JPH0849939A - Regeneration air-conditioning system - Google Patents

Regeneration air-conditioning system

Info

Publication number
JPH0849939A
JPH0849939A JP6183317A JP18331794A JPH0849939A JP H0849939 A JPH0849939 A JP H0849939A JP 6183317 A JP6183317 A JP 6183317A JP 18331794 A JP18331794 A JP 18331794A JP H0849939 A JPH0849939 A JP H0849939A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heat storage
secondary side
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6183317A
Other languages
Japanese (ja)
Inventor
Shigeo Aoyama
繁男 青山
Tetsuei Kuramoto
哲英 倉本
Kazuhiko Machida
和彦 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP6183317A priority Critical patent/JPH0849939A/en
Publication of JPH0849939A publication Critical patent/JPH0849939A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To obtain a regenerative air-conditioning system having high efficiency and high correspondence to a load and being excellent in the energy-saving. CONSTITUTION:This system is constituted a multiroom type air conditioner A and a multiroom type air conditioner B and the multiroom type air conditioner A comprises an outdoor unit 21A, indoor units 6A and a control device CN1, while the multiroom type air conditioner B comprises an outdoor unit 21B, indoor units 6B and a control device CN2. The multiroom type air conditioner A is installed on a floor located above the multiroom air-conditioner B by one or more floors of a building. Before and behind a refrigerant pump, a bypass circuit communicating through a bypass valve is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空気を熱源とする空気
調和機において、夜間電力を利用するための蓄熱機能、
及びその制御機能を備えた蓄熱式空調システムに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using air as a heat source, and has a heat storage function for utilizing nighttime electric power.
And a heat storage type air conditioning system having a control function thereof.

【0002】[0002]

【従来の技術】蓄熱式空調システムについては、既にさ
まざまな開発がなされており、例えば、特開平3−91
658号公報に示されているような蓄熱式空調システム
がある。
2. Description of the Related Art Various developments have already been made for a heat storage type air conditioning system.
There is a heat storage type air conditioning system as disclosed in Japanese Patent No. 658.

【0003】その基本的な技術について述べると、図4
に示すように、この実施例の蓄熱式空調システムは、2
台の多室式空気調和機A,Bからなり、多室式空気調和
機A,Bは設置場所以外は同一機器で構成されているも
のとする。
The basic technique will be described with reference to FIG.
As shown in FIG.
It is assumed that the multi-room air conditioners A and B are composed of a single unit, and the multi-room air conditioners A and B are configured by the same device except the installation place.

【0004】多室式空気調和機A,Bは、概ね室外機
1,冷媒熱交換器HEX,蓄熱槽STR,冷媒搬送ポン
プPM,3台の室内ユニット6A,6Bとからなり、室
外機1は、圧縮機2、四方弁3、室外側熱交換器4、室
外側送風機9、膨張弁5よりなり、冷媒熱交換器HEX
は第1熱交換部14a,第2熱交換部14bと三方弁V
からなり、蓄熱槽STRは第1熱交換器13aと第2熱
交換器13bとからなり、その中には蓄熱材11として
水が充填されている。
The multi-room air conditioners A and B are roughly composed of an outdoor unit 1, a refrigerant heat exchanger HEX, a heat storage tank STR, a refrigerant transfer pump PM, and three indoor units 6A and 6B. , Compressor 2, four-way valve 3, outdoor heat exchanger 4, outdoor blower 9, expansion valve 5, and refrigerant heat exchanger HEX.
Is the first heat exchange section 14a, the second heat exchange section 14b and the three-way valve V
The heat storage tank STR is composed of a first heat exchanger 13a and a second heat exchanger 13b, and water is filled therein as the heat storage material 11.

【0005】3台の室内ユニット6A,6Bは、それぞ
れ室内側熱交換器8、流量調節弁7、及び、室内側送風
機10とから構成されている。
Each of the three indoor units 6A, 6B comprises an indoor heat exchanger 8, a flow rate control valve 7, and an indoor blower 10.

【0006】上記機器構成において、圧縮機2、四方弁
3、室外側熱交換器4、膨張弁5、冷媒熱交換器の第1
熱交換部14a、及び、蓄熱槽内の第1熱交換器13a
を連通して1次側冷凍サイクルが形成され、三方弁Vを
介して冷媒熱交換器の第1熱交換部14aと蓄熱槽内の
第1熱交換器13aが1次側冷凍サイクルに並列に接続
されている。また、冷媒熱交換器の第2熱交換部14
b、蓄熱槽内の第2熱交換器13b、冷媒搬送ポンプP
M、室内側熱交換器8、及び、流量調節弁7を連通して
2次側冷凍サイクルが形成されている。
In the above equipment configuration, the compressor 2, the four-way valve 3, the outdoor heat exchanger 4, the expansion valve 5, and the first refrigerant heat exchanger are included.
The heat exchange part 14a and the 1st heat exchanger 13a in a heat storage tank
To form a primary side refrigeration cycle, and the first heat exchange section 14a of the refrigerant heat exchanger and the first heat exchanger 13a in the heat storage tank are arranged in parallel to the primary side refrigeration cycle via the three-way valve V. It is connected. In addition, the second heat exchange section 14 of the refrigerant heat exchanger
b, the second heat exchanger 13b in the heat storage tank, the refrigerant transfer pump P
A secondary side refrigeration cycle is formed by connecting M, the indoor heat exchanger 8 and the flow rate control valve 7 to each other.

【0007】更に、多室式空気調和機A,Bおのおのの
2次側冷凍サイクルにおける室内ユニット6A,6Bの
出入口集合配管相互をヘッダー17を介して連通して熱
搬送サイクルが形成されている。このヘッダー17とし
て室内ユニット出入口集合配管より管径の大きい管を使
用する。
Further, the heat transfer cycle is formed by connecting the inlet / outlet collecting pipes of the indoor units 6A, 6B in the secondary side refrigeration cycle of each of the multi-room air conditioners A, B with each other through the header 17. As the header 17, a pipe having a diameter larger than that of the indoor unit inlet / outlet collecting pipe is used.

【0008】この蓄熱式空気調和機において夜間運転
は、1次側サイクルにおいて四方弁3によって製氷運
転,蓄熱運転が切り替えられ、製氷運転時は図中の実線
矢印の方向に冷媒が流れて冷房サイクルが形成され、蓄
熱槽内の第1熱交換器13aを介して蓄熱槽内の熱交換
部13aの周囲に氷として蓄冷される。
In this heat storage type air conditioner, during the night operation, the four-way valve 3 switches the ice making operation and the heat storing operation in the primary side cycle, and during the ice making operation, the refrigerant flows in the direction of the solid line arrow in the figure to perform the cooling cycle. Is formed and is stored as ice around the heat exchange section 13a in the heat storage tank via the first heat exchanger 13a in the heat storage tank.

【0009】また、蓄熱運転時には図中の破線方向に冷
媒が流れて暖房サイクルが形成され、蓄熱槽内の第1熱
交換器13aを介して蓄熱槽STR内に温水として蓄熱
される。この場合、冷媒熱交換器HEXは使用されな
い。
Further, during the heat storage operation, the refrigerant flows in the direction of the broken line in the figure to form a heating cycle, and heat is stored as hot water in the heat storage tank STR via the first heat exchanger 13a in the heat storage tank. In this case, the refrigerant heat exchanger HEX is not used.

【0010】この場合、1次側冷凍サイクルと2次側冷
凍サイクルが分離されていて、両サイクル内の冷媒が混
合することがないため、適正冷媒封入量を維持でき、か
つ、1次側冷凍サイクルの配管長が短くて済むため、圧
縮機内の冷凍機油が流出しても戻り易く、圧縮機の信頼
性を高めることができる。
In this case, since the primary side refrigeration cycle and the secondary side refrigeration cycle are separated and the refrigerants in both cycles do not mix, an appropriate amount of refrigerant can be maintained and the primary side refrigeration cycle can be maintained. Since the cycle piping length is short, even if the refrigerating machine oil in the compressor flows out, it is easy to return and the reliability of the compressor can be improved.

