JPH0391655A - Thermal storage air conditioning system - Google Patents

Thermal storage air conditioning system

Info

Publication number
JPH0391655A
JPH0391655A JP22633589A JP22633589A JPH0391655A JP H0391655 A JPH0391655 A JP H0391655A JP 22633589 A JP22633589 A JP 22633589A JP 22633589 A JP22633589 A JP 22633589A JP H0391655 A JPH0391655 A JP H0391655A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
refrigerant
storage tank
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22633589A
Other languages
Japanese (ja)
Other versions
JP2748960B2 (en
Inventor
Shigeo Aoyama
繁男 青山
Hiroshi Yoneda
米田 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP22633589A priority Critical patent/JP2748960B2/en
Publication of JPH0391655A publication Critical patent/JPH0391655A/en
Application granted granted Critical
Publication of JP2748960B2 publication Critical patent/JP2748960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To reduce the operation cost and maintain comfortable performance based on the application of night power by installing a primary refrigeration cycle communicated with a refrigerant heat exchanger and a heat storage tank, and a secondary refrigeration cycle communicated with an indoor heat exchanger, and inter-communicating second heat exchangers of the heat storage tank by way of a second refrigerant transfer pump. CONSTITUTION:A primary refrigeration cycle is formed by interlocking with a compressor 2, a four way valve 3, an outdoor heat exchanger 4, an expansion valve 5, a first heat exchange section 14 for a refrigerant heat exchanger HE, and a first heat exchanger 12 inside a heat storage tank. A second hent exchange section 15 for the refrigerant heat exchanger, a first heat exchanger 12 in the heat storage tank, a first refrigerant transfer pump PM1, indoor heat exchangers 8a, 8b, and go and flow rate control valves 7a, 7b, and 7c are interconnected with each other so that a secondary refrigeration cycle may be formed. Furthermore, each heat exchanger 13a and 13b for beat storage tanks STRa and STRb in multi-chamber type air conditioners A. and B are interlocked with each other by way of a second refrigerant transfer pump PM2 so that a heat transfer cycle may be formed. It is, therefore, possible to reduce operation cost, using night power.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気を熱源とする多室式空気調和機において
、各室ごとに冷房運転、暖房運転を行うための冷凍サイ
クル制御、及び、蓄熱利用のための制御を備えたヒート
ポンプ式空気調和機に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to refrigeration cycle control for performing cooling operation and heating operation for each room in a multi-room air conditioner that uses air as a heat source, and heat storage utilization. This invention relates to a heat pump type air conditioner equipped with a control for.

従来の技術 従来の複数の室内機を有する多室式空気調和機について
は、既に、さまざまな開発がなされており、例えば、冷
凍・第61巻第708号(昭和61年10月号)P10
38〜1045に示されているような多室式空気調和機
があり、その基本的な技術は、第3図に示すように、室
外機1内に設置された、圧縮機2.四方弁3.室外側熱
交換器4、及び、室外W膨張弁5と、室外機1に対して
並列に設置された室内機6内の室内側膨張弁7゜及び、
室内側熱交換器8を環状に順次接続し、ヒートポンプ式
冷凍す、イクルが構成されているというものである。圧
縮機2は容量可変で、供給電力の周波数を変えることに
よりその冷凍サイクル内の冷媒楯環fiktl−変える
ことができる。また、四方弁3によって冷房運転、暖房
運転が切り替えられ、冷房運転時は図中の実線矢印の方
向に冷媒が流れて冷房サイクルが形成され、暖房運転時
には図中の破線方向に冷媒が流れて暖房サイクルが形成
される。また、室外側熱交換器4.及び、室内側熱交換
器8には、近接してそれぞれ、室外側送風機9、及び、
室内側送風機10が設置されている。
2. Description of the Related Art Various developments have already been made regarding conventional multi-room air conditioners having multiple indoor units.
There are multi-room air conditioners as shown in 38 to 1045, and the basic technology thereof is, as shown in FIG. 3, a compressor 2. Four-way valve 3. The outdoor heat exchanger 4 and the outdoor W expansion valve 5, and the indoor expansion valve 7° in the indoor unit 6 installed in parallel with the outdoor unit 1.
The indoor heat exchangers 8 are sequentially connected in a ring shape to form a heat pump type refrigeration cycle. The compressor 2 has a variable capacity, and by changing the frequency of the supplied power, the refrigerant shield ring in the refrigeration cycle can be changed. In addition, cooling operation and heating operation are switched by the four-way valve 3. During cooling operation, the refrigerant flows in the direction of the solid line arrow in the figure to form a cooling cycle, and during heating operation, the refrigerant flows in the direction of the broken line in the figure. A heating cycle is formed. In addition, the outdoor heat exchanger 4. The indoor heat exchanger 8 is provided with an outdoor blower 9 and
An indoor blower 10 is installed.

このような多室式空気調和機において、複数の、例えば
、3台の室内機6FL、6b、6cはそれぞれ個別に運
転が可能であり、室内機6aのみ運転の場合は、他の室
内機8b、6cは室内側膨張弁7b、7cを全閉にする
と共に、室内側送風機IQb、IOCも停止している。
In such a multi-room air conditioner, a plurality of, for example, three indoor units 6FL, 6b, and 6c can be operated individually, and when only the indoor unit 6a is operated, the other indoor unit 8b , 6c fully closes the indoor expansion valves 7b and 7c, and also stops the indoor blowers IQb and IOC.

この時、圧縮機2はインバータ等で能力制御を行い、室
内機の運転台数に応じた能力で個別運転することが可能
である。更に、大型ビルなどで室内機を6台、9台ある
いは、それ以上設置する必要のある場合は、例えば、6
台の場合は、第4図は示すように、2セツトの多室式空
気調和機A、Bを設置した空調システムにおいて、各多
室式空気調和機それぞれで個別運転することで対応でき
る。
At this time, the capacity of the compressor 2 is controlled by an inverter or the like, and it is possible to individually operate the compressor 2 at a capacity corresponding to the number of operating indoor units. Furthermore, if it is necessary to install 6, 9, or more indoor units in a large building, for example, 6
In the case of multiple air conditioners, as shown in FIG. 4, in an air conditioning system in which two sets of multi-room air conditioners A and B are installed, each multi-room air conditioner can be operated individually.

発明が解決しようとする課題 しかしながら、前述の従来例では、使用する電力として
は、空調機が主として使用される昼間電力であるため、
年々電子機器の使用が増加しているという社会的見地か
ら見ても、高負荷時刻に消費電力のピークが極限状態に
なる可能性があるだけでなく、夜間電力に比して割高で
あることより消費電力料金が高いという欠点を有してい
た。また、多室式空気調和機AとBをそれぞれで単独で
個別運転するため、即ち、多室式空気調和機Aと8間で
熱の授受ができないために、多室式空気調和機AとBに
おいて熱負荷が異なる場合、例えば、多室式空気調和機
Aで空調能力が不足していて、多室式空気調和機Bで空
調能力が余っていても対応が不可能であるため多室式空
気調和機Bにおける各室の快適性が損なわれるという欠
点を有していた。
Problems to be Solved by the Invention However, in the conventional example described above, the electricity used is daytime electricity that is mainly used for air conditioners;
From a social perspective, with the use of electronic devices increasing year by year, not only is power consumption likely to reach its peak during high-load hours, but it is also more expensive than nighttime power. It has the disadvantage of higher power consumption charges. In addition, since multi-room air conditioners A and B are operated independently, in other words, heat cannot be exchanged between multi-room air conditioners A and 8. If the heat loads are different in B, for example, multi-room air conditioner A lacks air conditioning capacity, and even if multi-room air conditioner B has excess air conditioning capacity, it is impossible to handle the situation. This has the disadvantage that the comfort of each room in the type air conditioner B is impaired.

また、逆に、このビルでの空調機の設計を行なう場合、
一般に、多室式空気調和機Aの空調能力はA側のピーク
時の熱負荷に、多室式空気調和機Bの空調能力はB側の
ピーク時の熱負荷に対応するように設計する。従って、
A側とB側の熱負荷のピークが発生する時刻が異なる場
合、ピーク時以外では過剰設備ということになり、 設備費用が高価になり、かつ、電力会社との契約電力費
用も高価になるという欠点を有していた。
Conversely, when designing an air conditioner for this building,
Generally, the air conditioning capacity of the multi-room air conditioner A is designed to correspond to the peak heat load on the A side, and the air conditioning capacity of the multi-room air conditioner B is designed to correspond to the peak heat load on the B side. Therefore,
If the heat load peaks on side A and B occur at different times, this means that there will be excess equipment during non-peak hours, which will result in high equipment costs and high contract power costs with the power company. It had drawbacks.

そこで、本発明は、夜間電力を利用した蓄熱槽に蓄えた
蓄熱量を各多室式空気調和機間において熱搬送できる蓄
熱空調システムを提供することを目的とするものである
Therefore, an object of the present invention is to provide a heat storage air conditioning system that can transfer the amount of heat stored in a heat storage tank using nighttime electricity between each multi-room air conditioner.

課題を解決するための手段 上記課題を解決する本発明の技術的手段は、第1熱交換
部と第2熱交換部と切替弁t!:備えた冷媒熱交換器、
第1熱交換器と第2熱交換器と切替弁を備えた蓄熱槽、
圧縮機、四方弁、室外側熱交換器、膨張弁、前記冷媒熱
交換器の第1熱交換部、及び、前記蓄熱槽の第1熱交換
器を連通してなる1次側冷凍サイクルと、前記冷媒熱交
換器の第2熱交換部、前記蓄熱槽内の第2熱交換器、第
1冷媒搬送ポンプ、及び、複数の室内側熱交換器と流量
調節弁を連通してなる2次側冷凍サイクルとからなる多
室式空気調和機を複数台設置し、前記多室式空気調和機
おのおのの蓄熱槽の第2熱交換器相互を第2冷媒搬送ポ
ンプを介して連通してなる熱搬送サイクルを備えるもの
である。
Means for Solving the Problems The technical means of the present invention for solving the above problems includes a first heat exchange section, a second heat exchange section, and a switching valve t! : Equipped with refrigerant heat exchanger,
A heat storage tank equipped with a first heat exchanger, a second heat exchanger, and a switching valve;
a primary side refrigeration cycle formed by communicating a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a first heat exchange section of the refrigerant heat exchanger, and a first heat exchanger of the heat storage tank; a secondary side formed by communicating a second heat exchange part of the refrigerant heat exchanger, a second heat exchanger in the heat storage tank, a first refrigerant transfer pump, and a plurality of indoor heat exchangers with a flow rate control valve; A heat transfer system in which a plurality of multi-room air conditioners each having a refrigeration cycle are installed, and the second heat exchangers of the heat storage tanks of each of the multi-room air conditioners are communicated with each other via a second refrigerant transfer pump. It is equipped with a cycle.

作   用 この技術的手段による作用は次のようになる。For production The effect of this technical means is as follows.

複数の多室式空気調和機における、圧縮機、四方弁、室
外側熱交換器、膨張弁、冷媒熱交換器の第1熱交換部、
及び、蓄熱槽の第1熱交換器を連通した1次側冷凍サイ
クルにおいて、まず、夜間運転について説明する。
A compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a first heat exchange section of a refrigerant heat exchanger in a plurality of multi-chamber air conditioners;
In the primary side refrigeration cycle communicating with the first heat exchanger of the heat storage tank, nighttime operation will first be described.

夜間では、冷媒熱交換器の切替弁の切り替えにより蓄熱
槽を1次側冷凍サイクルに連通させ、がっ、蓄熱槽内の
切替弁の切り替えにより蓄熱槽内の第1熱交換器を1次
側冷凍サイクルに連通させ、安価な夜間電力を利用して
、蓄熱槽内の蓄熱材に蓄冷(蓄熱〉しておく。
At night, the heat storage tank is connected to the primary side refrigeration cycle by switching the switching valve of the refrigerant heat exchanger, and the first heat exchanger in the heat storage tank is connected to the primary side by switching the switching valve inside the heat storage tank. It is connected to the refrigeration cycle and uses cheap nighttime electricity to store cold (heat) in the heat storage material in the heat storage tank.

次に、昼間運転について説明する。この時、蓄熱槽内の
切替弁の切り替えはより、蓄熱槽内の第1熱交換器t!
:2次側冷凍サイクルに連通させておく。
Next, daytime driving will be explained. At this time, the switching of the switching valve in the heat storage tank is performed by the first heat exchanger t! in the heat storage tank.
: Connect to the secondary refrigeration cycle.

(1)複数の多室式空気調和機のそれぞれにおいて (各室の熱負荷の合計値)≦(蓄熱槽の出力容量)であ
る場合 この場合、冷媒熱交換器を連通した1次側冷凍サイクル
、及び、熱搬送サイクルは運転せずに、蓄熱槽内の切替
弁により、蓄熱槽内の第1熱交換器を2次側冷凍サイク
ルに連通させ、第1冷媒搬送ポンプ、室内側熱交換器、
流量調節弁からなる2次側冷凍サイクルの運転を行う。
(1) When (total value of heat load of each room) ≦ (output capacity of heat storage tank) in each of multiple multi-room air conditioners, in this case, the primary side refrigeration cycle is connected to the refrigerant heat exchanger. , and without operating the heat transfer cycle, the first heat exchanger in the heat storage tank is communicated with the secondary refrigeration cycle by the switching valve in the heat storage tank, and the first refrigerant transfer pump and the indoor heat exchanger are connected. ,
Operates the secondary refrigeration cycle consisting of a flow control valve.

即ち、夜間に蓄熱槽内の蓄熱材に蓄えた冷熱、あるいは
、温熱を蓄熱槽内の第2熱交換器を介して、2次側冷凍
サイクル内の冷媒と熱交換し、その冷媒を第1冷媒搬送
ポンプにて各室内機の室内側熱交換器へ搬送して室内空
気と熱交換することにより、各室内の冷房、あるいは、
暖房を行なう、従って、昼間電力を使用せずに、夜間電
力を利用して空調が行なえる。
That is, the cold heat or warm heat stored in the heat storage material in the heat storage tank during the night is heat exchanged with the refrigerant in the secondary refrigeration cycle via the second heat exchanger in the heat storage tank, and the refrigerant is transferred to the first By transporting the refrigerant to the indoor heat exchanger of each indoor unit using the refrigerant transport pump and exchanging heat with the indoor air, each room can be cooled or
Therefore, air conditioning can be performed using electricity at night without using electricity during the day.

(2)複数の多室式空気調和機のそれぞれにおいて (各室の熱負荷の合計値)〉(蓄熱槽の出力容量)、か
つ、 (各室の熱負荷の合計値)≦(最大空調能力Qmax)
である場合 (但し、(R大空調能力Qmax)=(蓄熱槽の出力容
量)+(1次側冷凍サイクルの出力容量)とする。) この場合も熱搬送サイクルは運転しないが、蓄熱槽のみ
の出力では負荷に対応できないため、冷媒熱交換器の切
替弁にて蓄熱槽から切り替えて、冷媒熱交換器の第1熱
交換部を連通させた1次側冷凍サイクル、及び、冷媒熱
交換器の第2熱交換部、蓄熱槽内の第2熱交換器、第1
冷媒搬送ポンプ、室内側熱交換器、流量調節弁からなる
2次側冷凍サイクルの運転を行う。即ち、夜間に蓄熱槽
内の蓄熱材に蓄えた冷熱(温熱)を蓄熱槽内の第2熱交
換器を介して、2次側冷凍サイクル内の冷媒と熱交換し
、加えて、冷媒熱交換器の第2熱交換部内で1次側冷凍
サイクルの冷媒と熱交換して冷熱(温熱)量な高め、そ
の冷媒を第1冷媒搬送ポンプにて各室内機の室内側熱交
換器へ搬送して室内空気と熱交換することにより、各室
内の冷房、あるいは、暖房を行なう、従って、夜間電力
を利用して昼間電力の使用量を低減できるとともに、1
次側冷凍サイクルの運転により2次側冷凍サイクルにお
ける能力不足を補うことができ、各室内での快適性が損
なわれることを防止できる。
(2) For each of multiple multi-room air conditioners, (total value of heat load in each room) > (output capacity of heat storage tank), and (total value of heat load in each room) ≦ (maximum air conditioning capacity) Qmax)
(However, (R large air conditioning capacity Qmax) = (Output capacity of heat storage tank) + (Output capacity of primary side refrigeration cycle).) In this case, the heat transfer cycle is not operated, but only the heat storage tank is Since the output of a second heat exchanger in the heat storage tank;
Operates the secondary refrigeration cycle, which consists of a refrigerant transfer pump, an indoor heat exchanger, and a flow control valve. That is, the cold heat (warm heat) stored in the heat storage material in the heat storage tank at night is exchanged with the refrigerant in the secondary refrigeration cycle via the second heat exchanger in the heat storage tank, and in addition, the refrigerant heat exchange The refrigerant is exchanged with the refrigerant of the primary refrigeration cycle in the second heat exchange section of the device to increase the amount of cold (warm) heat, and the refrigerant is conveyed to the indoor heat exchanger of each indoor unit by the first refrigerant transfer pump. By exchanging heat with the indoor air, each room is cooled or heated. Therefore, it is possible to use nighttime power to reduce daytime power consumption, and
By operating the next refrigeration cycle, it is possible to compensate for the lack of capacity in the second refrigeration cycle, and it is possible to prevent the comfort in each room from being impaired.

(3)複数の多室式空気調和機のうち、ある多室式空気
調和機において (各室の熱負荷の合計値)〉(最大空調能力Qmax)
である場合 この場合、この多室式空気調和機において能力不足であ
り、(2)の昼間運転と同様の1次側、及び、2次側冷
凍サイクル運転を行なうと同時に、加えて、熱搬送サイ
クルを使用して、能力余剰の多室式空気調和機の蓄熱槽
内の冷(温)熱を、冷媒を介して第2冷媒搬送ポンプに
て能力不足である多室式空気調和機の蓄熱槽へ搬送する
(3) Among multiple multi-room air conditioners, in a certain multi-room air conditioner (total value of heat load of each room)> (maximum air conditioning capacity Qmax)
In this case, the capacity of this multi-room air conditioner is insufficient, and at the same time, the primary side and secondary side refrigeration cycle operation similar to the daytime operation in (2) is performed, and in addition, heat transfer is performed. Using a cycle, the cold (warm) heat in the heat storage tank of a multi-room air conditioner with excess capacity is transferred via the refrigerant to the second refrigerant transfer pump to store heat in the multi-room air conditioner with insufficient capacity. Transport to tank.

従って、能力不足である多室式空気調和機の蓄熱槽の蓄
冷(熱)量を増加させることができ、従って、その多室
式空気調和機の2次側冷凍サイクルにおける能力不足を
補うことができ、各室内での快適性が損なわれることを
防止できる。
Therefore, it is possible to increase the amount of cold storage (heat) in the heat storage tank of a multi-room air conditioner that lacks capacity, and therefore it is possible to compensate for the lack of capacity in the secondary refrigeration cycle of the multi-room air conditioner. This can prevent the comfort in each room from being impaired.

また、空調設備の設計面においても、複数の多室式空気
調和機のそれぞれに接続されている室内の同時に発生す
る熱負荷の和を設計負荷値とすればよく、即ち、熱負荷
のピーク値発生時刻が異なる場合、各多室式空気調和機
単独での設計負荷値(熱負荷のピーク値)の和より小さ
くて済み、機器小型化が図れ、電力会社との契約電力費
用も低減でき、より経済的な設備設計が可能となる。更
に、室内機を増設する場合も、蓄熱槽に蓄える蓄冷熱量
を増加させることによって対応ができるため、拡張性や
設計自由度が高くなる。
In addition, in terms of designing air conditioning equipment, the sum of the heat loads that occur simultaneously in the rooms connected to each of the multiple multi-room air conditioners may be used as the design load value, that is, the peak value of the heat load. If the occurrence times are different, the load will be smaller than the sum of the design load value (peak value of heat load) for each multi-room air conditioner alone, allowing for smaller equipment and reducing power costs contracted with the electric power company. More economical equipment design becomes possible. Furthermore, when adding an indoor unit, this can be done by increasing the amount of cold storage heat stored in the heat storage tank, which increases expandability and design freedom.

実施例 以下、本発明の一実施例を添付図面に基づいて説明を行
うが、従来と同−構成については同一符号を付し、その
詳細な説明を省略する。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the accompanying drawings, and the same components as those in the conventional art will be denoted by the same reference numerals, and detailed explanation thereof will be omitted.

第1図は本発明の一実施例の蓄熱空調システムの冷凍サ
イクル図である。
FIG. 1 is a refrigeration cycle diagram of a heat storage air conditioning system according to an embodiment of the present invention.

この実施例の蓄熱空調システムは、2台の多室式空気調
和機AとBからなり、多室式空気調和機A1及び、Bは
設置場所以外は同一機器で構成されているものとする。
The thermal storage air conditioning system of this embodiment consists of two multi-room air conditioners A and B, and it is assumed that the multi-room air conditioners A1 and B are configured with the same equipment except for the installation location.

 多室式空気調和機A、Bは、概ね室外機1.冷媒熱交
換器HE、蓄熱槽STR。
Multi-room air conditioners A and B generally have outdoor units 1. Refrigerant heat exchanger HE, heat storage tank STR.

第1冷媒搬送ポンプPMI、3台の室内機(3a。First refrigerant transfer pump PMI, three indoor units (3a.

6b、6Cとからなり、室外機1は、圧縮機2、四方弁
3、室外側熱交換器4、室外側送風機9、膨張弁5より
なり、冷媒熱交換器HEは第1熱交換部14.第2熱交
換部15と三方弁V3からなり、多室式空気調和機A、
Bの蓄熱槽5TRa。
6b and 6C, the outdoor unit 1 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, an outdoor blower 9, and an expansion valve 5, and the refrigerant heat exchanger HE includes a first heat exchange section 14. .. Consisting of a second heat exchange section 15 and a three-way valve V3, a multi-room air conditioner A,
B's heat storage tank 5TRa.

5TRbはそれぞれ、蓄熱材11を充填した、第1熱交
換器12と第2熱交換器13と三方弁V1゜V2とから
なり、3台の室内機6a、6b、6cは、室内側熱交換
器8ay 8b、80%流量調節弁7at 7bt 7
0%及び、室内側送風機10a。
5TRb each consists of a first heat exchanger 12, a second heat exchanger 13, and three-way valves V1 and V2 filled with a heat storage material 11, and the three indoor units 6a, 6b, and 6c are indoor heat exchangers. 8ay 8b, 80% flow rate control valve 7at 7bt 7
0% and the indoor blower 10a.

10b、10cとから構成されている。ここで、蓄熱槽
の第2熱交換器13については多室式空気調和機Aの場
合を13a、多室式空気調和機Bの場合を13bとする
It is composed of 10b and 10c. Here, regarding the second heat exchanger 13 of the heat storage tank, 13a is used for the multi-room air conditioner A, and 13b is used for the multi-room air conditioner B.

上記機器構成において、圧縮機2、四方弁3、室外側熱
交換器4、膨張弁5、冷媒熱交換器の第1熱交換部14
、及び、蓄熱槽内の第1熱交換器12を連通して1次側
冷凍サイクルが形成され、三方弁■3を介して冷媒熱交
換器の第1熱交換部14と蓄熱槽内の第1熱交換器12
が1次側冷凍サイクルに並列に接続されている。また、
冷媒熱交換器の第2熱交換部15、蓄熱槽内の第1熱交
換器12、第1冷媒搬送ポンプPMI、室内側熱交換器
8a+8b+8c1及び、流量調節弁7 a +7 b
 r 7 cを連通して2次側冷凍サイクルが形成され
ている。 更に、多室式空気調和機A、Bにおける、蓄
熱槽5TRa、5TRbのそれぞれの第2熱交換器13
a、13b相互を第2冷媒搬送ポンプPM2を介して連
通して熱搬送サイクルが形成されている。
In the above equipment configuration, the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, the expansion valve 5, and the first heat exchange section 14 of the refrigerant heat exchanger.
, and the first heat exchanger 12 in the heat storage tank are connected to form a primary side refrigeration cycle, and the first heat exchange section 14 of the refrigerant heat exchanger and the first heat exchanger 12 in the heat storage tank are connected via the three-way valve (3). 1 heat exchanger 12
are connected in parallel to the primary refrigeration cycle. Also,
The second heat exchange part 15 of the refrigerant heat exchanger, the first heat exchanger 12 in the heat storage tank, the first refrigerant transfer pump PMI, the indoor heat exchanger 8a+8b+8c1, and the flow rate control valves 7a + 7b
A secondary refrigeration cycle is formed by communicating r7c. Furthermore, the second heat exchanger 13 of each of the heat storage tanks 5TRa and 5TRb in the multi-room air conditioners A and B
A and 13b are communicated with each other via a second refrigerant transfer pump PM2 to form a heat transfer cycle.

次に、との一実施例の構成における作用を説明する。Next, the operation of the configuration of the embodiment will be explained.

まず、夜間の蓄冷・蓄熱運転(1次側冷凍サイクル)に
ついて説明する。
First, nighttime cold storage/thermal storage operation (primary side refrigeration cycle) will be explained.

予め、多室式空気調和機A、Hの各室の熱負荷の和に関
する、翌日の冷房、または暖房負荷曲線を推定し、蓄冷
、または蓄熱運転モードを決定する1例えば、1日の時
刻に対する負荷の推移(負荷向11i[)が第2図のよ
うに予測されたとする。第2図中、Lmax  は各室
の熱負荷の和の最大値。
In advance, the next day's cooling or heating load curve is estimated regarding the sum of the heat loads of each room of the multi-room air conditioners A and H, and the cold storage or heat storage operation mode is determined. Assume that the load transition (load direction 11i[) is predicted as shown in FIG. 2. In Figure 2, Lmax is the maximum value of the sum of heat loads in each room.

Q m a x  は多室式空気調和機の最大能力を示
す。
Q m a x indicates the maximum capacity of the multi-room air conditioner.

いづれの運転モード場合についても、三方弁V1゜V2
は1次側冷凍サイクルと蓄熱槽STRの熱交換器12が
連通ずるように、かつ、三方弁■3は1次側冷凍サイク
ルと冷媒熱交換器の第1熱交換部14が連通しないよう
に、2次側冷凍サイクル内の第1冷媒搬送ポンプPMI
、及び、熱搬送サイクル内の第2冷媒搬送ポンプPM2
は停止している。
In either operation mode, the three-way valve V1゜V2
The three-way valve (3) is designed so that the primary refrigeration cycle and the heat exchanger 12 of the heat storage tank STR communicate with each other, and the three-way valve (3) is designed so that the primary refrigeration cycle and the first heat exchange section 14 of the refrigerant heat exchanger do not communicate with each other. , the first refrigerant transfer pump PMI in the secondary refrigeration cycle
, and a second refrigerant transfer pump PM2 in the heat transfer cycle.
has stopped.

上記運転モード(蓄冷・蓄熱)それぞれについて1次側
冷凍サイクルの作用を以下説明していく。
The operation of the primary refrigeration cycle for each of the above operation modes (cool storage/heat storage) will be explained below.

尚、四方弁3のモードについては、圧縮機2吐出側と室
外側熱交換器4とを、かつ、圧縮機2吸入側と蓄熱槽S
TRとを連通ずる場合を冷房モード、圧縮機2吐出側と
蓄熱槽5TFLとを、かつ、圧縮機2吸入側と室外側熱
交換器4とを連通ずる場合を暖房モードと定義する。
Regarding the mode of the four-way valve 3, the compressor 2 discharge side and the outdoor heat exchanger 4 are connected, and the compressor 2 suction side and the heat storage tank S
A cooling mode is defined as the case where the compressor 2 is communicated with the heat storage tank 5TFL, and a heating mode is defined as a case where the compressor 2 discharge side and the heat storage tank 5TFL are communicated with each other, and the compressor 2 suction side and the outdoor heat exchanger 4 are communicated with each other.

(1)蓄冷モード 四方弁3:冷房モード、膨張弁5:所定の開度とする。(1) Cold storage mode Four-way valve 3: Cooling mode, expansion valve 5: Predetermined opening degree.

この時、圧縮機2から送られる高温高圧の冷媒は、室外
側熱交換器4にて凝縮し、膨張弁5で減圧されて液ある
いは二相状態となり、蓄熱槽STR内の第1熱交換器1
2の管内にて蒸発して蓄熱材11から吸熱した後(蓄冷
運転)、圧縮機2へ戻る。
At this time, the high-temperature, high-pressure refrigerant sent from the compressor 2 is condensed in the outdoor heat exchanger 4, reduced in pressure by the expansion valve 5, and becomes a liquid or two-phase state, and then transferred to the first heat exchanger in the heat storage tank STR. 1
After being evaporated in the pipe of No. 2 and absorbing heat from the heat storage material 11 (cold storage operation), it returns to the compressor 2.

(2)蓄熱モード 四方弁3:暖房モード、膨張弁5:全開とする。(2) Heat storage mode Four-way valve 3: heating mode, expansion valve 5: fully open.

この時、圧縮機2か・ら送られる高温高圧の冷媒は、蓄
熱槽STR内の熱交換器12の管内にて凝縮して蓄熱材
11へ放熱した後(蓄熱運転)、膨張弁5で減圧されて
液あるいは二相状態となり、室外側熱交換器4の管内に
て蒸発して圧縮機2へ戻る。
At this time, the high-temperature, high-pressure refrigerant sent from the compressor 2 is condensed in the pipes of the heat exchanger 12 in the heat storage tank STR and radiates heat to the heat storage material 11 (thermal storage operation), after which the pressure is reduced by the expansion valve 5. It becomes a liquid or two-phase state, evaporates in the tubes of the outdoor heat exchanger 4, and returns to the compressor 2.

次に、昼間運転について説明する。この時、蓄熱槽内の
三方弁Vl、V2の切り替えにより、蓄熱槽内の第1熱
交換器12を2次側冷凍サイクルに連通させておく。
Next, daytime driving will be explained. At this time, the first heat exchanger 12 in the heat storage tank is communicated with the secondary refrigeration cycle by switching the three-way valves Vl and V2 in the heat storage tank.

(1)A、Bの多室式空気調和機のそれぞれにおいて (各室の熱負荷の合計値)≦(蓄熱槽の出力容量)であ
る場合 この場合は例えば、第2図中で言えば、Aの時刻τO〜
τ1、Bの時刻τO〜τ2の場合について説明する。冷
媒熱交換器HEを連通した1次側冷凍サイクル、及び、
熱搬送サイクルは運転せずに、2次側冷凍サイクルのみ
運転する。即ち、夜間に蓄熱槽5TRa、5TRb内の
蓄熱材11に蓄えた冷熱、あるいは、温熱を蓄熱槽の第
1熱交換器12を介して、2次側冷凍サイクル内の冷媒
と熱交換し、その冷媒を第1冷媒搬送ポンプPM1にて
各室内機の室内側熱交換器8a、8b、8Cへ搬送して
室内空気と熱交換することにより、各室内の冷房、ある
いは、暖房を行なう。
(1) In each of the multi-room air conditioners A and B, (total value of heat load of each room) ≦ (output capacity of heat storage tank) In this case, for example, in Fig. 2, A's time τO~
The case of times τO to τ2 of τ1 and B will be explained. a primary side refrigeration cycle communicating with the refrigerant heat exchanger HE, and
The heat transfer cycle is not operated, and only the secondary refrigeration cycle is operated. That is, the cold heat or warm heat stored in the heat storage material 11 in the heat storage tanks 5TRa and 5TRb during the night is heat exchanged with the refrigerant in the secondary refrigeration cycle via the first heat exchanger 12 of the heat storage tank. By transporting the refrigerant to the indoor heat exchangers 8a, 8b, and 8C of each indoor unit by the first refrigerant transport pump PM1 and exchanging heat with the indoor air, each room is cooled or heated.

(2)A、Bの多室式空気調和機のそれぞれにおいて (各室の熱負荷の合計値)〉(蓄熱槽の出力容量〉、か
つ、 (各室の熱負荷の合計値)≦(最大空調能力Qmax)
である場合 (但し、(最大空調能力Qmax )=(蓄熱槽の出力
容量)+(1次側冷凍サイクルの出力容量)とする、) この場合は例えば、第2図中のAにおける時刻τ1〜τ
3.τ4〜τ7.Bにおける時刻τ2〜τ5.τ6〜τ
7の場合に相当し、この場合も熱搬送サイクルは運転し
ないが、蓄熱槽STRのみの出力では負荷に対応できな
いため、冷媒熱交換器HEの三方弁V3にて冷媒熱交換
器の第1熱交換部14を連通させた1次側冷凍サイクル
、及び、冷媒熱交換器の第2熱交換部15、蓄熱槽内の
第1熱交換器12、第1冷媒搬送ポンプPMI、室内側
熱交換器8a、8b、8c、流量調節弁7a。
(2) For each of the multi-room air conditioners A and B, (total value of heat load in each room) > (output capacity of heat storage tank) > (total value of heat load in each room) ≦ (maximum Air conditioning capacity Qmax)
(However, (maximum air conditioning capacity Qmax) = (output capacity of heat storage tank) + (output capacity of primary refrigeration cycle)) In this case, for example, from time τ1 at A in Fig. 2 τ
3. τ4-τ7. Time τ2 to τ5 in B. τ6~τ
This corresponds to case 7, and the heat transfer cycle is not operated in this case as well, but since the output of the heat storage tank STR alone cannot cope with the load, the three-way valve V3 of the refrigerant heat exchanger HE transfers the first heat of the refrigerant heat exchanger. The primary side refrigeration cycle with which the exchange part 14 is communicated, the second heat exchange part 15 of the refrigerant heat exchanger, the first heat exchanger 12 in the heat storage tank, the first refrigerant transfer pump PMI, and the indoor heat exchanger 8a, 8b, 8c, flow control valve 7a.

7bl 7cからなる2次側冷凍サイクルの運転な行う
、即ち、夜間に蓄熱槽内の蓄熱材11に蓄えた冷熱(温
熱)を蓄熱槽内の第2熱交換器13a。
The secondary refrigeration cycle consisting of 7bl and 7c is operated, that is, the cold heat (warm heat) stored in the heat storage material 11 in the heat storage tank at night is transferred to the second heat exchanger 13a in the heat storage tank.

13bを介して、2次側冷凍サイクル内の冷媒と熱交換
し、加えて、冷媒熱交換器の第2熱交換部15内で1次
側冷凍サイクルの冷媒と熱交換し、その冷媒を第1冷媒
搬送ポンプPMIにて各室内機の室内側熱交換器8at
 8b、 8cへ搬送して室内空気と熱交換することに
より、各室内の冷房、あるいは、暖房を行なう。従って
、夜間電力を利用して昼間電力の使用量を低減できると
ともに、2次側冷凍サイクルにおける能力不足を補うこ
とができ、各室内での快適性が損なわれることを防止で
きる。
13b, heat exchanges with the refrigerant in the secondary refrigeration cycle, and in addition, heat exchanges with the refrigerant in the primary refrigeration cycle in the second heat exchange section 15 of the refrigerant heat exchanger, and the refrigerant is transferred to the second refrigeration cycle. 1 Indoor heat exchanger 8at of each indoor unit with refrigerant transfer pump PMI
By conveying the air to 8b and 8c and exchanging heat with indoor air, each room is cooled or heated. Therefore, it is possible to reduce the amount of power used during the day by using the nighttime power, and it is also possible to compensate for the lack of capacity in the secondary refrigeration cycle, and it is possible to prevent the comfort in each room from being impaired.

(3)A、Bの多室式空気調和機のうち、多室式空気調
和機Aが能力不足で、即ち、 (各室の熱負荷の合計値)〉(最大空調能力Qmax)
である場合 例えば、第2図中のAにおける時刻τ3〜τ4の場合に
ついて述べると、A、Bの多室式空気調和機において、
(2)の昼間運転と同様の1次側、及び、2次側冷凍サ
イクル運転を行なうと同時に、多室式空気調和機A、B
における、蓄熱槽5TRa、5TRbのそれぞれの第2
M交換器13a。
(3) Among multi-room air conditioners A and B, multi-room air conditioner A has insufficient capacity, that is, (total value of heat load of each room)〉(maximum air conditioning capacity Qmax)
For example, in the case of time τ3 to τ4 at A in FIG. 2, in the multi-room air conditioners A and B,
At the same time, the primary side and secondary side refrigeration cycle operation similar to the daytime operation in (2) is performed, and at the same time, multi-room air conditioners A and B
In each of the second heat storage tanks 5TRa and 5TRb,
M exchanger 13a.

13b相互を第2冷媒搬送ポンプPM2を介して連通し
た熱搬送サイクルを使用して、能力余剰の多室式空気調
和機Bの蓄熱槽5TRb内の冷(温)熱を、冷媒を介し
て第2冷媒搬送ポンプPM2にて能力不足である多室式
空気調和機Aの蓄熱槽5TRaへ搬送する。
Using a heat transfer cycle in which the 13b are communicated with each other via the second refrigerant transfer pump PM2, the cold (hot) heat in the heat storage tank 5TRb of the multi-room air conditioner B with excess capacity is transferred via the refrigerant to the second refrigerant transfer pump PM2. The refrigerant is transported by the refrigerant transport pump PM2 to the heat storage tank 5TRa of the multi-room air conditioner A, which has insufficient capacity.

