミニウムの精製装置を示
す垂直断面図である。 1……るつぼ、3……回転冷却体、7……溶融
金属流下方案内部、19……電気ヒータ。
Fig. 1 is a vertical sectional view of an aluminum refining device using a rotary cooling body according to the present invention, Fig. 2 is an enlarged vertical sectional view of the rotary cooling body, and Fig. 3 is a conventional aluminum refining device using a rotary cooling body. FIG. 2 is a vertical cross-sectional view of the device. DESCRIPTION OF SYMBOLS 1... Crucible, 3... Rotating cooling body, 7... Molten metal flow downward guide part, 19... Electric heater.

Claims (1)

【特許請求の範囲】[Claims] 1 るつぼと、上下動自在の回転冷却体とよりな
り、るつぼ内に入れられた溶融金属中に回転冷却
体を浸漬し、回転冷却体を回転させながらその周
面により純度の高い金属を晶出させる金属の精製
装置に用いられる回転冷却体であつて、溶融金属
面よりも下方に位置する部分の上部が下広がり形
状の溶融金属流下方案内部となされ、溶融金属流
下方案内部の外周面を加熱するヒータが内蔵せし
められている金属の精製装置用回転冷却体。
1 Consists of a crucible and a rotary cooling body that can move up and down, the rotary cooling body is immersed in molten metal placed in the crucible, and while the rotary cooling body is rotated, highly pure metal is crystallized from its surrounding surface. This is a rotary cooling body used in a metal refining device, in which the upper part of the part located below the molten metal surface serves as a downwardly expanding molten metal flow guide section, and heats the outer circumferential surface of the molten metal flow downward guide section. A rotary cooling body for metal refining equipment that has a built-in heater.
JP723687A 1987-01-14 1987-01-14 Rotary cooling body for metal refining device Granted JPS63176439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP723687A JPS63176439A (en) 1987-01-14 1987-01-14 Rotary cooling body for metal refining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP723687A JPS63176439A (en) 1987-01-14 1987-01-14 Rotary cooling body for metal refining device

Publications (2)

Publication Number Publication Date
JPS63176439A JPS63176439A (en) 1988-07-20
JPH039171B2 true JPH039171B2 (en) 1991-02-07

Family

ID=11660361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP723687A Granted JPS63176439A (en) 1987-01-14 1987-01-14 Rotary cooling body for metal refining device

Country Status (1)

Country Link
JP (1) JPS63176439A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5634704B2 (en) * 2008-12-11 2014-12-03 昭和電工株式会社 Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor

Also Published As

Publication number Publication date
JPS63176439A (en) 1988-07-20

Similar Documents

Publication Publication Date Title
US4373950A (en) Process of preparing aluminum of high purity
JP4970774B2 (en) Bubbling discharge dispersion device, molten metal processing method and molten metal processing device
JPS6345112A (en) Purification of silicon
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
JPH02225633A (en) Production of aluminum with high purity
US4948102A (en) Method of preparing high-purity metal and rotary cooling member for use in apparatus therefor
JPH039171B2 (en)
JP5634704B2 (en) Metal purification method and apparatus, refined metal, casting, metal product and electrolytic capacitor
JP2916645B2 (en) Metal purification method
JP3718989B2 (en) Aluminum purification method and purification apparatus
JPS6138912Y2 (en)
JP3211622B2 (en) Purification method of aluminum scrap
JP2000351616A (en) Production of high-purity silicon
KR900007075B1 (en) Color display tube process and apparatus for purifying silicon
JPH09188512A (en) Metal purifier
JPH0227423B2 (en)
JPS62235433A (en) Apparatus for producing high-purity aluminum
JP3873177B2 (en) Metal purification apparatus and metal purification method using the same
JPH062054A (en) Production of high purity aluminum
JPH11100620A (en) Apparatus for refining metal
JPH0227421B2 (en)
JPH0227422B2 (en)
JPH068471B2 (en) Metal refining method
JPH0217260B2 (en)
JPH08295963A (en) Aluminium scrap refining method and device therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees