JPH0390920A - Josephson regulator circuit - Google Patents

Josephson regulator circuit

Info

Publication number
JPH0390920A
JPH0390920A JP1226869A JP22686989A JPH0390920A JP H0390920 A JPH0390920 A JP H0390920A JP 1226869 A JP1226869 A JP 1226869A JP 22686989 A JP22686989 A JP 22686989A JP H0390920 A JPH0390920 A JP H0390920A
Authority
JP
Japan
Prior art keywords
josephson
circuit
current
magnetically coupled
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1226869A
Other languages
Japanese (ja)
Other versions
JPH0810414B2 (en
Inventor
Shuichi Nagasawa
秀一 永沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1226869A priority Critical patent/JPH0810414B2/en
Publication of JPH0390920A publication Critical patent/JPH0390920A/en
Publication of JPH0810414B2 publication Critical patent/JPH0810414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To eliminate the need for the generation of a large magnetic field by making a large current flow to a control wiring by connecting magnetically a magnetically coupled superconductive quantum interferometer to superconductive loop including two Josephson junctions. CONSTITUTION:A regulator element circuit contains a magnetically coupled superconductive quantum interferometer having a control wiring 2 connected to the power bus PB of a Josephson integrated circuit 3 at one of its both ends and grounded at the other end. Then a control signal input terminal DC is connected to the wiring 2 of the interferometer together with a sine wave current input terminal AC connected to the end of the wiring 2 which is connected to the PB of the circuit 3. In such a constitution, a superconductive current is suppressed with the small DC value and the duty is increased. Thus it is possible to obtain a Josephson regulator circuit in a simple production process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジョセフソン集積回路のパワーバスにバイア
ス電流を供給する電源供給回路に関し、より詳しくは外
部から供給される正弦波入力電流をジョセフソン集積回
路に最適な台形波状のバイアス電流に変換するジョセフ
ソンレギュレータ回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a power supply circuit that supplies a bias current to a power bus of a Josephson integrated circuit. This invention relates to a Josephson regulator circuit that converts the bias current into a trapezoidal waveform that is optimal for Son integrated circuits.

〔従来の技術〕[Conventional technology]

従来、ジョセフソン集積回路のためのこのようなレギュ
レータ回路としては、複数個のジョセフソン接合を直列
に接続した回路をジョセフソン集積回路のパワーバスと
接地面間に挿入した回路が知られている。このことは、
例えば、テクニカル・ダイジェスト・オブ・ザ・インタ
ーナショナル・エレクトロン・デバイシイス・ミーティ
ング誌(Technical Digest of t
he InternatfonalElectron 
Devices Meeting) 、 1979年、
第489〜第492頁に記載されている。
Conventionally, as such a regulator circuit for a Josephson integrated circuit, a circuit in which a circuit in which a plurality of Josephson junctions are connected in series is inserted between the power bus and the ground plane of the Josephson integrated circuit is known. . This means that
For example, the Technical Digest of the International Electron Devices Meeting magazine
he International Electron
Devices Meeting), 1979,
It is described on pages 489 to 492.

第3図は、この従来の技術によるジョセフソンレギュレ
ータ回路の一例を示す回路図である。第3図を参照して
、従来のジョセフソンレギュレータ回路の動作を説明す
る。このジョセフソンレギュレータ回路は、4個の直列
接続されたジョセフソン接合と各ジョセフソン接合に磁
気的に結合するように配置された制御配線2から構成さ
れる。
FIG. 3 is a circuit diagram showing an example of a Josephson regulator circuit according to this conventional technology. The operation of the conventional Josephson regulator circuit will be explained with reference to FIG. This Josephson regulator circuit is composed of four Josephson junctions connected in series and a control wiring 2 arranged so as to be magnetically coupled to each Josephson junction.

ジョセフソンレギュレータは、端子ACに入力した正弦
波交流電流をジョセフソン接合の非線形な電流−電圧特
性を使用して端子Outに接続されたジョセフソン集積
回路のパワーバスに台形波状の交流電流を送り出す回路
である。
The Josephson regulator uses the nonlinear current-voltage characteristics of the Josephson junction to send a trapezoidal wave-shaped alternating current to the power bus of the Josephson integrated circuit connected to the terminal Out from the sinusoidal alternating current input to the terminal AC. It is a circuit.