従って、能力不足である多室式空気調和機Aの蓄熱槽5
TRaの蓄冷(熱>−mを増加させることができ、従っ
て、その多室式空気調和機Aの2次側冷凍サイクルにお
ける能力不足を補うことができ、快適性が損なわれるこ
とを防止できる。このことは多室式空気調和機Bにおけ
る時刻τ5〜で6の場合について、も言える同様作用で
ある。
Therefore, the heat storage tank 5 of the multi-room air conditioner A, which lacks capacity,
It is possible to increase the cold storage (heat>-m) of TRa, and therefore, it is possible to compensate for the lack of capacity in the secondary side refrigeration cycle of the multi-room air conditioner A, and it is possible to prevent the comfort from being impaired. This is the same effect that can be said for the case of time τ5 to 6 in the multi-room air conditioner B.

また、空調設備の設計面においても、多室式空気調和機
AとBのそれぞれに接続されている室内の同時に発生す
る熱負荷の和を設計負荷値とすればよく、即ち、熱負荷
のピーク値発生時刻が異なる場合、多室式空気調和機A
、B単独での設計負荷値(熱負荷のピーク値)の和より
小さくて済み、機器小型化が図れ、電力会社との契約電
力費用も低減でき、より経済的な設備設計が可能となる
In addition, in terms of designing air conditioning equipment, the sum of the heat loads that occur simultaneously in the rooms connected to each of the multi-room air conditioners A and B may be used as the design load value, that is, the peak of the heat load. If the values occur at different times, multi-room air conditioner A
, B alone is smaller than the sum of the design load values (peak values of heat loads), the equipment can be made smaller, the power contract cost with the electric power company can be reduced, and more economical equipment design is possible.

更に、室内機を増設する場合も、蓄熱槽に蓄える蓄冷熱
量を増加させることによって対応ができるため、拡張性
や設計自由度が高くなる。
Furthermore, when adding an indoor unit, this can be done by increasing the amount of cold storage heat stored in the heat storage tank, which increases expandability and design freedom.

発明の効果 以上のように本発明は、第1熱交換部と第2熱交換部と
切替弁を備えた冷媒熱交換器、第1熱交換器と第2熱交
換器と切替弁な備えた蓄熱槽、圧縮機、四方弁、室外側
熱交換器、膨張弁、前記冷媒熱交換器の第1熱交換部、
及び、前記蓄熱槽の第1熱交換器を連通してなる1次側
冷凍サイクルと、前記冷媒熱交換器の第2熱交換部、前
記蓄熱槽内の第2熱交換器、第1冷媒搬送ポンプ、及び
、複数の室内側熱交換器と流量調節弁を連通してなる2
次側冷凍サイクルとからなる多室式空気調和機を複数台
設置し、前記多室式空気調和機おのおのの蓄熱槽の第2
熱交換器相互を第2冷媒搬送ポンプを介して連通してな
る熱搬送サイクルを備えることにより、以下の効果が挙
げられる。
Effects of the Invention As described above, the present invention provides a refrigerant heat exchanger that includes a first heat exchanger, a second heat exchanger, and a switching valve, and a refrigerant heat exchanger that includes a first heat exchanger, a second heat exchanger, and a switching valve. a heat storage tank, a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, a first heat exchange part of the refrigerant heat exchanger,
and a primary side refrigeration cycle formed by communicating a first heat exchanger of the heat storage tank, a second heat exchange section of the refrigerant heat exchanger, a second heat exchanger in the heat storage tank, and a first refrigerant conveyance. A pump, a plurality of indoor heat exchangers, and a flow control valve are connected to each other.
A plurality of multi-chamber air conditioners consisting of a next-side refrigeration cycle are installed, and a second heat storage tank of each of the multi-chamber air conditioners is installed.
By providing a heat transfer cycle in which the heat exchangers are communicated with each other via the second refrigerant transfer pump, the following effects can be achieved.

1)夜間電力を利用した蓄冷熱により昼間に暖房、また
は、冷房運転が行え、運転費が大幅に低減できる 2)能力不足である多室式空気調和機の蓄熱槽の蓄冷熱
量を増加させることができ、従って、その多室式空気調
和機の2次側冷凍サイクルにおける能力不足を補うこと
ができ、快適性が損なわれることを防止できる。
1) By storing cold heat using nighttime electricity, heating or cooling operation can be performed during the day, which can significantly reduce operating costs. 2) To increase the amount of cold heat stored in the heat storage tank of a multi-room air conditioner, which lacks capacity. Therefore, the lack of capacity in the secondary side refrigeration cycle of the multi-room air conditioner can be compensated for, and comfort can be prevented from being impaired.

8)空調設備の設計面においても、複数の多室式空気調
和機のそれぞれに接続されている室内の同時は発生する
熱負荷の和を設計負荷値とすればよく、即ち、各多室式
空気調和機単独での設計負荷値(熱負荷のピーク値)の
和より小さくて済み、機器小型化が図れ、電力会社との
契約電力費用も低減でき、より経済的な設備設計が可能
となる。
8) In terms of designing air conditioning equipment, the design load value may be the sum of the heat loads generated simultaneously in the rooms connected to each of the multiple multi-room air conditioners. It is smaller than the sum of the design load value (peak value of heat load) of the air conditioners alone, making it possible to downsize the equipment, reduce contract power costs with electric power companies, and enable more economical equipment design. .

4)室内・機を増設する場合も、蓄熱槽に蓄える蓄冷熱
量を増加させることによって対応ができるため、拡張性
や設計自由度が高くなる。
4) When increasing the number of indoor units or units, this can be done by increasing the amount of cold storage heat stored in the heat storage tank, increasing expandability and design freedom.