【0011】次に、昼間運転について説明する。この
時、冷媒熱交換器HEXの切替弁Vの切り替えにより冷
媒熱交換器HEXの第1熱交換部14aを1次側冷凍サ
イクルに連通させておく。
Next, the daytime operation will be described. At this time, the first heat exchange section 14a of the refrigerant heat exchanger HEX is made to communicate with the primary side refrigeration cycle by switching the switching valve V of the refrigerant heat exchanger HEX.

【0012】夜間に蓄熱槽内の蓄熱材に蓄えた冷熱、あ
るいは、温熱を蓄熱槽内の第2熱交換器13bを介し
て、2次側冷凍サイクル内の冷媒と熱交換し、かつ1次
側冷凍サイクルの運転により冷却、あるいは加熱された
冷媒が冷媒熱交換器HEXを介して、2次側冷凍サイク
ル内の冷媒と熱交換する。
The cold heat or warm heat stored in the heat storage material in the heat storage tank at night is exchanged with the refrigerant in the secondary side refrigeration cycle through the second heat exchanger 13b in the heat storage tank, and the primary heat is exchanged. The refrigerant cooled or heated by the operation of the side refrigeration cycle exchanges heat with the refrigerant in the secondary side refrigeration cycle via the refrigerant heat exchanger HEX.

【0013】その冷媒を冷媒搬送ポンプPMにて各室内
ユニット6A,6Bの室内側熱交換器8へ搬送して室内
空気と熱交換することにより、各室内の冷房、あるい
は、暖房を行なう。従って、昼間電力を使用せずに、夜
間電力を利用して空調が行なえる。
The refrigerant is transferred to the indoor heat exchanger 8 of each indoor unit 6A, 6B by the refrigerant transfer pump PM to exchange heat with the indoor air, thereby cooling or heating each room. Therefore, the air conditioning can be performed by using the nighttime electric power without using the daytime electric power.

【0014】また、多室式空気調和機A,Bのうち、例
えば室内ユニットの設置方位の影響により多室式空気調
和機Aの負荷が大きくて空調能力不足で、かつにおいて
多室式空気調和機Bの負荷が小さく空調能力余剰の場
合、熱搬送サイクルを使用して、能力余剰の多室式空気
調和機Bの蓄熱槽内の冷(温)熱を、冷媒を媒体とし
て、能力不足である多室式空気調和機の室内ユニット6
A,6Bへ搬送する。
Further, of the multi-room air conditioners A and B, for example, the load of the multi-room air conditioner A is large due to the influence of the installation direction of the indoor unit, the air conditioning capacity is insufficient, and the multi-room air conditioner is When the load on the machine B is small and the air conditioning capacity is surplus, the heat transfer cycle is used to convert the cold (warm) heat in the heat storage tank of the multi-chamber air conditioner B, which has a surplus capacity, to the refrigerant as a medium and the capacity is insufficient. Indoor unit 6 of a multi-room air conditioner
Transport to A, 6B.

【0015】その際、多室式空気調和機A,Bへの冷媒
分配量の調整は、各室内ユニット6A,6B内の流量調
節弁7にて行なう。
At this time, the amount of refrigerant distributed to the multi-room air conditioners A and B is adjusted by the flow rate control valve 7 in each of the indoor units 6A and 6B.

【0016】以上のように、夜間の余剰電力エネルギー
を熱に変換して蓄熱しておき、昼間にその電力を利用す
ることにより、昼間の高負荷時刻における電力ピークを
抑え、電力利用の平準化が図れるだけでなく、多室式空
気調和機の2次側冷凍サイクルにおける能力不足を相互
で補うことができ、各室内での快適性が損なわれること
を防止できる。
As described above, the surplus power energy at night is converted into heat to store the heat, and the power is used during the daytime to suppress the power peak at the time of high load during the daytime and level the power usage. In addition, it is possible to mutually compensate for the lack of capacity in the secondary side refrigeration cycle of the multi-room air conditioner, and prevent the comfort in each room from being impaired.

【0017】また、空調設備の設計面においても、複数
の多室式空気調和機のそれぞれに接続されている室内の
同時に発生する熱負荷の和を設計負荷値とすればよく、
即ち、熱負荷のピーク値発生時刻が異なる場合、各多室
式空気調和機単独での設計負荷値(熱負荷のピーク値)
の和より小さくて済み、機器小型化が図れ、電力会社と
の契約電力費用も低減でき、より経済的な設備設計が可
能となる。
Further, in terms of design of air conditioning equipment, the sum of heat loads simultaneously generated in the rooms connected to each of the plurality of multi-room air conditioners may be set as the design load value.
That is, when the peak value of heat load occurs at different times, the design load value (peak value of heat load) of each multi-room air conditioner is independent.
, The equipment size can be reduced, the contracted electric power cost with the electric power company can be reduced, and more economical facility design can be achieved.

【0018】更に、室内ユニットを増設する場合も、蓄
熱槽に蓄える蓄冷熱量を増加させることによって対応が
できるため、拡張性や設計自由度が高くなる。
Further, when the number of indoor units is increased, it can be dealt with by increasing the amount of cold storage heat stored in the heat storage tank, so that the expandability and the degree of design freedom are increased.

【0019】[0019]

【発明が解決しようとする課題】しかしながら、前述の
従来例では、1次側冷凍サイクル内の複数の蓄熱槽の運
転モードが同一であるため、1日において冷房負荷と暖
房負荷が混在することがある中間季においては、両方の
負荷に対応できないという欠点を有していた。
However, in the above-mentioned conventional example, since the operation modes of the plurality of heat storage tanks in the primary side refrigeration cycle are the same, the cooling load and the heating load may coexist in one day. In one intermediate season, it had the drawback of not being able to handle both loads.

【0020】そこで、本発明は、負荷対応性が高く、ま
た省エネルギー性に優れた蓄熱式空調システムを提供す
ることを目的とするものである。
Therefore, it is an object of the present invention to provide a heat storage type air conditioning system having a high load adaptability and an excellent energy saving property.

【0021】[0021]

【課題を解決するための手段】上記課題を解決する本発
明の技術的手段は、冷媒対冷媒熱交換器、及び蓄熱槽を
介して1次側冷凍サイクルと2次側冷凍サイクルとから
なる蓄熱式空調システムにおいて、1次側冷凍サイクル
内の複数の蓄熱槽を製氷運転と蓄熱運転という異なる蓄
熱運転モードで運転し、かつ、冷房または暖房という空
調運転モードに応じて2次側冷凍サイクルにおいて使用
する蓄熱槽を切替える制御装置を備えたものである。
Means for Solving the Problems The technical means of the present invention for solving the above problems is a heat storage system comprising a primary side refrigeration cycle and a secondary side refrigeration cycle via a refrigerant-refrigerant heat exchanger and a heat storage tank. Type air conditioning system, a plurality of heat storage tanks in the primary side refrigeration cycle are operated in different heat storage operation modes of ice making operation and heat storage operation, and used in the secondary side refrigeration cycle depending on the air conditioning operation mode of cooling or heating. It is provided with a control device for switching the heat storage tank to be used.

【0022】また、2次側冷凍サイクル内においてバイ
パス弁を介して冷媒搬送ポンプの前後を連通するバイパ
ス回路を備え、複数の1次側冷凍サイクル内の各蓄熱
槽、及び2次側サイクルの各室内ユニットを設置対象と
なる建物のそれぞれ異なる階層に設置し、かつ上層階の
蓄熱槽にて下層階の室内ユニットを冷媒搬送ポンプの使
用なしに冷房運転を行い、または下層階の蓄熱槽にて上
層階の室内ユニットを冷媒搬送ポンプの使用なしに暖房
運転を行う制御装置を備えたものである。
In the secondary refrigeration cycle, a bypass circuit communicating with the front and rear of the refrigerant transfer pump via a bypass valve is provided, and each heat storage tank in the plurality of primary refrigeration cycles and each of the secondary cycles are provided. Indoor units are installed in different floors of the target building, and the upper floor heat storage tank is used for cooling operation of the lower floor indoor unit without the use of a refrigerant transfer pump, or in the lower floor heat storage tank. The indoor unit on the upper floor is provided with a control device for performing heating operation without using a refrigerant transfer pump.

【0023】更に、2次側冷凍サイクル内において冷媒
搬送ポンプの前後にバイパス弁を介して連通するバイパ
ス回路を備えたものである。
Further, a bypass circuit is provided in front of and behind the refrigerant transfer pump in the secondary side refrigeration cycle via a bypass valve.

【0024】[0024]

【作用】この技術的手段による作用は次のようになる。The function of this technical means is as follows.

【0025】まず、夜間運転について説明する。複数の
蓄熱式空気調和機それぞれの、圧縮機、四方弁、熱源側
熱交換器、熱源側膨張弁、冷媒対冷媒熱交換器の1次側
熱交換部、蓄熱槽内の1次側熱交換部とを連通した1次
側冷凍サイクルにおいて、夜間運転時に冷媒対冷媒熱交
換器を使用しない状態で、熱源側膨張弁、及び第1膨張
弁の制御により、蓄熱槽内の1次側熱交換部を介して蓄
熱材である水に蓄冷(製氷)、または蓄熱しておく。
First, night driving will be described. Compressor, four-way valve, heat source side heat exchanger, heat source side expansion valve, primary side heat exchange part of refrigerant-refrigerant heat exchanger, primary side heat exchange in heat storage tank of each of a plurality of heat storage type air conditioners In the primary side refrigeration cycle communicating with the heat exchanger, the heat source side expansion valve and the first expansion valve are controlled by the heat source side expansion valve and the first expansion valve in a state where the refrigerant-refrigerant heat exchanger is not used during nighttime operation. Cooling (ice making) or heat is stored in water as a heat storage material through the section.

【0026】この時、翌日の冷房と暖房の負荷比率を予
測し、その結果によって前日の夜間の蓄冷(製氷)運
転、及び蓄熱運転を行う蓄熱槽の台数と各蓄熱量を設定
する。
At this time, the load ratio of cooling and heating of the next day is predicted, and the number of heat storage tanks for performing the cold storage (ice making) operation and the heat storage operation of the night of the previous day and each heat storage amount are set according to the result.

【0027】次に、昼間運転について、特に1日の中で
暖房負荷が大きい時間帯と冷房負荷が大きい時間帯とが
共に存在する場合について説明する。
Next, the daytime operation will be described, particularly in the case where there are both a time zone with a large heating load and a time zone with a large cooling load in the day.

【0028】この場合、各蓄熱式空気調和機の1次側冷
凍サイクルでは、熱源側膨張弁、第1膨張弁、及び第1
流量弁の制御により、蓄熱槽を使用せず、冷媒対冷媒熱
交換器を使用して負荷に応じたモード運転を行う。
In this case, in the primary side refrigeration cycle of each heat storage type air conditioner, the heat source side expansion valve, the first expansion valve, and the first expansion valve
By controlling the flow valve, the heat storage tank is not used and the refrigerant-refrigerant heat exchanger is used to perform the mode operation according to the load.

【0029】即ち、冬季の朝方のように暖房負荷が大き
い場合、各1次側冷凍サイクルでは冷媒対冷媒熱交換器
の第1熱交換器部を凝縮器として作用させ、一方、2次
側冷凍サイクルでは冷媒対冷媒熱交換器の2次側熱交換
部、及び夜間に蓄熱運転を行った蓄熱槽のみの2次側熱
交換部を蒸発器として作用させて熱交換した冷媒を冷媒
搬送ポンプにて室内ユニットへ搬送して暖房運転を行
う。
That is, when the heating load is large such as in the morning in winter, the first heat exchanger section of the refrigerant-refrigerant heat exchanger acts as a condenser in each primary side refrigeration cycle, while the secondary side refrigeration cycle is performed. In the cycle, the secondary-side heat exchange section of the refrigerant-refrigerant heat exchanger and the secondary-side heat exchange section of only the heat storage tank that performed the heat storage operation at night act as the evaporator to transfer the refrigerant to the refrigerant transfer pump. And carry it to the indoor unit for heating operation.

【0030】逆に、冬季でも昼間の冷房負荷が大きい場
合、各1次側冷凍サイクルでは冷媒対冷媒熱交換器の第
1熱交換器部を蒸発器として作用させ、一方、2次側冷
凍サイクルでは冷媒対冷媒熱交換器の2次側熱交換部、
及び夜間に製氷運転を行った蓄熱槽のみの2次側熱交換
部を凝縮器として作用させて熱交換した冷媒を冷媒搬送
ポンプにて室内ユニットへ搬送して冷房運転を行う。
On the contrary, when the cooling load during the daytime is large even in winter, the first heat exchanger portion of the refrigerant-refrigerant heat exchanger acts as an evaporator in each primary side refrigeration cycle, while the secondary side refrigeration cycle is operated. Then, the secondary side heat exchange part of the refrigerant-refrigerant heat exchanger,
Also, the refrigerant is heat-exchanged by causing the secondary side heat exchange section of only the heat storage tank that has performed the ice making operation at night to act as a condenser, and conveys the refrigerant to the indoor unit by the refrigerant conveyance pump to perform the cooling operation.

【0031】従って、夜間電力を利用して、1日に生じ
る冷房、暖房負荷の両方に対応することができ、効率的
で、かつ負荷応答性の高い空調を昼間に行えることにな
る。
Therefore, it is possible to cope with both the cooling load and the heating load generated in one day by utilizing the nighttime electric power, and it is possible to perform efficient air conditioning with high load responsiveness in the daytime.

【0032】また、複数の蓄熱式空気調和機を設置する
階層が異なる場合、即ち1次側冷凍サイクル内の各蓄熱
槽、及び2次側サイクルの各室内ユニットの設置高さを
変えた場合、2次側サイクルにおける冷媒搬送に重力を
利用できるため、室内側の空調負荷の分布によっては冷
媒搬送ポンプを用いて強制的に搬送する必要がなくな
り、自然対流で冷媒を搬送できる。
Further, when the layers in which a plurality of heat storage type air conditioners are installed are different, that is, when the installation height of each heat storage tank in the primary side refrigeration cycle and each indoor unit of the secondary side cycle is changed, Since gravity can be used to convey the refrigerant in the secondary cycle, it is not necessary to forcibly convey the refrigerant using the refrigerant conveyance pump depending on the distribution of the indoor air conditioning load, and the refrigerant can be conveyed by natural convection.

【0033】即ち、相対的に上方に設置された室内ユニ
ットのみの空調負荷が暖房であり、下方に設置された蓄
熱槽が前日の夜間に蓄熱運転されている場合、下方の蓄
熱式空気調和機の1次側冷凍サイクルの冷媒対冷媒熱交
換器の第1熱交換器部を凝縮器として作用させ、一方、
2次側冷凍サイクルでは冷媒対冷媒熱交換器の2次側熱
交換部、及び夜間に蓄熱運転を行った蓄熱槽のみの2次
側熱交換部を蒸発器として作用させる。
That is, when the air conditioning load of only the indoor unit installed relatively above is heating and the heat storage tank installed below is performing heat storage operation at night on the previous day, the heat storage type air conditioner below The first heat exchanger section of the refrigerant-to-refrigerant heat exchanger of the primary side refrigeration cycle of
In the secondary side refrigeration cycle, the secondary side heat exchange part of the refrigerant-to-refrigerant heat exchanger and the secondary side heat exchange part of only the heat storage tank that has performed heat storage operation at night act as an evaporator.

【0034】蒸発器で気化したガス冷媒は比重が小さい
ため、自然対流によって上方の室内ユニットへ流動し、
その室内ユニットにて室内空気と熱交換(暖房)して凝
縮液化する。
Since the gas refrigerant vaporized in the evaporator has a small specific gravity, it flows to the upper indoor unit by natural convection,
In the indoor unit, heat is exchanged (heated) with indoor air to be condensed and liquefied.

【0035】上方に設置された室内ユニットにて液化し
た液冷媒はガス冷媒とは逆に比重が大きいため、その自
重にて下方に設置された2次側冷凍サイクルの冷媒対冷
媒熱交換器の2次側熱交換部、及び温水蓄熱された蓄熱
槽の2次側熱交換部へ戻るというサイクルを形成する。
Since the liquid refrigerant liquefied in the indoor unit installed above has a large specific gravity as opposed to the gas refrigerant, its own weight causes the refrigerant-refrigerant heat exchanger of the secondary side refrigeration cycle installed below to have a higher specific gravity. A cycle of returning to the secondary side heat exchange section and the secondary side heat exchange section of the heat storage tank in which hot water is stored is formed.

【0036】また、相対的に下方に設置された室内ユニ
ットのみの空調負荷が冷房であり、上方に設置された蓄
熱槽が前日の夜間に製氷運転されている場合、上方の蓄
熱式空気調和機の1次側冷凍サイクルの冷媒対冷媒熱交
換器の第1熱交換器部を蒸発器として作用させ、一方、
2次側冷凍サイクルでは冷媒対冷媒熱交換器の2次側熱
交換部、及び夜間に製氷運転を行った蓄熱槽のみの2次
側熱交換部を凝縮器として作用させる。
Further, when the air-conditioning load of only the indoor unit installed relatively below is the cooling and the heat storage tank installed above is in the ice making operation at night on the previous day, the heat storage air conditioner above is installed. The first heat exchanger section of the refrigerant-to-refrigerant heat exchanger of the primary side refrigeration cycle of
In the secondary side refrigeration cycle, the secondary side heat exchange part of the refrigerant-to-refrigerant heat exchanger and the secondary side heat exchange part of only the heat storage tank that has performed the ice making operation at night act as a condenser.

【0037】凝縮器で気化したガス冷媒は比重が大きい
ため、その自重によって下方の室内ユニットへ流動し、
その室内ユニットにて室内空気と熱交換(冷房)して蒸
発気化する。
Since the gas refrigerant vaporized in the condenser has a large specific gravity, it flows to the lower indoor unit due to its own weight,
The indoor unit exchanges heat with the indoor air (cooling) to evaporate and vaporize.

【0038】上方に設置された室内ユニットにて気化し
たガス冷媒は液冷媒とは逆に比重が小さいため、自然対
流によって上方に設置された2次側冷凍サイクルの冷媒
対冷媒熱交換器の2次側熱交換部、及び製氷された蓄熱
槽の2次側熱交換部へ戻るというサイクルを形成する。
Since the gas refrigerant vaporized in the indoor unit installed above has a small specific gravity as opposed to the liquid refrigerant, 2 of the refrigerant-refrigerant heat exchanger of the secondary side refrigeration cycle installed above by natural convection is installed. A cycle of returning to the secondary heat exchange section and the secondary heat exchange section of the ice storage tank is formed.

【0039】従って、室内側の空調負荷の分布によって
冷媒搬送ポンプの動力なしで、自然対流で冷媒を搬送で
き、運転費用低減が図れる。
Therefore, due to the distribution of the air conditioning load on the indoor side, the refrigerant can be transferred by natural convection without the power of the refrigerant transfer pump, and the operating cost can be reduced.

【0040】更に、2次側冷凍サイクル内において冷媒
搬送ポンプの前後にバイパス弁を介して連通するバイパ
ス回路を備えてバイパス弁の開度を制御することによ
り、2次側冷凍サイクル内の室内ユニットへ流入する冷
媒循環量、即ち空調能力の制御を行える。
Further, by providing a bypass circuit communicating before and after the refrigerant transfer pump in the secondary side refrigeration cycle via a bypass valve to control the opening of the bypass valve, the indoor unit in the secondary side refrigeration cycle. It is possible to control the circulation amount of the refrigerant flowing into the air, that is, the air conditioning capacity.

【0041】[0041]

【実施例】以下、本発明の一実施例を添付図面に基づい
て説明を行うが、従来と同一構成については同一符号を
付し、その詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. The same components as those of the prior art will be designated by the same reference numerals and detailed description thereof will be omitted.

【0042】図1は本発明の一実施例の蓄熱式空調シス
テムの冷凍システム図である。この実施例の蓄熱式空調
システムは、多室式空気調和機A、及び多室式空気調和
機Bとから構成され、多室式空気調和機Aは室外ユニッ
ト21A、室内ユニット6A、及び制御装置CN1とか
らなり、多室式空気調和機Bは室外ユニット21B、室
内ユニット6B、及び制御装置CN2とからなる。
FIG. 1 is a refrigeration system diagram of a heat storage type air conditioning system according to an embodiment of the present invention. The heat storage type air conditioning system of this embodiment includes a multi-room air conditioner A and a multi-room air conditioner B. The multi-room air conditioner A includes an outdoor unit 21A, an indoor unit 6A, and a control device. The multi-room air conditioner B includes an outdoor unit 21B, an indoor unit 6B, and a control device CN2.

【0043】多室式空気調和機Aの室外ユニット21
A、及び多室式空気調和機Bの室外ユニット21Bは、
圧縮機2、四方弁3、熱源側熱交換器4、膨張弁5、1
次側熱交換部14aと2次側熱交換部14bとからなる
冷媒対冷媒熱交換器HEX、第1膨張弁EV1、第1流
量弁RV1、蓄熱材である水11と1次側熱交換部13
a、2次側熱交換部13bからなる蓄熱槽STR、第2
膨張弁EV2、第2流量弁RV2、及び冷媒搬送ポンプ
PMとから構成されている。
Outdoor unit 21 of multi-room air conditioner A
A and the outdoor unit 21B of the multi-room air conditioner B are
Compressor 2, four-way valve 3, heat source side heat exchanger 4, expansion valve 5, 1
Refrigerant-to-refrigerant heat exchanger HEX including secondary side heat exchange section 14a and secondary side heat exchange section 14b, first expansion valve EV1, first flow valve RV1, water 11 as heat storage material, and primary side heat exchange section Thirteen
a, heat storage tank STR composed of the secondary side heat exchange section 13b, the second
The expansion valve EV2, the second flow valve RV2, and the refrigerant transfer pump PM are included.

【0044】多室式空気調和機A,Bの室外ユニット2
1A,21Bにおいて、圧縮機2と、四方弁3と、熱源
側熱交換器4と、熱源側膨張弁5とを順次連通し、さら
に冷媒対冷媒熱交換器HEXの1次側熱交換部14a
と、蓄熱槽STR内の1次側熱交換部とを並列に連通し
て1次側冷凍サイクルを形成している。
Outdoor unit 2 of multi-room air conditioners A and B
In 1A and 21B, the compressor 2, the four-way valve 3, the heat source side heat exchanger 4, and the heat source side expansion valve 5 are sequentially communicated with each other, and the primary side heat exchange section 14a of the refrigerant-refrigerant heat exchanger HEX is further connected.
And the primary side heat exchange section in the heat storage tank STR are connected in parallel to form a primary side refrigeration cycle.

【0045】一方、多室式空気調和機Aは、蓄熱槽内S
TRの2次側熱交換部13bと、冷媒対冷媒熱交換器H
EXの2次側熱交換部14bと、室内ユニット6Aと、
冷媒搬送ポンプPMを順次連通してなる2次側冷凍サイ
クルを形成している。
On the other hand, the multi-room air conditioner A has a heat storage tank S
The secondary heat exchange part 13b of TR and the refrigerant-to-refrigerant heat exchanger H
The secondary side heat exchange section 14b of the EX, the indoor unit 6A,
A secondary side refrigeration cycle is formed by sequentially connecting the refrigerant transfer pumps PM.

【0046】また、多室式空気調和機Bは、蓄熱槽内S
TRの2次側熱交換部13bと、冷媒対冷媒熱交換器H
EXの2次側熱交換部14bと、室内ユニット6Bと、
冷媒搬送ポンプPMを順次連通してなる2次側冷凍サイ
クルを形成している。
The multi-room air conditioner B has a heat storage tank S
The secondary heat exchange part 13b of TR and the refrigerant-to-refrigerant heat exchanger H
The secondary side heat exchange section 14b of the EX, the indoor unit 6B,
A secondary side refrigeration cycle is formed by sequentially connecting the refrigerant transfer pumps PM.

【0047】多室式空気調和機A,Bの制御装置である
CN1,CN2は、圧縮機2、四方弁3、熱源側膨張弁
5、室内側流量弁7、第1膨張弁EV1、第2膨張弁E
V2、第1流量弁RV1、第2流量弁RV2、冷媒搬送
ポンプPMと信号線で接続されている。
CN1 and CN2, which are control devices for the multi-room air conditioners A and B, include a compressor 2, a four-way valve 3, a heat source side expansion valve 5, an indoor side flow valve 7, a first expansion valve EV1 and a second expansion valve. Expansion valve E
V2, the first flow valve RV1, the second flow valve RV2, and the refrigerant transfer pump PM are connected by a signal line.

【0048】次に、この−実施例の構成における作用に
ついて説明する。特に、昼間運転の中で、暖房負荷が大
きい時間帯と冷房負荷が大きい時間帯との両方が存在す
る場合、例えば春季や秋季などの中間季について説明す
る。 (1)夜間運転(製氷、及び蓄熱運転);負荷演算装置
LDにて翌日の冷房と暖房の負荷比率を予測し、その結
果によって前日の夜間の蓄冷(製氷)運転、及び蓄熱運
転を行う蓄熱槽の台数(各1台づつ)と各蓄熱量を設定
する。
Next, the operation of the structure of this embodiment will be described. In particular, in the daytime operation, when both a time zone with a large heating load and a time zone with a large cooling load exist, for example, an intermediate season such as spring or autumn will be described. (1) Nighttime operation (ice making and heat storage operation); Load storage device LD predicts the load ratio of cooling and heating on the next day, and the result is heat storage that performs nighttime cold (ice making) operation and heat storage operation Set the number of tanks (one each) and the amount of heat storage.

【0049】蓄熱式空気調和機A,Bそれぞれの1次側
冷凍サイクルにおいて、夜間運転時に冷媒対冷媒熱交換
器HEXを使用しない状態で、熱源側膨張弁5、及び第
1膨張弁EV1の制御により、蓄熱槽内の1次側熱交換
部13aを介して蓄熱材である水11に、多室式空気調
和機Aの蓄熱槽STRでは製氷運転を、多室式空気調和
機Bの蓄熱槽STRでは蓄熱運転をしておく。 (2)昼間運転(冷房または暖房運転);この場合、蓄
熱式空気調和機A,Bの1次側冷凍サイクルでは、熱源
側膨張弁5、第1膨張弁EV1、及び第1流量弁RV1
の制御により、蓄熱槽STRを使用せず、冷媒対冷媒熱
交換器HEXを使用して負荷に応じた運転を行う。
In the primary side refrigeration cycle of each of the heat storage type air conditioners A and B, control of the heat source side expansion valve 5 and the first expansion valve EV1 is performed without using the refrigerant-refrigerant heat exchanger HEX during night operation. As a result, the water 11 that is the heat storage material is supplied to the water 11 that is the heat storage material through the primary-side heat exchange section 13a in the heat storage tank, and the ice storage operation is performed in the heat storage tank STR of the multi-room air conditioner A, and the heat storage tank of the multi-room air conditioner B is operated Heat storage operation is performed in STR. (2) Daytime operation (cooling or heating operation); in this case, in the primary side refrigeration cycle of the heat storage type air conditioners A and B, the heat source side expansion valve 5, the first expansion valve EV1, and the first flow rate valve RV1.
According to the control, the heat storage tank STR is not used and the refrigerant-refrigerant heat exchanger HEX is used to perform the operation according to the load.

【0050】即ち、暖房負荷が大きい場合、各1次側冷
凍サイクルでは冷媒対冷媒熱交換器の第1熱交換器部1
4aを凝縮器として作用させ、一方、2次側冷凍サイク
ルでは冷媒対冷媒熱交換器の2次側熱交換部14b、及
び夜間に蓄熱運転を行った多室式空気調和機Bの蓄熱槽
STRのみの2次側熱交換部13bを蒸発器として作用
させて熱交換した冷媒を冷媒搬送ポンプPMにて各室内
ユニット6Aへ搬送して暖房運転を行う。
That is, when the heating load is large, the first heat exchanger section 1 of the refrigerant-refrigerant heat exchanger is used in each primary side refrigeration cycle.
4a acts as a condenser, while in the secondary side refrigeration cycle, the secondary side heat exchange section 14b of the refrigerant-refrigerant heat exchanger, and the heat storage tank STR of the multi-room air conditioner B that performed heat storage operation at night. Only the secondary side heat exchange section 13b acts as an evaporator to carry out heat exchange of the refrigerant, and the refrigerant transfer pump PM transfers the refrigerant to the indoor units 6A for heating operation.

【0051】次に、暖房負荷がなくなり、逆に、冷房負
荷が大きくなった場合、各1次側冷凍サイクルでは冷媒
対冷媒熱交換器の第1熱交換器部14aを蒸発器として
作用させ、一方、2次側冷凍サイクルでは冷媒対冷媒熱
交換器の2次側熱交換部14b、及び夜間に製氷運転を
行った多室式空気調和機Aの蓄熱槽STRのみの2次側
熱交換部13bを凝縮器として作用させて熱交換した冷
媒を冷媒搬送ポンプPMにて各室内ユニット6Aへ搬送
して冷房運転を行う。
Next, when the heating load disappears and the cooling load increases, conversely, in each primary side refrigeration cycle, the first heat exchanger section 14a of the refrigerant-refrigerant heat exchanger acts as an evaporator, On the other hand, in the secondary side refrigeration cycle, the secondary side heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger and the secondary side heat exchange section of only the heat storage tank STR of the multi-chamber air conditioner A that has performed the ice making operation at night. Refrigerant that has exchanged heat by causing 13b to act as a condenser is transported to each indoor unit 6A by the coolant transport pump PM to perform the cooling operation.

【0052】従って、夜間電力を利用して、1日の中で
時間帯がずれて生じる冷房、暖房負荷の両方に対応する
ことができ、効率的で、かつ負荷応答性の高い空調を昼
間に行えることになる。
Therefore, by utilizing the nighttime power, it is possible to cope with both cooling and heating loads that occur at different time zones during the day, and to provide efficient and highly load-responsive air conditioning in the daytime. You can do it.

【0053】次に、本発明による第2の実施例につい
て、図面を参照しながら説明する。尚、第1の実施例と
同一構成については、同一符号を付して詳細な説明は省
略する。 図2は本発明の第2の実施例による蓄熱式空
調システムの冷凍システム図である。この実施例の蓄熱
式空調システムは、多室式空気調和機A、及び多室式空
気調和機Bとから構成され、多室式空気調和機Aはある
建物のn+1階に、多室式空気調和機Bはn階に設置さ
れているものとする。
Next, a second embodiment according to the present invention will be described with reference to the drawings. The same components as those in the first embodiment are designated by the same reference numerals and detailed description thereof will be omitted. FIG. 2 is a refrigeration system diagram of a heat storage type air conditioning system according to a second embodiment of the present invention. The heat storage type air conditioning system of this embodiment includes a multi-room air conditioner A and a multi-room air conditioner B. The multi-room air conditioner A is located on the n + 1 floor of a building and has a multi-room air conditioner. It is assumed that the harmony machine B is installed on the nth floor.

【0054】多室式空気調和機Aは室外ユニット21
A、室内ユニット6A、及び制御装置CN1とからな
り、多室式空気調和機Bは室外ユニット21B、室内ユ
ニット6A、及び制御装置CN2とからなる。
The multi-room air conditioner A has an outdoor unit 21.
A multi-chamber air conditioner B includes an outdoor unit 21B, an indoor unit 6A, and a control device CN2.

【0055】また、冷媒搬送ポンプPMの前後をバイパ
ス弁BVを介して連通するバイパス回路BPを備えてお
り、バイパス弁BVを開くことにより、2次側冷凍サイ
クルにおいて、室内ユニット6A,6Bへ自然対流によ
り冷媒を搬送できる。
Further, a bypass circuit BP which communicates the front and rear of the refrigerant transfer pump PM via a bypass valve BV is provided, and by opening the bypass valve BV, the indoor units 6A and 6B are naturally operated in the secondary side refrigeration cycle. The refrigerant can be conveyed by convection.

【0056】以上のように構成された蓄熱式空調システ
ムにおいて、以下の場合についてその作用を説明する。 (a)多室式空気調和機A(上方設置)の室内ユニット
6Aのみの空調負荷が暖房であり、多室式空気調和機B
(下方設置)の蓄熱槽STRが前日の夜間に蓄熱運転さ
れている場合について 多室式空気調和機Bのバイパス弁BVのみをON(全
開)とし、下方の蓄熱式空気調和機Bの1次側冷凍サイ
クルの冷媒対冷媒熱交換器の第1熱交換器部14aを凝
縮器として作用させ、一方、2次側冷凍サイクルでは冷
媒対冷媒熱交換器の2次側熱交換部14b、及び夜間に
蓄熱運転を行った蓄熱槽STRのみの2次側熱交換部1
3bを蒸発器として作用させる。
The operation of the heat storage type air conditioning system configured as described above will be described in the following cases. (A) The air conditioning load of only the indoor unit 6A of the multi-room air conditioner A (installed above) is heating, and the multi-room air conditioner B
When the heat storage tank STR (installed below) is in heat storage operation at night on the previous day: Only the bypass valve BV of the multi-room air conditioner B is turned on (fully opened), and the primary of the heat storage air conditioner B below The first heat exchanger portion 14a of the refrigerant-to-refrigerant heat exchanger of the side refrigeration cycle is caused to act as a condenser, while in the secondary side refrigeration cycle, the secondary-side heat exchange portion 14b of the refrigerant-to-refrigerant heat exchanger and night time. Secondary side heat exchange section 1 of only the heat storage tank STR that has performed heat storage operation on
3b acts as an evaporator.

【0057】各蒸発器で気化したガス冷媒は比重が小さ
いため、自然対流によって上方にある多室式空気調和機
Aの室内ユニット6Aへ流動し、その室内ユニット6A
にて室内空気と熱交換(暖房)して凝縮液化する。
Since the gas refrigerant vaporized in each evaporator has a small specific gravity, it flows to the indoor unit 6A of the multi-chamber air conditioner A above by natural convection, and the indoor unit 6A
At, it exchanges heat with the indoor air (heating) to condense and liquefy.

【0058】多室式空気調和機Aの室内ユニット6Aに
て液化した液冷媒はガス冷媒とは逆に比重が大きいた
め、その自重にて下方に設置された多室式空気調和機B
の2次側冷凍サイクルの冷媒対冷媒熱交換器の2次側熱
交換部14b、及び温水蓄熱された蓄熱槽STRの2次
側熱交換部13bへ戻るというサイクルを形成する。
Since the liquid refrigerant liquefied in the indoor unit 6A of the multi-room air conditioner A has a large specific gravity as opposed to the gas refrigerant, the multi-room air conditioner B installed below due to its own weight.
The secondary side heat exchange section 14b of the refrigerant-to-refrigerant heat exchanger of the secondary side refrigeration cycle and the cycle of returning to the secondary side heat exchange section 13b of the heat storage tank STR in which hot water is stored are formed.

【0059】従って、冷媒搬送ポンプPMの動力なし
で、自然対流で冷媒を搬送でき、運転費用低減が図れ
る。 (b)多室式空気調和機B(下方設置)の室内ユニット
6Bのみの空調負荷が冷房であり、多室式空気調和機A
(上方設置)の蓄熱槽STRが前日の夜間に製氷運転さ
れている場合 多室式空気調和機Aのバイパス弁BVのみをON(全
開)とし、上方に設置した蓄熱式空気調和機Aの1次側
冷凍サイクルの冷媒対冷媒熱交換器の第1熱交換器部1
4aを蒸発器として作用させ、一方、2次側冷凍サイク
ルでは冷媒対冷媒熱交換器の2次側熱交換部14b、及
び夜間に製氷運転を行った蓄熱槽のみの2次側熱交換部
13bを凝縮器として作用させる。
Therefore, the refrigerant can be transferred by natural convection without the power of the refrigerant transfer pump PM, and the operating cost can be reduced. (B) The air conditioning load of only the indoor unit 6B of the multi-room air conditioner B (installed below) is cooling, and the multi-room air conditioner A
When the heat storage tank STR (installed above) is operated for ice making at night on the previous day, only the bypass valve BV of the multi-room air conditioner A is turned on (fully opened), and 1 of the heat storage air conditioner A installed above First heat exchanger section 1 of refrigerant-to-refrigerant heat exchanger in secondary refrigeration cycle
4a acts as an evaporator, while in the secondary side refrigeration cycle, the secondary side heat exchange section 14b of the refrigerant-refrigerant heat exchanger, and the secondary side heat exchange section 13b of only the heat storage tank that has performed the ice making operation at night. To act as a condenser.

【0060】凝縮器で気化したガス冷媒は比重が大きい
ため、その自重によって下方の室内ユニットへ流動し、
その室内ユニットにて室内空気と熱交換(冷房)して蒸
発気化する。
Since the gas refrigerant vaporized in the condenser has a large specific gravity, it flows to the lower indoor unit due to its own weight,
The indoor unit exchanges heat with the indoor air (cooling) to evaporate and vaporize.

【0061】上方に設置した室内ユニット6Bにて気化
したガス冷媒は液冷媒とは逆に比重が小さいため、自然
対流によって上方に設置された2次側冷凍サイクルの冷
媒対冷媒熱交換器の2次側熱交換部14b、及び製氷さ
れた蓄熱槽の2次側熱交換部13bへ戻るというサイク
ルを形成する。
Since the gas refrigerant vaporized in the indoor unit 6B installed above has a small specific gravity as opposed to the liquid refrigerant, the refrigerant-refrigerant heat exchanger of the secondary side refrigeration cycle installed above due to natural convection is used. A cycle of returning to the secondary heat exchange section 14b and the secondary heat exchange section 13b of the ice storage tank is formed.

【0062】従って、冷媒搬送ポンプPMの動力なし
で、自然対流で冷媒を搬送でき、運転費用低減が図れ
る。
Therefore, the refrigerant can be transferred by natural convection without the power of the refrigerant transfer pump PM, and the operating cost can be reduced.

【0063】次に、本発明による第3の実施例につい
て、図面を参照しながら説明する。尚、第1、及び第2
の実施例と同一構成については、同一符号を付して詳細
な説明は省略する。図3は本発明の第3の実施例による
蓄熱式空調システムの冷凍システム図である。
Next, a third embodiment of the present invention will be described with reference to the drawings. The first and second
The same configurations as those of the embodiment are given the same reference numerals and detailed description thereof will be omitted. FIG. 3 is a refrigeration system diagram of a heat storage type air conditioning system according to a third embodiment of the present invention.

【0064】バイパス流量弁RVを介して、冷媒搬送ポ
ンプPMの前後を冷媒が連通できる流量調整回路RPを
備えており、バイパス流量弁RVの開度を制御すること
により、室内ユニット6A,6Bへ流入する冷媒循環量
の制御を行える。
A flow rate adjusting circuit RP is provided which allows the refrigerant to communicate before and after the refrigerant transfer pump PM via the bypass flow rate valve RV. By controlling the opening of the bypass flow rate valve RV, the indoor units 6A and 6B can be controlled. It is possible to control the amount of circulating refrigerant.

【0065】また、多室式空気調和機Aの制御装置CN
1は、四方弁3、熱源側膨張弁5、室内側流量弁7、第
1膨張弁EV1、第2膨張弁EV2、第1流量弁RV
1、第2流量弁RV2、冷媒搬送ポンプPM、及びバイ
パス流量弁RVと信号線で接続されている。
Further, the controller CN of the multi-room air conditioner A
1 is a four-way valve 3, a heat source side expansion valve 5, an indoor side flow valve 7, a first expansion valve EV1, a second expansion valve EV2, a first flow valve RV.
The first and second flow rate valves RV2, the refrigerant transfer pump PM, and the bypass flow rate valve RV are connected by signal lines.

【0066】以上のように構成された蓄熱式空調システ
ムにおいて、上記(1),(2),(a),(b)のい
づれの場合についても、2次側冷凍サイクル内において
冷媒搬送ポンプPMの前後にバイパス流量弁RVを介し
て連通するバイパス回路RPを備えてバイパス流量弁R
Vの開度を制御することにより、2次側冷凍サイクル内
の各室内ユニット6A,6Bへ流入する冷媒循環量の制
御を行え、室内側の熱負荷に対応した空調能力の制御が
行える。
In the heat storage type air conditioning system configured as described above, the refrigerant transfer pump PM in the secondary side refrigeration cycle in any of the above cases (1), (2), (a) and (b) The bypass flow valve R is provided with a bypass circuit RP communicating before and after the bypass flow valve RV.
By controlling the opening degree of V, the refrigerant circulation amount flowing into each indoor unit 6A, 6B in the secondary side refrigeration cycle can be controlled, and the air conditioning capacity corresponding to the indoor heat load can be controlled.

【0067】即ち、室内側の空調負荷が少なく、2次側
冷凍サイクルの冷媒循環量を下げる必要がある場合で、
室内側流量弁7の制御範囲以下の場合でも、冷媒搬送ポ
ンプPMに周波数変換器を用いずとも冷媒循環量を下げ
た運転を行える。
That is, in the case where the air conditioning load on the indoor side is small and it is necessary to reduce the refrigerant circulation amount of the secondary side refrigeration cycle,
Even when the indoor flow rate valve 7 is below the control range, it is possible to perform the operation in which the refrigerant circulation amount is reduced without using the frequency converter in the refrigerant transfer pump PM.

【0068】[0068]

【発明の効果】以上のように本発明は、冷媒対冷媒熱交
換器、及び蓄熱槽を介して1次側冷凍サイクルと2次側
冷凍サイクルとからなる蓄熱式空調システムにおいて、
1次側冷凍サイクル内の複数の蓄熱槽を異なる蓄熱運転
モードとして運転し、かつ、空調運転モードに応じて2
次側冷凍サイクルにおいて使用する蓄熱槽を切替える制
御装置を備えたものである。
As described above, the present invention provides a heat storage type air conditioning system including a primary side refrigeration cycle and a secondary side refrigeration cycle through a refrigerant-refrigerant heat exchanger and a heat storage tank.
A plurality of heat storage tanks in the primary side refrigeration cycle are operated in different heat storage operation modes, and 2 depending on the air conditioning operation mode.
It is equipped with a control device that switches the heat storage tank used in the secondary refrigeration cycle.

【0069】従って、夜間電力を利用して、1日に生じ
る冷房、暖房負荷の両方に対応することができ、効率的
で、かつ負荷応答性の高い空調を昼間に行えることにな
る。
Therefore, it is possible to cope with both the cooling load and the heating load that occur in one day by utilizing the nighttime power, and it is possible to perform efficient air conditioning with high load responsiveness in the daytime.

【0070】更に、複数の1次側冷凍サイクル内の各蓄
熱槽、及び2次側サイクルの各室内ユニットを設置対象
となる建物のそれぞれ異なる階層に設置することによ
り、冷媒搬送ポンプの動力なしで、自然対流で冷媒を搬
送でき、運転費用低減が図れる。
Furthermore, by installing each heat storage tank in the plurality of primary side refrigeration cycles and each indoor unit of the secondary side cycle in different floors of the building to be installed, the power of the refrigerant transfer pump can be eliminated. The refrigerant can be transported by natural convection, and the operating cost can be reduced.

【0071】また、2次側冷凍サイクル内においてバイ
パス流量弁を介して冷媒搬送ポンプの前後を連通する流
量調整回路を備えることにより、室内側の空調負荷が少
なく、2次側冷凍サイクルの冷媒循環量を下げる必要が
ある場合で、室内側流量弁の制御範囲以下の場合でも、
冷媒搬送ポンプに周波数変換器を用いずとも冷媒循環量
を下げた運転を行える。
Further, by providing the flow rate adjusting circuit which communicates the front and rear of the refrigerant transfer pump via the bypass flow valve in the secondary side refrigeration cycle, the indoor air conditioning load is small and the refrigerant circulation in the secondary side refrigeration cycle is small. If it is necessary to reduce the amount, and even if it is below the control range of the indoor flow valve,
Even if the frequency converter is not used for the refrigerant transfer pump, the operation can be performed with the refrigerant circulation amount reduced.

【0072】従って、本発明は、負荷対応性が高く、ま
た省エネルギー性に優れた蓄熱式空調システムを提供す
ることできる。
Therefore, the present invention can provide a heat storage type air conditioning system having a high load adaptability and an excellent energy saving property.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による蓄熱式空調システムの第1の実施
例の冷凍システム図
FIG. 1 is a refrigeration system diagram of a first embodiment of a heat storage type air conditioning system according to the present invention.

【図2】本発明による蓄熱式空調システムの第2の実施
例の冷凍システム図
FIG. 2 is a refrigeration system diagram of a second embodiment of the heat storage type air conditioning system according to the present invention.

【図3】本発明による蓄熱式空調システムの第3の実施
例の冷凍システム図
FIG. 3 is a refrigeration system diagram of a third embodiment of the heat storage type air conditioning system according to the present invention.

【図4】従来の蓄熱式空調システムの冷凍システム図FIG. 4 is a refrigeration system diagram of a conventional heat storage type air conditioning system.

【符号の説明】[Explanation of symbols]

2 圧縮機 3 四方弁 4 熱源側熱交換器 5 熱源側膨張弁 6A,6B 室内ユニット 13a 蓄熱槽の1次側熱交換部 13b 蓄熱槽の2次側熱交換部 14a 冷媒対冷媒熱交換器の1次側熱交換部 14b 冷媒対冷媒熱交換器の2次側熱交換部 STR 蓄熱槽 HEX 冷媒対冷媒熱交換器 PM 冷媒搬送ポンプ EV1 第1膨張弁 EV2 第2膨張弁 RV1 第1流量弁 RV2 第2流量弁 BV バイパス弁 BP バイパス回路 RV バイパス流量弁 RP 流量調整回路 CN1,CN2 制御装置 2 Compressor 3 Four-way valve 4 Heat source side heat exchanger 5 Heat source side expansion valve 6A, 6B Indoor unit 13a Primary heat exchange part of heat storage tank 13b Secondary heat exchange part of heat storage tank 14a Refrigerant-to-refrigerant heat exchanger Primary-side heat exchange part 14b Secondary-side heat exchange part of refrigerant-to-refrigerant heat exchanger STR Heat storage tank HEX Refrigerant-to-refrigerant heat exchanger PM Refrigerant transport pump EV1 First expansion valve EV2 Second expansion valve RV1 First flow valve RV2 2nd flow valve BV bypass valve BP bypass circuit RV bypass flow valve RP flow control circuit CN1, CN2 control device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機と、四方弁と、熱源側熱交換器
と、熱源側膨張弁とを直列に接続し、かつ第1膨張弁
と、1次側熱交換部と、第1流量弁と、2次側熱交換部
とからなる冷媒対冷媒熱交換器、及び第2膨張弁と、1
次側熱交換部と、第2流量弁と、2次側熱交換部とから
なる蓄熱槽の各1次側熱交換部を並列に接続してなる複
数の1次側冷凍サイクルと、冷媒搬送ポンプと、複数の
室内ユニットとを環状に接続し、かつ冷媒対冷媒熱交換
器の2次側熱交換部、及び蓄熱槽内の2次側熱交換部を
並列に接続してなる2次側冷凍サイクルとからなり、 前記複数の1次側冷凍サイクル内の蓄熱槽を製氷運転ま
たは蓄熱運転という異なる蓄熱運転モードとして運転
し、かつ、2次側冷凍サイクルにおいて冷房運転または
暖房運転という空調運転モードに応じて使用する蓄熱槽
を切替える制御装置を備えた蓄熱式空調システム。
1. A compressor, a four-way valve, a heat source side heat exchanger, and a heat source side expansion valve are connected in series, and a first expansion valve, a primary side heat exchange section, and a first flow valve. And a refrigerant-to-refrigerant heat exchanger including a secondary heat exchange section, a second expansion valve, and 1
A plurality of primary side refrigeration cycles in which the respective primary side heat exchange sections of the heat storage tank including the secondary side heat exchange section, the second flow valve, and the secondary side heat exchange section are connected in parallel, and refrigerant transfer A secondary side in which a pump and a plurality of indoor units are annularly connected, and the secondary side heat exchange section of the refrigerant-refrigerant heat exchanger and the secondary side heat exchange section in the heat storage tank are connected in parallel. A refrigerating cycle, the heat storage tanks in the plurality of primary side refrigerating cycles are operated in different heat storing operation modes of ice making operation or heat storing operation, and in the secondary side refrigerating cycle, air conditioning operating mode of cooling operation or heating operation. A heat storage type air conditioning system equipped with a control device that switches the heat storage tank used according to the type.
【請求項2】 2次側冷凍サイクル内においてバイパス
弁を介して冷媒搬送ポンプの前後を連通するバイパス回
路を備え、複数の1次側冷凍サイクル内の各蓄熱槽、及
び2次側サイクルの各室内ユニットを設置対象となる建
物のそれぞれ異なる階層に設置し、かつ上層階の蓄熱槽
にて下層階の室内ユニットを冷媒搬送ポンプの使用なし
に冷房運転を行い、または下層階の蓄熱槽にて上層階の
室内ユニットを冷媒搬送ポンプの使用なしに暖房運転を
行う制御装置を備えた請求項1記載の蓄熱式空調システ
ム。
2. A heat storage tank in each of the plurality of primary side refrigeration cycles, and a plurality of secondary side cycles each including a bypass circuit that communicates the front and rear of a refrigerant transfer pump via a bypass valve in the secondary side refrigeration cycle. Indoor units are installed in different floors of the target building, and the upper floor heat storage tank is used for cooling operation of the lower floor indoor unit without the use of a refrigerant transfer pump, or in the lower floor heat storage tank. The heat storage type air conditioning system according to claim 1, further comprising a control device that performs heating operation on the indoor unit on the upper floor without using a refrigerant transfer pump.
【請求項3】 2次側冷凍サイクル内において冷媒搬送
ポンプの前後にバイパス弁を介して連通するバイパス回
路を備えた請求項1、または請求項2記載の蓄熱式空調
システム。
3. The heat storage type air conditioning system according to claim 1 or 2, further comprising a bypass circuit that communicates via a bypass valve before and after the refrigerant transfer pump in the secondary side refrigeration cycle.
JP6183317A 1994-08-04 1994-08-04 Regeneration air-conditioning system Pending JPH0849939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6183317A JPH0849939A (en) 1994-08-04 1994-08-04 Regeneration air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6183317A JPH0849939A (en) 1994-08-04 1994-08-04 Regeneration air-conditioning system

Publications (1)

Publication Number Publication Date
JPH0849939A true JPH0849939A (en) 1996-02-20

Family

ID=16133589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6183317A Pending JPH0849939A (en) 1994-08-04 1994-08-04 Regeneration air-conditioning system

Country Status (1)

Country Link
JP (1) JPH0849939A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132475A (en) * 2014-08-06 2014-11-05 美的集团股份有限公司 Air conditioning system
US11578898B2 (en) * 2019-03-27 2023-02-14 Lg Electronics Inc. Air conditioning apparatus
WO2023030696A1 (en) * 2021-09-03 2023-03-09 Kensa Heat Pumps Limited Heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104132475A (en) * 2014-08-06 2014-11-05 美的集团股份有限公司 Air conditioning system
US11578898B2 (en) * 2019-03-27 2023-02-14 Lg Electronics Inc. Air conditioning apparatus
WO2023030696A1 (en) * 2021-09-03 2023-03-09 Kensa Heat Pumps Limited Heat pump
GB2623931A (en) * 2021-09-03 2024-05-01 Kensa Heat Pumps Ltd Heat pump

Similar Documents

Publication Publication Date Title
JPH03236570A (en) Air-conditioner
JP2004211998A (en) Air conditioning system
CA3185354A1 (en) A variable refrigerant flow conditioning system
JP3404133B2 (en) Thermal storage type air conditioner
WO1997009570A1 (en) Heat transfer apparatus
JPH0849939A (en) Regeneration air-conditioning system
JP2771952B2 (en) Individually distributed air conditioner
JP2748960B2 (en) Thermal storage air conditioning system
JP2705036B2 (en) Thermal storage air conditioning system
JP2705035B2 (en) Thermal storage air conditioning system
JP2000111105A (en) Air-conditioning system for office building
JP2705034B2 (en) Thermal storage air conditioning system
JPH06213478A (en) Air-conditioning machine
JPH086940B2 (en) Building air conditioning system
JPH0849934A (en) Regenerative type air conditioner
JPH07133946A (en) Air-conditioning system
JP2705033B2 (en) Multi-room air conditioner
JP3003832B2 (en) Multi-room air conditioner
JP3081516B2 (en) Air heat source type individual air conditioning system and operating method thereof
JP3142897B2 (en) Cooling and heating system with heat storage function
JPH0849924A (en) Heat storage type air-conditioner
JPH04214134A (en) Water cooling and heating machine multiple air conditioner and air-conditioning method
JP3241939B2 (en) Air conditioning system
JPH0849933A (en) Regenerative air-conditioner
JPH03156225A (en) Air conditioner