第4図は、このジョセフソンレギュレータ回路に加える
正弦波入力波形(a)と台形波状の出力電流波形(制御
配線にDC電流を加えない場合(b)と加えた場合(C
))を示した図である。
Figure 4 shows the sinusoidal input waveform (a) applied to this Josephson regulator circuit, the trapezoidal output current waveform (when no DC current is applied to the control wiring (b), and when DC current is added (C).
)).

第4図は、ジョセフソン接合の電流−電圧特性の概略図
を示した図である。
FIG. 4 is a diagram showing a schematic diagram of current-voltage characteristics of a Josephson junction.

第4図及び第5図を参照してこのジョセフソンレギュレ
ータ回路の動作原理をさらに詳しく説明する。
The operating principle of this Josephson regulator circuit will be explained in more detail with reference to FIGS. 4 and 5.

最初に制御配線DCに電流を流さない場合のジョセフソ
ンレギュレータの動作について説明する。この場合の出
力波形は、第4図(b)に示したように、入力の正弦波
電流が零(A点)から増大しても、その値がジョセフソ
ン接合の臨界電流値(Io)を越えないうちは電流は全
て接合を通って接地に流れるため出力に電流は流れない
(A−B点)。さらに電流が増大すると、ジョセフソン
接合は電圧状態にスイッチするため出力に電流が流れ(
0点)、さらに入力電流が増大しても動作点は接合特性
のギャップ領域(定電圧領域)にあるため出力電流値は
ほぼ一定の値に整形される(C−D点)。この間、余分
な電流分は、ジョセフソン接合を通して漏れ電流として
接地に流れている。出力電流の大きさは、接合のギャッ
プ電圧とパワーバスの付加抵抗値により決定される。ま
た、出力電流値をほぼ一定に保つためには、動作点が第
5図の接合特性のギャップ領域を出ないようにすればよ
い。このため、入力制限波電流の最大値は、ギャップ電
圧領域での最大電流値(IG )を越えないように設計
すればよい。次に、入力の制限波電流がその最大値(D
点)から出力電流値まで減少する間は、出力電流はほぼ
一定値に保たれ(D−E点)、さらに減少すると動作点
は接合特性のサブギャップ領域に入るため、ジョセフソ
ン接合は高インピーダンス状態になり、入力電流の大部
分が出力に流れる(E−A点)。負の極性部分の正弦波
入力電流に対しても、ジョセフソン接合の電流−電圧特
性が電流・電圧の極性に対して対称であるため、同様の
動作を行う。
First, the operation of the Josephson regulator when no current flows through the control wiring DC will be described. In this case, the output waveform is as shown in Figure 4(b), even if the input sinusoidal current increases from zero (point A), its value exceeds the critical current value (Io) of the Josephson junction. Until the voltage is exceeded, all current flows through the junction to ground, so no current flows to the output (point A-B). As the current increases further, the Josephson junction switches to a voltage state, allowing current to flow through the output (
0 point), and even if the input current increases, the operating point is in the gap region (constant voltage region) of the junction characteristics, so the output current value is shaped to a substantially constant value (point C-D). During this time, excess current flows through the Josephson junction to ground as a leakage current. The magnitude of the output current is determined by the junction gap voltage and the additional resistance of the power bus. Further, in order to keep the output current value substantially constant, it is sufficient to prevent the operating point from leaving the gap region of the junction characteristics shown in FIG. Therefore, the maximum value of the input limiting wave current may be designed so as not to exceed the maximum current value (IG) in the gap voltage region. Next, the input limited wave current is its maximum value (D
While the output current decreases from point ) to the output current value (point D-E), the output current remains almost constant (point D-E), and when it decreases further, the operating point enters the sub-gap region of the junction characteristic, so the Josephson junction becomes a high impedance state, and most of the input current flows to the output (point E-A). A similar operation is performed for a sinusoidal input current in the negative polarity portion because the current-voltage characteristics of the Josephson junction are symmetrical with respect to the polarity of the current and voltage.

次に、制御配線に直流電流を流した場合のジョセフソン
レギュレータの動作について説明する。
Next, the operation of the Josephson regulator when direct current is passed through the control wiring will be explained.

この直流電流は、ジョセフソン接合に対して磁場を発生
することにより、ジョセフソン接合の超伝導電流を除去
(抑制)している。この場合の出力波形は、第4図(C
)に示したように、入力の正弦波電流が零(A点)から
出力電流値まで増大する間は、ジョセフソン接合は高イ
ンピーダンスの電圧状態になり、入力電流の大部分は出
力に流れる。入力電流が出力電流値に達すると接合特性
での動作点は、ギャップ電圧部(E点)になり、さらに
入力電流が増大しても動作点はギャップ電圧部(E−D
点)にあるため、出力には一定の電流が流れる。その後
の動作については、制御線に電流を流さない場合と同様
である。第4図(b)と第4図(c)を較べてわかるよ
うに、制御線に直流電流を流してジョセフソン接合に磁
場を加えた場合のほうが、出力電流が一定の領域(全領
域に対するこの部分の割合をデユーティという)が広く
なる。ジョセフソン集積回路は、バイアス電流として電
流値が一定の領域で動作させるため、この領域が広い即
ちデユーティが大きいほうが電源として望ましい。特に
IGHz以上のクロックで高速動作を行うためには、こ
のことは非常に重要である。
This direct current removes (suppresses) the superconducting current in the Josephson junction by generating a magnetic field in the Josephson junction. The output waveform in this case is shown in Figure 4 (C
), while the input sinusoidal current increases from zero (point A) to the output current value, the Josephson junction is in a high impedance voltage state and most of the input current flows to the output. When the input current reaches the output current value, the operating point in the junction characteristics becomes the gap voltage section (point E), and even if the input current increases further, the operating point remains at the gap voltage section (E-D
point), a constant current flows through the output. The subsequent operation is the same as when no current is passed through the control line. As can be seen by comparing Figures 4(b) and 4(c), when a direct current is passed through the control line and a magnetic field is applied to the Josephson junction, the output current is more constant in the region (relative to the entire region). The ratio of this portion (called duty) increases. Since the Josephson integrated circuit operates in a region where the current value as a bias current is constant, it is desirable for the power supply to have a wide range, that is, a large duty. This is very important, especially for high-speed operation with a clock of IGHz or higher.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の技術によるジョセフソンレギュレータ回
路では、ジョセフソン接合に直接磁場を加える必要があ
り、ジョセフソン接合の面積を考慮すると、ジョセフソ
ン接合の超伝導電流を抑制するためには、制御配線に大
きな電流を流して太き磁場を発生する必要があるという
問題点があった。又、集積回路化する場合には、ジョセ
フソン接合を形成した後、さらにその上部に絶縁層を介
して制御配線を形成する必要がある。このため、素子構
造がより多層になり複雑になるという問題点があった。
However, in the conventional Josephson regulator circuit, it is necessary to apply a magnetic field directly to the Josephson junction, and considering the area of the Josephson junction, in order to suppress the superconducting current in the Josephson junction, it is necessary to apply a magnetic field directly to the Josephson junction. The problem was that it required a large current to flow to generate a thick magnetic field. Furthermore, in the case of integrating the circuit, after forming the Josephson junction, it is necessary to further form control wiring on top of the Josephson junction via an insulating layer. For this reason, there is a problem that the element structure becomes more multi-layered and complicated.

本発明の目的は、これらの問題点を除去したジョセフソ
ンレギュレータ回路を提供することにある。
An object of the present invention is to provide a Josephson regulator circuit that eliminates these problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、一端がジョセフソン集積回路のパワーバスに
接続され、他端が接地に接続された少なくとも1個の、
−本の制御配線を有する磁気結合型超伝導量子干渉計を
含むレギュレータ要素回路と、前記磁気結合型超伝導量
子干渉計の前記制御配線に接続された制御信号入力端子
と、前記レギュレータ要素回路の前記ジョセフソン集積
回路のパワーバスに接続された側の一端に接続された正
弦波電流入力端子とから構成されたジョセフソンレギュ
レータ回路であって、前記磁気結合型超伝導量子干渉計
が、少なくとも2個のジョセフソン接合を含む少なくと
も1個の超伝導ループと、前記超伝導ループに磁気的に
結合するように配置された一本の制御配線とから槽底さ
れているというものである。
The present invention provides at least one at least one circuit connected at one end to the power bus of the Josephson integrated circuit and at the other end connected to ground.
- a regulator element circuit including a magnetically coupled superconducting quantum interferometer having a control wiring; a control signal input terminal connected to the control wiring of the magnetically coupled superconducting quantum interferometer; a sine wave current input terminal connected to one end of the Josephson integrated circuit on the side connected to the power bus, the Josephson regulator circuit comprising at least two The bottom of the cell is comprised of at least one superconducting loop including a number of Josephson junctions and one control wire arranged to be magnetically coupled to the superconducting loop.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す回路図、第2図(a)
及び(b)はそれぞれこの実施例に用いる2接合超伝導
量子干渉計(2J−3QUID)を示す斜視模式図及び
等価回路図である。
Fig. 1 is a circuit diagram showing an embodiment of the present invention, Fig. 2(a)
and (b) are a schematic perspective view and an equivalent circuit diagram respectively showing a two-junction superconducting quantum interferometer (2J-3QUID) used in this example.

tt2J−squIDについて説明する。tt2J-squID will be explained.

これは、平面型の磁気結合型超伝導量子干渉計であるが
、2つのジョセフソン接合J、、J2を含む超伝導ルー
プla(下部配線1bに接続されている)が接地面(図
示しない)に対して平行に形成されている9制御配線1
dをジョセフソン接合を形成する上部配線層と同じ層成
の膜で形成することができる。このことは、磁気結合型
超伝導量子干渉計では、制御配線により発生する磁場を
直接ジョセフソン接合ではなく、ジョセフソン接合を含
んだ超伝導ループに結合させればよいためである。従っ
て、従来の技術のように制御配線を形成するために新た
に層成の高い配線層を形成する必要がないため、素子構
造が簡単になり製造プロセスが容易になる。また、磁気
結合型超伝導量子干渉計では、超伝導電流を抑制するの
に必要となる直流の制御電流は、1個のジョセフソン接
合の場合に比して非常に小さくできる。
This is a planar magnetically coupled superconducting quantum interferometer, in which the superconducting loop la (connected to the lower wiring 1b) containing two Josephson junctions J, , J2 is connected to the ground plane (not shown). 9 control wirings 1 formed parallel to
d can be formed of a film having the same layer structure as the upper wiring layer forming the Josephson junction. This is because in a magnetically coupled superconducting quantum interferometer, the magnetic field generated by the control wiring need only be coupled to a superconducting loop containing the Josephson junction, rather than directly to the Josephson junction. Therefore, it is not necessary to newly form a wiring layer with a high layer structure to form a control wiring as in the conventional technology, so the element structure is simplified and the manufacturing process is facilitated. Furthermore, in the magnetically coupled superconducting quantum interferometer, the direct current control current required to suppress the superconducting current can be made much smaller than in the case of a single Josephson junction.

第↓図に示す実施例は、一端がジョセフソン集積回路3
のパワーバスPBに接続され、他端が接地に接続された
少なくとも1個の、−本の制御配線2を有する磁気結合
型超伝導量子干渉計を含むレギュレータ要素回路と、前
述の磁気結合型超伝導量子干渉計の制御配線2に接続さ
れた制御信号入力端子DCと、レギュレータ要素回路の
ジョセフソン集積回路のパワーバスに接続された側の一
端に接続された正弦波電流入力端子ACとから構成され
たジョセフソンレギュレータ回路であって、磁気結合型
超伝導量子干渉計が、2個のジョセフソン接合J、、J
2を含むl個の超伝導ループ1aと、超伝導ループ1a
に磁気的に結合するように配置された一本の制御配線1
dとからなる表面型2J−8QU I Dであり、レギ
ュレータ要素回路はこの2J−3QUIDを4個直列に
接続して正弦波電流入力端子ACと接地間に挿入したと
いうものである。
In the embodiment shown in Figure ↓, one end is connected to the Josephson integrated circuit 3.
A regulator element circuit including a magnetically coupled superconducting quantum interferometer having at least one control wire 2 connected to the power bus PB of the power bus PB and having the other end connected to ground; Consists of a control signal input terminal DC connected to the control wiring 2 of the conduction quantum interferometer, and a sine wave current input terminal AC connected to one end of the regulator element circuit on the side connected to the power bus of the Josephson integrated circuit. A Josephson regulator circuit in which a magnetically coupled superconducting quantum interferometer is connected to two Josephson junctions J, , J
l superconducting loops 1a including 2 and superconducting loop 1a
A single control wiring 1 arranged so as to be magnetically coupled to
The regulator element circuit consists of four 2J-3QUIDs connected in series and inserted between the sine wave current input terminal AC and ground.

動作については、従来例と基本的には同じである。The operation is basically the same as the conventional example.

つまり、制御電流が零の場合、1個のジョセフソン接合
の臨界電流値工0の2倍の電流までは2J−3QUID
は、零電圧状態であり、出力側にt流は流れない。制御
電流を加えると、ジョセフソン接合が電圧状態にスイッ
チする電流値は下がる。つまり、第4図において、Io
→2Ioとすれば、この実施例の動作に対応した図が得
られる。
In other words, when the control current is zero, the current up to twice the critical current value of one Josephson junction is 2J-3QUID.
is in a zero voltage state, and no current t flows on the output side. Adding a control current reduces the current value at which the Josephson junction switches to the voltage state. That is, in FIG. 4, Io
→2Io, a diagram corresponding to the operation of this embodiment can be obtained.

従来例より小さな直流電流値で超伝導電流を抑制でき、
又、平面型であるから制御配線をジョセフソン接合を形
成する上部配線と同じ層成の膜で形成できるので製造プ
ロセスが簡単になることは前述したとうりである。
Superconducting current can be suppressed with a smaller DC current value than the conventional example,
Furthermore, since it is a planar type, the control wiring can be formed with the same layered film as the upper wiring forming the Josephson junction, which simplifies the manufacturing process, as described above.

本実施例では、2接合超伝導量子干渉計を4個直列に接
続したが、任意の個数にしても同様の効果が得られる。
In this embodiment, four two-junction superconducting quantum interferometers are connected in series, but the same effect can be obtained by using any number of two-junction superconducting quantum interferometers.

また、本実施例では、2接合超伝導量子干渉計を用いた
が、この代わりに3接合超伝導量子干渉計を用いても同
様の効果が得られる。
Further, in this embodiment, a two-junction superconducting quantum interferometer is used, but the same effect can be obtained by using a three-junction superconducting quantum interferometer instead.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は磁気結合型超伝導量子干渉
計を用いているので、ジョセフソンゲートを用いた従来
例に比べて小さな直流電流値で超伝導電流を抑制してデ
ユーティを大きくとることができ、又、平面型の磁気結
合型超伝導量子干渉計を用いることにより製造プロセス
が簡単なジョセフソンレギュレータ回路を実現すること
ができる。
As explained above, since the present invention uses a magnetically coupled superconducting quantum interferometer, it is possible to suppress the superconducting current with a smaller DC current value and increase the duty compared to the conventional example using a Josephson gate. Furthermore, by using a planar magnetically coupled superconducting quantum interferometer, it is possible to realize a Josephson regulator circuit with a simple manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す回路図、第2図<a
)及び(b)は本発明のジョセフソンレギュレータ回路
の磁気結合型超伝導量子干渉計(SQUID)部分の概
略を示す斜視模式図及び等価回路図、第3図は、従来の
技術によるジョセフソンレギュレータ回路の一例を示す
回路図、第4図は、ジョセフソンレギュレータ回路に加
える入力電流波形と出力電流波形を示した図、第5図は
、ジョセフソン接合の電流−電圧特性の概略材を示した
図である。 1−1〜1−4・・・2接合超伝導量子干渉計(2J−
3QUID)、2・・・制御配線、3・・・ジョセフソ
ン集積回路、4・・・ジョセフソンレギュレータ、AC
・・・制限波電流入力端子、DC・・・制御信号入力端
子、Out・・・出力端子、PB・・・パワーバス。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG.
) and (b) are perspective schematic diagrams and equivalent circuit diagrams showing the outline of the magnetically coupled superconducting quantum interferometer (SQUID) portion of the Josephson regulator circuit of the present invention, and FIG. 3 is a Josephson regulator circuit according to the conventional technology. A circuit diagram showing an example of the circuit. Figure 4 shows the input current waveform and output current waveform applied to the Josephson regulator circuit. Figure 5 shows a schematic diagram of the current-voltage characteristics of the Josephson junction. It is a diagram. 1-1 to 1-4...2 junction superconducting quantum interferometer (2J-
3QUID), 2... Control wiring, 3... Josephson integrated circuit, 4... Josephson regulator, AC
...Limited wave current input terminal, DC...Control signal input terminal, Out...Output terminal, PB...Power bus.

Claims (3)

【特許請求の範囲】[Claims] (1)一端がジョセフソン集積回路のパワーバスに接続
され、他端が接地に接続された少なくとも1個の、1本
の制御配線を有する磁気結合型超伝導量子干渉計を含む
レギュレータ要素回路と、前記磁気結合型超伝導量子干
渉計の前記制御配線に接続された制御信号入力端子と、
前記レギュレータ要素回路の前記ジョセフソン集積回路
のパワーバスに接続された側の一端に接続された正弦波
電流入力端子とから構成されたジョセフソンレギュレー
タ回路であって、前記磁気結合型超伝導量子干渉計が、
少なくとも2個のジョセフソン接合を含む少なくとも1
個の超伝導ループと、前記超伝導ループに磁気的に結合
するように配置された一本の制御配線とから構成されて
いることを特徴とするジョセフソンレギュレータ回路。
(1) a regulator element circuit including a magnetically coupled superconducting quantum interferometer having at least one control wire connected at one end to the power bus of the Josephson integrated circuit and at the other end connected to ground; , a control signal input terminal connected to the control wiring of the magnetically coupled superconducting quantum interferometer;
and a sinusoidal current input terminal connected to one end of the regulator element circuit on the side connected to the power bus of the Josephson integrated circuit, the Josephson regulator circuit comprising: the magnetically coupled superconducting quantum interference circuit; The total is
at least one including at least two Josephson junctions
1. A Josephson regulator circuit comprising: a superconducting loop; and a control wiring arranged to be magnetically coupled to the superconducting loop.
(2)レギュレータ要素回路は、磁気結合型超伝導量子
干渉計が少なくとも2個直列に接続された回路から構成
された請求項(1)記載のジョセフソンレギュレータ回
路。
(2) The Josephson regulator circuit according to claim 1, wherein the regulator element circuit is constituted by a circuit in which at least two magnetically coupled superconducting quantum interferometers are connected in series.
(3)磁気結合型超伝導量子干渉計は表面型である請求
項(1)又は(2)記載のジョセフソンレギュレータ回
路。
(3) The Josephson regulator circuit according to claim 1 or 2, wherein the magnetically coupled superconducting quantum interferometer is a surface type.
JP1226869A 1989-08-31 1989-08-31 Josephson regulator circuit Expired - Lifetime JPH0810414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1226869A JPH0810414B2 (en) 1989-08-31 1989-08-31 Josephson regulator circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226869A JPH0810414B2 (en) 1989-08-31 1989-08-31 Josephson regulator circuit

Publications (2)

Publication Number Publication Date
JPH0390920A true JPH0390920A (en) 1991-04-16
JPH0810414B2 JPH0810414B2 (en) 1996-01-31

Family

ID=16851848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226869A Expired - Lifetime JPH0810414B2 (en) 1989-08-31 1989-08-31 Josephson regulator circuit

Country Status (1)

Country Link
JP (1) JPH0810414B2 (en)

Also Published As

Publication number Publication date
JPH0810414B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
CA1148268A (en) Superconducting switch and amplifier device
EP0061930B1 (en) Josephson-junction logic circuit
Kaplunenko et al. Voltage divider based on submicron slits in a high T c superconducting film and two bicrystal grain boundaries
US4176290A (en) Superconductive Josephson circuit device
EP0076160A2 (en) Josephson-junction logic device
JPS60160675A (en) Quasi-particle injection type superconducting element
JPH0390920A (en) Josephson regulator circuit
JPS59139728A (en) Quantum logical circuit of superconductive magnetic flux
JPH0398108A (en) Josephson regulator circuit
JPH03152611A (en) Unipolar josephson regulator circuit
Morisue et al. A novel ternary logic circuit using Josephson junction
JPS6053966B2 (en) josephson logic gate
JP2856535B2 (en) Superconducting circuit
JP2855645B2 (en) Superconducting constant current regulator circuit
JP3212088B2 (en) Superconducting device
JPH01273370A (en) Manufacture of dc type superconductive quantum interference element
JPS6043885A (en) Superconducting element
JPS63124585A (en) Magnetic-field-coupling type josephson integrated circuit
JP2978738B2 (en) Electrostatic Josephson interferometer
Prans et al. The SNS Josephson junction with a third terminal
JPS62217680A (en) Superconducting circuit
Tsubone et al. Logic operation of hts sfq logic family
JPH0577352B2 (en)
Mizugaki et al. Zero-crossing Shapiro step in a three-junction SQUID magnetically coupled with two phase-shifted RF signals
JPS62217679A (en) Magnetic field coupling type josephson element

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080131

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090131

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100131

Year of fee payment: 14