以上の効果により、夜間電力を利用して各多室式空気調
和機の蓄熱槽は蓄えた蓄冷熱量な蓄熱槽相互間において
熱搬送できる蓄熱空調システムを提供することが可能に
なる。
As a result of the above effects, it is possible to provide a thermal storage air conditioning system that can transfer heat between the thermal storage tanks of each multi-room air conditioner by utilizing nighttime power.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による蓄熱空調シスを示す多
室式空気調和機の冷凍システム図、第4図は従来例を示
す空調システムの冷凍システム図である。 2・・・圧縮機、3・・・四方弁、4・・・室外側熱交
換器、5・ ・膨張弁、7 a 17 b + 7QI
l*流jl調節弁、8a、8b、8c・ ・室内側熱交
換器、11・・・蓄熱材、12・ ・蓄熱槽の第1熱交
換器、13a、13b・・・蓄熱槽の第2熱交換器、1
4・・・冷媒熱交換器の第1熱交換部、15・・・冷媒
熱交換器の第2熱交換部、HE・・・冷媒熱交換器、5
TRa、5TRb・ ・蓄熱槽、PMI・・・第1冷媒
搬送ポンプ、 PM2  ・ 第2冷媒搬送ポンプ、 Vl。 V2゜ v3 ・ ・三方弁。
FIG. 1 is a refrigeration system diagram of a multi-room air conditioner showing a heat storage air conditioning system according to an embodiment of the present invention, and FIG. 4 is a refrigeration system diagram of an air conditioning system showing a conventional example. 2... Compressor, 3... Four-way valve, 4... Outdoor heat exchanger, 5... Expansion valve, 7 a 17 b + 7QI
l*Flow jl control valve, 8a, 8b, 8c... Indoor heat exchanger, 11... Heat storage material, 12... First heat exchanger of heat storage tank, 13a, 13b... Second of heat storage tank heat exchanger, 1
4... First heat exchange section of refrigerant heat exchanger, 15... Second heat exchange section of refrigerant heat exchanger, HE... Refrigerant heat exchanger, 5
TRa, 5TRb・・Thermal storage tank, PMI...1st refrigerant transfer pump, PM2・2nd refrigerant transfer pump, Vl. V2゜v3 ・・Three-way valve.

Claims (1)

【特許請求の範囲】[Claims] 第1熱交換部と第2熱交換部と切替弁を備えた冷媒熱交
換器、第1熱交換器と第2熱交換器と切替弁を備えた蓄
熱槽、圧縮機、四方弁、室外側熱交換器、膨張弁、前記
冷媒熱交換器の第1熱交換部、及び、前記蓄熱槽の第1
熱交換器を連通してなる1次側冷凍サイクルと、前記冷
媒熱交換器の第2熱交換部、前記蓄熱槽内の第2熱交換
器、第1冷媒搬送ポンプ、及び、複数の室内側熱交換器
と流量調節弁を連通してなる2次側冷凍サイクルとから
なる多室式空気調和機を複数台設置し、前記多室式空気
調和機おのおのの蓄熱槽の第2熱交換器相互を第2冷媒
搬送ポンプを介して連通してなる熱搬送サイクルを備え
た蓄熱空調システム。
A refrigerant heat exchanger equipped with a first heat exchange part, a second heat exchange part, and a switching valve, a heat storage tank equipped with a first heat exchanger, a second heat exchanger, and a switching valve, a compressor, a four-way valve, an outdoor side a heat exchanger, an expansion valve, a first heat exchange section of the refrigerant heat exchanger, and a first heat exchange section of the heat storage tank.
a primary side refrigeration cycle formed by communicating a heat exchanger, a second heat exchange section of the refrigerant heat exchanger, a second heat exchanger in the heat storage tank, a first refrigerant transfer pump, and a plurality of indoor sides. A plurality of multi-chamber air conditioners each consisting of a secondary refrigeration cycle formed by communicating a heat exchanger and a flow control valve are installed, and the second heat exchanger of the heat storage tank of each of the multi-chamber air conditioners is mutually connected. A heat storage air conditioning system equipped with a heat transfer cycle in which the refrigerant is communicated via a second refrigerant transfer pump.
JP22633589A 1989-08-31 1989-08-31 Thermal storage air conditioning system Expired - Fee Related JP2748960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22633589A JP2748960B2 (en) 1989-08-31 1989-08-31 Thermal storage air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22633589A JP2748960B2 (en) 1989-08-31 1989-08-31 Thermal storage air conditioning system

Publications (2)

Publication Number Publication Date
JPH0391655A true JPH0391655A (en) 1991-04-17
JP2748960B2 JP2748960B2 (en) 1998-05-13

Family

ID=16843556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22633589A Expired - Fee Related JP2748960B2 (en) 1989-08-31 1989-08-31 Thermal storage air conditioning system

Country Status (1)

Country Link
JP (1) JP2748960B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523754A (en) * 2010-09-09 2012-06-27 松下电器产业株式会社 Refrigeration cycle apparatus
CN113175707A (en) * 2021-05-26 2021-07-27 珠海格力电器股份有限公司 Heat recovery air conditioning system and control method thereof
US11236933B2 (en) 2017-05-23 2022-02-01 Carrier Corporation Integral service refrigerant pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102523754A (en) * 2010-09-09 2012-06-27 松下电器产业株式会社 Refrigeration cycle apparatus
CN102523754B (en) * 2010-09-09 2015-08-26 松下电器产业株式会社 Refrigerating circulatory device
US11236933B2 (en) 2017-05-23 2022-02-01 Carrier Corporation Integral service refrigerant pump
CN113175707A (en) * 2021-05-26 2021-07-27 珠海格力电器股份有限公司 Heat recovery air conditioning system and control method thereof

Also Published As

Publication number Publication date
JP2748960B2 (en) 1998-05-13

Similar Documents

Publication Publication Date Title
JP2705031B2 (en) Multi-room air conditioner
JPH05280818A (en) Multi-chamber type cooling or heating device
US20210364208A1 (en) Heating, Ventilation, and Air-Conditioning System with a Thermal Energy Storage Device
US20090139255A1 (en) Device for increasing the heat output and energy storage in a heat pump
CN105492833A (en) Heat recovery-type refrigeration device
WO2011104834A1 (en) Air conditioner
JPH0391655A (en) Thermal storage air conditioning system
CN108731294A (en) Multi-gang air-conditioner and its control method
JP2705036B2 (en) Thermal storage air conditioning system
JPH0391657A (en) Thermal storage air conditioning system
JP2705034B2 (en) Thermal storage air conditioning system
JP2705033B2 (en) Multi-room air conditioner
JP2705044B2 (en) Air conditioner
JPH0331631A (en) Multicompartment type air conditioner
JPH0849939A (en) Regeneration air-conditioning system
JP2851696B2 (en) Thermal storage type air conditioner
CN112944521B (en) Multistage energy storage assembly and method of cold/heat source system
JPH07301433A (en) Individually installed air conditioner
CN217979042U (en) Multi-split air conditioning system with multiple cold and heat sources
CN109855271B (en) Energy station including backup energy storage station, control method thereof, and storage medium
JP3569546B2 (en) Air conditioner
JP3297467B2 (en) Thermal storage type air conditioner
JP2863274B2 (en) Multi-room air conditioner
JPH06221717A (en) Air conditioning apparatus
JP2705032B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees