JPH0390535A - Wear-resistnat zr alloy member and its manufacture - Google Patents

Wear-resistnat zr alloy member and its manufacture

Info

Publication number
JPH0390535A
JPH0390535A JP22787789A JP22787789A JPH0390535A JP H0390535 A JPH0390535 A JP H0390535A JP 22787789 A JP22787789 A JP 22787789A JP 22787789 A JP22787789 A JP 22787789A JP H0390535 A JPH0390535 A JP H0390535A
Authority
JP
Japan
Prior art keywords
zrc
alloy
resistance
wear
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22787789A
Other languages
Japanese (ja)
Inventor
Wataru Takahashi
渉 高橋
Yoshiaki Shida
志田 善明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22787789A priority Critical patent/JPH0390535A/en
Publication of JPH0390535A publication Critical patent/JPH0390535A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the Zr alloy member excellent in wear resistance and erosion resistance by forming the structure at least of a surface layer part in a Zr alloy member from the one of which ZrC is dispersed into a matrix. CONSTITUTION:Zr or Zr alloy is mixed with carbon and/or metallic carbide or furthermore with hard grains, which is melted to disperse ZrC or hard grains except ZrC as well into a matrix. Or, the surface of a Zr or Zr alloy member is clad by welding with a cladding material of carbon and/or metallic carbide or furthermore contg. hard grains to form the structure of the surface layer part in the member from the one of which ZrC or furthermore hard grains except ZrC are dispersed into the matrix. Moreover, as the metallic carbide, Cr3C2, W2C, VC, Mo2C or the like are used, and as the hard grains, Al2O3, Cr2O3, ZrO2 or the like having about <=150mu grain size are used. In this way, the Zr alloy member useful as the structural material for various chemical plants, nuclear power plants, etc., can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、耐食性に優れるジルコニウムまたはジルコ
ニウム合金(以下rZr合金」と総称する)製の部材で
あって、さらに耐摩耗性、耐エロージヨン性にも優れた
部材とその製造方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a member made of zirconium or zirconium alloy (hereinafter collectively referred to as rZr alloy) that has excellent corrosion resistance, and which also has excellent wear resistance and erosion resistance. It also relates to excellent members and methods of manufacturing them.

この発明のZr合金製部材の主たる用途としては、化学
プラント、原子力発電プラント等の構造部材、油井間係
の各種機器等がある。
The main uses of the Zr alloy members of the present invention include structural members for chemical plants, nuclear power plants, etc., and various equipment for oil wells.

(従来の技術) 各種化学プラント、油井関係機器、原子力発電プラント
用等の材料には優れた耐食性が要求されることが多く、
SO5304等のステンレス鋼でもその要求を満たし得
ないことがある。例えば、酢酸製造プラント用では、T
i合金でも耐食耐酸性が不足し、高耐食性の2「合金が
用いられることがある。
(Conventional technology) Materials for various chemical plants, oil well related equipment, nuclear power plants, etc. are often required to have excellent corrosion resistance.
Even stainless steel such as SO5304 may not be able to meet the requirements. For example, for an acetic acid manufacturing plant, T
Even the i alloy lacks corrosion and acid resistance, and a highly corrosion resistant 2'' alloy is sometimes used.

油井機器についても耐食性の要求が厳しくなっており、
Zr合金がステンレス鋼などの代替材料として検討され
る状況にあるが、Zr合金は耐摩耗性および耐エロージ
ヨン性に乏しいことが問題とされている。
Corrosion resistance requirements are also becoming stricter for oil well equipment.
Although Zr alloy is being considered as a substitute material for stainless steel and the like, the problem is that Zr alloy has poor wear resistance and erosion resistance.

原子力発電プラント用構造材料は、高温高圧水中での優
れた耐食、耐エロージヨン性が要求され、また弁、弁座
については上記特性に加えて耐摩耗性が必要である。従
来、原子炉の炉内構造用材料としてはSO3304およ
びCO基合金のステライトNα6(商品名)が使用され
、優れた耐食、耐摩耗性を発揮してきた。また、弁や弁
座には、S[l5304にステライトNIL6を肉盛し
て用いられている。
Structural materials for nuclear power plants are required to have excellent corrosion resistance and erosion resistance in high-temperature, high-pressure water, and valves and valve seats must have wear resistance in addition to the above characteristics. Conventionally, SO3304 and CO-based alloy Stellite Nα6 (trade name) have been used as materials for the internal structure of nuclear reactors, and have exhibited excellent corrosion resistance and wear resistance. In addition, Stellite NIL6 is used for the valves and valve seats by overlaying S[l5304 with Stellite NIL6.

上記のような原子炉炉内構造材料に関しては、特に、次
のような問題点が指摘される。
In particular, the following problems are pointed out regarding the structural materials inside the nuclear reactor as described above.

軽水炉技術の高度化を達成するためには軽水炉用機器、
部品の長寿命化や信頼性の向上を図るとともに、点検作
業従事者の被曝低減を図らなけれならない。被曝低減の
ためには原子炉−次系の構造材料であるSO3304お
よびステライトNQ、6から冷却水中に腐食、エロージ
ジンにより溶出され、炉心で放射化される”Co、 ”
Go (Niから放射化にまり生成)、S4Mn、59
Feなどの放射性各種元素、特に半減期の長い60Co
の溶出を抑制するとともにそれら放射性腐食生成物の配
管などへの付着蓄積を抑制することが重要な課題とされ
ている。弁、弁座などの摩擦部分に用いられるステライ
ト中のCoの摩耗溶出も同じように問題となっている。
In order to achieve sophistication of light water reactor technology, light water reactor equipment,
In addition to extending the life of parts and improving reliability, efforts must be made to reduce radiation exposure for inspection workers. In order to reduce radiation exposure, "Co," which is the structural material of the reactor system, SO3304 and Stellite NQ, 6, corrodes in the cooling water, is eluted by erogidine, and is activated in the reactor core.
Go (activated magnetic field generation from Ni), S4Mn, 59
Various radioactive elements such as Fe, especially 60Co which has a long half-life
It is considered an important issue to suppress the elution of radioactive corrosion products as well as the accumulation of these radioactive corrosion products on piping. A similar problem is the wear and elution of Co in stellite used for friction parts such as valves and valve seats.

このような背景から放射性生成物低減のために、C。Against this background, in order to reduce radioactive products, C.

を含有せずに耐食性および耐摩耗性に優れた材料が原子
炉炉心部材として強く求められているが、SO3304
およびステライト弘6に比べて高温高圧水中での耐食性
、耐摩耗性など全ての特性において勝る実用材料はない
というのが現状である。
There is a strong demand for materials that do not contain SO3304 and have excellent corrosion resistance and wear resistance as nuclear reactor core components.
The current situation is that there is no practical material that is superior to Stellite Hiro 6 in all properties such as corrosion resistance and abrasion resistance in high-temperature, high-pressure water.

各種化学プラント、油井関係機器などにおいても、その
使用環境がますます厳しくなり、Ti合金やステライト
など従来の耐食、耐摩耗材では性能不足とされることが
ある0例えば、食品製造プラントで使用する5IJS3
04には耐摩耗性が必要な箇所にステライトを肉盛する
ことが考えられるが、腐食環境によっては溶出するCO
の毒性が問題となり、使用できないこともある。油井関
係では、腐食性の強い油田の開発が多くなり、そのため
の油井用管材、例えばドリルパイプなどの材料として高
耐食性のみならず、耐摩耗、耐エロージヨン性をあわせ
もつ材料が要望されるようになってきた。
The environments in which they are used in various chemical plants, oil well-related equipment, etc. are becoming increasingly harsh, and conventional corrosion-resistant and wear-resistant materials such as Ti alloys and stellite are sometimes considered to lack performance.For example, 5IJS3 used in food manufacturing plants
For 04, it is possible to build up Stellite in areas where wear resistance is required, but depending on the corrosive environment, CO leaching
The toxicity of these substances is a problem, and they may not be usable. In the field of oil wells, there has been an increase in the development of highly corrosive oil fields, and for this purpose materials for oil well pipes, such as drill pipes, are required to have not only high corrosion resistance but also wear and erosion resistance. It has become.

Zr合金は、優れた耐食性、特に耐硫化水素腐食性を有
し、しかもCote出の問題もないから、前記の各種産
業分野での耐食性材料として期待され、すでに一部で実
用されている。しかし、Zr合金は、耐摩耗性、耐エロ
ージヨン性に劣る。そのため、例えば各種化学プラント
の弁、弁座、インペラータービン翼、原子炉炉内材料等
にはそのままでは適用できない。
Zr alloys have excellent corrosion resistance, especially hydrogen sulfide corrosion resistance, and do not have the problem of Cote release, so they are expected to be corrosion-resistant materials in the various industrial fields mentioned above, and are already in practical use in some areas. However, Zr alloy has poor wear resistance and erosion resistance. Therefore, it cannot be applied as is to, for example, valves, valve seats, impeller turbine blades, nuclear reactor internal materials, etc. of various chemical plants.

(発明が解決しようとする課題) 本発明は、Zr合金の優れた耐食性を生かし、その合金
で作られる各種部材に高い耐摩耗、耐エロージヨン性を
もたせることを課題としてなされたものである。
(Problems to be Solved by the Invention) The present invention has been made with the object of making use of the excellent corrosion resistance of Zr alloy to provide various members made of the alloy with high wear resistance and erosion resistance.

<81題を解決するための手段) 本発明者等は、Zr合金の耐摩耗、耐エロージヨン性を
改善することを目的とする研究の過程で下記のような知
見を得た。即ち、 ■Zr合金中に安定なジルコニウム炭化物(ZrC)を
均一分散させ、Zr基粗粒子分散型複合合金すれば、そ
の耐摩耗、耐エロージヨン性が著しく改善される。
<Means for Solving Problem 81) The present inventors obtained the following findings in the course of research aimed at improving the wear resistance and erosion resistance of Zr alloys. That is, (1) If stable zirconium carbide (ZrC) is uniformly dispersed in a Zr alloy to form a Zr-based coarse particle dispersed composite alloy, its wear resistance and erosion resistance will be significantly improved.

■Zr合金に各種炭化物を混合して溶解すると、生成自
由エネルギーの低いZrCが凝固時に微細均一に晶出す
る。 ZrCは晶出反応生成物であるため熱的にきわめ
て安定で、耐熱性がある。
(2) When various carbides are mixed and dissolved in Zr alloy, ZrC, which has a low free energy of formation, crystallizes finely and uniformly during solidification. Since ZrC is a crystallized reaction product, it is extremely thermally stable and heat resistant.

■炭素(C)のみを混合溶解することでもZr合金中に
zrCを分散させることができるが、Zrをβ相化する
元素を含む炭化物、即ち、Cr5Cis LC,VCl
MolCを1種以上混合溶解し、マトリックスをβ相と
すると更に耐摩耗、耐エロージヨン性が向上する。
■ ZrC can be dispersed in Zr alloy by mixing and dissolving only carbon (C), but carbides containing elements that convert Zr into β phase, i.e. Cr5Cis LC, VCl
When one or more types of MolC are mixed and dissolved to form a β phase matrix, wear resistance and erosion resistance are further improved.

■ZrCに加えて、他の硬質粒子を分散させて耐摩耗、
耐エロージヨン性を一層向上させることもできる。
■In addition to ZrC, other hard particles are dispersed to improve wear resistance.
It is also possible to further improve erosion resistance.

■上記の対策は、部品全体に施してもよいが、耐摩耗、
耐エロージヨン性を必要とする部材表層部だけに、例え
ば肉盛技術を用いて施してもよい。
■The above measures may be applied to the entire part, but
The coating may be applied only to the surface layer of the member requiring erosion resistance, for example, using a build-up technique.

以上の知見に基づく本発明は、下記(1)〜(4)をそ
の要旨とする。
The gist of the present invention based on the above knowledge is the following (1) to (4).

(1)  ZrまたはZr合金製の部材であって、その
少なくとも表層部が、素地にZrCの分散した組織であ
ることを特徴とする耐摩耗性Zr合金製部材。
(1) A wear-resistant Zr alloy member, characterized in that at least the surface layer thereof has a structure in which ZrC is dispersed in the base material.

(21ZrまたはZr合金製の部材であって、その少な
くとも表層部が、素地にZrCおよびZrC以外の硬質
粒子の分散した組織であることを特徴とする耐摩耗性Z
r合金製部材。
(A wear-resistant Z member made of 21 Zr or Zr alloy, characterized in that at least the surface layer thereof has a structure in which ZrC and hard particles other than ZrC are dispersed in the base material.)
r Alloy members.

(3)  ZrまたはZr合金に炭素または/および金
属炭化物、或いは更に硬質粒子を混合して溶解し、素地
にZrC,或いは更にZrC以外の硬質粒子を分散させ
ることを特徴とする上記(1)または(2)の耐摩耗性
Zr合金部材の製造方法。
(3) The method of (1) above, characterized in that carbon or/and metal carbide, or further hard particles are mixed and dissolved in Zr or Zr alloy, and ZrC or further hard particles other than ZrC are dispersed in the base material. (2) A method for manufacturing a wear-resistant Zr alloy member.

(4)  ZrまたはZr合金製部材の表面に、炭素ま
たは/および金属炭化物、或いは更に硬質粒子を含む肉
盛材料を用いて肉盛し、前記部材の表層部を素地にZr
C,或いは更にZrC以外の硬質粒子の分散したamと
することを特徴とする上記(])または(2)の耐摩耗
性Zr合金部材の製造方法。
(4) Overlaying the surface of a member made of Zr or Zr alloy using a build-up material containing carbon or/and metal carbide, or further hard particles, and applying Zr to the surface layer of the member as a base material.
The method for manufacturing a wear-resistant Zr alloy member according to (]) or (2) above, characterized in that the material is made of am, in which hard particles other than ZrC or further hard particles other than ZrC are dispersed.

本発明においてZr合金とは、工業的な純度のジルコニ
ウムならびにCrs Nbx Sn、 Ta、、MO%
 W% V、Ti、 Aj!の1種以上の合金元素を含
んだジルコニウム基台金、例えばジルカロイ2、ジルカ
ロイ4等、すべてのα系、α+β系、およびβ系のジル
コニウム合金を意味する。
In the present invention, Zr alloy refers to industrially pure zirconium and Crs Nbx Sn, Ta, MO%
W% V, Ti, Aj! zirconium base metal containing one or more alloying elements, such as Zircaloy 2, Zircaloy 4, etc., and all α-based, α+β-based, and β-based zirconium alloys.

これらのZr合金は、例えば、SO3304のようなス
テンレス鋼、ステライトN116のようなCo基合金に
比べて耐食性(例えば高温高圧水環境)および耐酸、耐
硫化水素腐食性が優れている。しかもC。
These Zr alloys have superior corrosion resistance (for example, in a high-temperature, high-pressure water environment) and acid and hydrogen sulfide corrosion resistance compared to stainless steels such as SO3304 and Co-based alloys such as Stellite N116. Moreover, C.

を含有していないため原子炉炉内材料、食品工業用材料
として使用しても前述のような問題がない。
Because it does not contain any of

本発明の「部材Jとは、機器部品や管、板その他の中間
材料の全てである。これら部材の全体または耐摩耗性、
耐エロージヨン性を持つべき表層部が、上記のZr合金
素地(マトリックス)にZrCの分散した組織であるこ
とを特徴とする。
The "member J" of the present invention refers to all equipment parts, pipes, plates, and other intermediate materials.
The surface layer portion, which should have erosion resistance, is characterized by a structure in which ZrC is dispersed in the above-mentioned Zr alloy matrix.

ZrCは、Zr合金マトリックス中に微細均一に分散さ
せることが耐摩耗、耐エロージヨン性改善のために必要
である。その方法の一つとして、Zr合金と炭素(C)
または/および金属炭化物(CrsC□、WtC,VC
,Mo1C,TiC5ZrC,NbC等〉とを混合溶解
する方法がある。
It is necessary to finely and uniformly disperse ZrC in the Zr alloy matrix in order to improve wear resistance and erosion resistance. As one of the methods, Zr alloy and carbon (C)
or/and metal carbide (CrsC□, WtC, VC
, Mo1C, TiC5ZrC, NbC, etc.).

炭素だけを混合溶解した場合は、この炭素がZr合金中
でZrCとなって晶出する。炭化物、例えばCraCz
を混合溶解すると、 Cr5f、+2 Zr −2ZrC+3 Cr  −(
a)の反応でZrCが生威し、分離したCrはマトリッ
クスに固溶する。 ZrCよりも生成自由エネルギーの
高い前記の炭化物を用いれば、全て(a)式のように反
応し、極めて安定な炭化物であるZrCが凝固時に晶出
し、残ったCr、 W、 V、 Mo5Ti等はZrマ
トリックス中に固溶する。
When only carbon is mixed and dissolved, this carbon crystallizes as ZrC in the Zr alloy. Carbide, e.g. CraCz
When mixed and dissolved, Cr5f, +2 Zr -2ZrC+3 Cr -(
In the reaction a), ZrC is produced, and the separated Cr is dissolved in the matrix. If the above-mentioned carbides, which have a higher free energy of formation than ZrC, are used, all of them will react as shown in equation (a), and ZrC, which is an extremely stable carbide, will crystallize during solidification, and the remaining Cr, W, V, Mo5Ti, etc. Solid solution in Zr matrix.

ZrCが分散するマトリックスは、α相、α+β相、β
相のいずれであってもよい。しかし、高靭性のBCC(
体心立方)構造のβ相であればさらに特性が向上する。
The matrix in which ZrC is dispersed is α phase, α + β phase, β
It may be either phase. However, the high toughness of BCC (
If it is a β phase with a body-centered cubic structure, the properties will be further improved.

従って、部材を構成する基本合金がα相、またはα+β
相のZr合金であるときは、例えば、混合溶解する炭化
物としてCr、C,、LClVC,MozCを使用すれ
ば、前記(a)式のように分離したCr、 W、 V、
 No (これらはいずれもβ相安定化元素である)の
作用でマトリックス中にβ相が生成または増加する。
Therefore, the basic alloy constituting the member is α phase, or α + β
When the phase is a Zr alloy, for example, if Cr, C, LClVC, MozC are used as the carbides to be mixed and dissolved, Cr, W, V, separated as in formula (a) above,
The β phase is generated or increased in the matrix by the action of No (all of these are β phase stabilizing elements).

ZrCは晶出反応生成物であるため、熱的にきわめて安
定である。従って、分散粒子とマトリックスが反応して
固溶、拡散することによって特性が変化するという一般
の粒子分散型合金に特有の問題も生じない。しかも、Z
rCは高硬度(Hv2800)であるので複合合金の硬
度は非常に硬くなり、耐摩耗、耐エロージヨン性が著し
く向上する。
Since ZrC is a crystallized reaction product, it is extremely thermally stable. Therefore, the problem peculiar to general particle-dispersed alloys in which the properties change due to the reaction between the dispersed particles and the matrix, resulting in solid solution and diffusion, does not occur. Moreover, Z
Since rC has a high hardness (Hv2800), the hardness of the composite alloy becomes extremely hard, and wear resistance and erosion resistance are significantly improved.

ZrCをマトリックス中に分散させるのは、ZrC自身
相手材と密着せず、すべり効果があり、かつ複合則によ
って全体の硬度を高め、耐摩耗、耐エロージヨン性を向
上させるからである。この場合、マトリックスは炭化物
の保持作用をもつことが必要で高靭性であることが望ま
しい。その意味からマトリックスはできるだけβ相の多
い組織、または完全β相であるのがよい。
The reason for dispersing ZrC in the matrix is that ZrC itself does not adhere to the mating material, has a sliding effect, and increases the overall hardness due to the compound law, improving wear resistance and erosion resistance. In this case, the matrix needs to have a carbide retention function and is desirably highly tough. In this sense, it is preferable that the matrix has a structure with as much β phase as possible, or a complete β phase.

なお複合剤とは、硬質物質が分散した複合材料の強度(
硬度)σが、σ−σfVf+σm V mで表されると
いう法則である。ここで、 σ、: 硬質物質の強度 ■f : 硬質物質の体積率 σ、: マトリックス強度 ■、: マトリックス体積率 である。
Composite agents refer to the strength of composite materials in which hard substances are dispersed (
This is the law that σ (hardness) is expressed as σ−σfVf+σm V m. Here, σ,: Strength of the hard substance ■f: Volume fraction of the hard substance σ,: Matrix strength ■,: Matrix volume fraction.

硬度を上げるため、また一方、良好な加工性を保持する
ためには、Zr合金マトリックス中のZrCの量は5〜
5帽1%の範囲が望ましい、5重量%未満では耐摩耗、
耐エロージヨン性改善の効果が少なく、50重量%を超
えると延性が乏しくなり、加工も難しくなる。
In order to increase the hardness and, on the other hand, maintain good workability, the amount of ZrC in the Zr alloy matrix should be between 5 and 5.
A range of 1% by weight is desirable; less than 5% by weight will result in poor wear resistance;
The effect of improving erosion resistance is small, and if it exceeds 50% by weight, ductility becomes poor and processing becomes difficult.

上記の効果は、晶出ZrC以外に適当な粒度(150μ
−以下が望ましい)の硬質粒子が分散した場合さらに向
上する。硬質粒子としては、^1803、Cr*(h、
Zr01、Sing、Ti1t、TaO等の金属酸化物
、HfC,SiC,TaC等の金属炭化物、BN、 T
ie、 Cr5N。
The above effects can be achieved by using a suitable particle size (150 μm) in addition to crystallized ZrC.
The improvement is further improved when hard particles of - or less are desirable) are dispersed. Hard particles include ^1803, Cr*(h,
Metal oxides such as Zr01, Sing, Ti1t, TaO, metal carbides such as HfC, SiC, TaC, BN, T
ie, Cr5N.

NbN、 ZrNSMotN、 HfN、 TaN等の
金属窒化物、TiBt、VBz、CrBx、 ZrBz
、門ozsi、 NiTi等の硬質金属間化合物等が挙
げられる。このような硬質粒子をZr合金のマトリック
スに分散させる方法としては、Zr合金の溶解温度以上
、硬質粒子の溶融温度以下でZr合金を溶融し、凝固さ
せる方法がある。
Metal nitrides such as NbN, ZrNSMotN, HfN, TaN, TiBt, VBz, CrBx, ZrBz
Examples include hard intermetallic compounds such as NiTi, NiTi, and the like. As a method for dispersing such hard particles in a Zr alloy matrix, there is a method in which the Zr alloy is melted at a temperature higher than the melting temperature of the Zr alloy and lower than the melting temperature of the hard particles, and then solidified.

なお、先に述べたCr、Czなとの金属炭化物の一部が
分解せずにそのままマトリックスに分散しても何ら差し
支えはない。
Note that there is no problem even if some of the metal carbides such as Cr and Cz mentioned above are dispersed as they are in the matrix without being decomposed.

これまでに述べたのは部材の全体を耐摩耗、耐エロージ
ヨン性の組織にする方法である。この外に、部材の必要
部分(所定の表層部)だけを前記の組織にする方法があ
る。即ち、Zr合金製部材(母材)の表面に肉盛法によ
って、ZrCまたはZrCと他の硬質粒子の分散した組
織を形成させるのである。この場合は、例えば、Zrと
Cr5Cz等の金属炭化物との混合粉末、或いはこれに
前記の硬質粒子の1種以上を添加したものを肉盛材料と
して、母材の表面を、レーザー肉盛、PTA肉盛などの
方法でその表面層をZrC分散Zr合金とし、表面の耐
摩耗、耐エロージヨン性を向上させるのである。
What has been described so far is a method of making the entire member wear-resistant and erosion-resistant. In addition to this method, there is a method in which only the necessary portion (predetermined surface layer portion) of the member is provided with the above-mentioned structure. That is, a structure in which ZrC or ZrC and other hard particles are dispersed is formed on the surface of a Zr alloy member (base material) by a build-up method. In this case, for example, a mixed powder of Zr and metal carbide such as Cr5Cz, or one or more of the above-mentioned hard particles added thereto, is used as a build-up material, and the surface of the base material is coated with laser build-up or PTA. The surface layer is made of a ZrC-dispersed Zr alloy using a method such as overlaying to improve the wear resistance and erosion resistance of the surface.

さらに、前記の溶解方法と、鍛造、圧延などの加工方法
とでZrC1またはZrCと他の硬質粒子の分散したZ
r合金の板を作製して、これを耐摩耗、耐エロージヨン
性を必要とするZr合金製部材の所定表面に溶接するこ
ともできる。この溶接はTrGi接法等により障害な〈
実施できる。
Furthermore, by using the above melting method and processing methods such as forging and rolling, ZrC1 or Z in which ZrC and other hard particles are dispersed can be produced.
It is also possible to produce an r-alloy plate and weld it to a predetermined surface of a Zr-alloy member that requires wear resistance and erosion resistance. This welding is difficult due to the TrGi welding method, etc.
Can be implemented.

本発明のZrC1またはZrCと他の硬質粒子の分散し
たZr合金の溶製材は、1000°C前後に加熱して熱
間圧延することも容易である。そして、その耐摩耗性は
高硬度のZrC1あるいは更に硬質粒子の作用によりス
テライトと同等以上であり、かつ耐食性も優れ、また言
うまでもな(Co等の放射性腐食生成物を溶出するおそ
れもない、さらに、マトリックスを高靭性のβ相の多い
組織にすれば一層望ましいことは前記のとおりである。
The ingot material of ZrC1 or Zr alloy in which ZrC and other hard particles are dispersed according to the present invention can be easily hot-rolled by heating to around 1000°C. Its wear resistance is equal to or higher than that of stellite due to the action of high hardness ZrC1 or even harder particles, and it also has excellent corrosion resistance. As mentioned above, it is more desirable to have a structure with a high toughness and a large amount of β phase.

〔実施例1〕 まず、原子力発電プラント用部材を念頭においた実施例
を示す。
[Example 1] First, an example will be shown with nuclear power plant members in mind.

第1表に示す成分&lI威のZr合金をArアーク溶解
法で溶製し、厚さ30I1ml×幅501w11×長さ
100+IImのインゴットとした。使用した合金原料
はスポンジZr、C粉末、および−tc、 TiC,C
rzC2,MozC,TiN。
A Zr alloy having the components shown in Table 1 was melted by an Ar arc melting method to obtain an ingot having a thickness of 30I1ml x width of 501w11 x length of 100+IIm. The alloy raw materials used were sponge Zr, C powder, and -tc, TiC,C.
rzC2, MozC, TiN.

ZrC5A1102、TiB、NbCの粉末である。It is powder of ZrC5A1102, TiB, and NbC.

次に、これらのインゴットを1050°Cに加熱してか
ら厚さ12mmの板まで5パスで熱間圧延するとともに
、熱間圧延による割れ等の欠陥発生状況を調査し、さら
にXvA解析によって組織判定を行った。
Next, these ingots were heated to 1050°C and then hot rolled in 5 passes to a 12mm thick plate, and the occurrence of defects such as cracks due to hot rolling was investigated, and the structure was determined by XvA analysis. I did it.

これらの結果を第1表中に併記する。These results are also listed in Table 1.

得られた圧延板(10+u+厚)の常温での硬度(ビッ
カース硬度)を測定するとともに、直径101IIIl
×長さ40旧の摺動摩耗試験片(第1図のピン1)なら
びに厚さ10++n X幅l0IIII×長さ15開の
エロージ冒ン試験片、長さ25m+sX幅10IIll
×厚さ3+wmの高温耐食性試験片、さらに長さ25開
×幅10111111 X厚さ1+mの耐環境性試験片
を採取し、それぞれの試験に供した。
The hardness (Vickers hardness) at room temperature of the obtained rolled plate (10+u+thickness) was measured, and the diameter was 101IIIl.
x length 40 old sliding wear test piece (pin 1 in Figure 1) and thickness 10++n x width l0III x length 15 open erosion test piece, length 25m + s x width 10ll
A high temperature corrosion resistance test piece with a thickness of 3+wm and an environmental resistance test piece with a length of 25 mm x width of 10111111 x thickness of 1+m were taken and subjected to the respective tests.

比較材としてSO5304の厚さallllの薄板およ
び棒、ステライ)N116の厚さ4III11の鋳造板
および棒を用い、各試験片寸法に加工し、試験に供した
As comparative materials, thin plates and rods of SO5304 with a thickness of 4III1 and cast plates and rods of Stellai) N116 with a thickness of 4III11 were used, processed into various test specimen sizes, and subjected to tests.

「摩耗試験」は第1図に示すようなビンオンデイスタ方
式により実施したが、試験条件は荷重:2kg重 相手材(ディスク2)との摺動速度: 62.8m/s
in摺動距離: 2.5 X 10’m 相手材(ディスク2 ) : SOS 304 、HT
60鋼摩擦面の潤滑:なし であり、この時のビンの重量減少量で耐摩耗性を評価し
た。
The "wear test" was conducted using the bin-on-day star method shown in Figure 1, and the test conditions were: load: 2 kg, sliding speed with heavy mating material (disc 2): 62.8 m/s
In sliding distance: 2.5 x 10'm Mating material (disk 2): SOS 304, HT
Lubrication of the 60 steel friction surface: None, and the wear resistance was evaluated based on the amount of weight loss of the bottle at this time.

rエロージョン試験」は第2図に示すような水ジエツト
方式を採用し、あらかじめパフ研磨にて鏡面研磨した試
験片3の表面に 水噴射ノズル径: 1.2+mφ 噴射水流速: 310a/see 試験温度:常温 ノズル−試験片開路1’tl : 65m5噴射角度:
90゜ 噴射時間: 600sec なる条件で高速水を噴射した後、生じた痕跡の深さを測
定し、耐エロージヨン性を評価した。
The water jet method shown in Fig. 2 was used for the "Erosion Test", and water was sprayed onto the surface of the test piece 3, which had been polished to a mirror surface by puff polishing in advance.Nozzle diameter: 1.2+mφ Water flow rate: 310a/see Test temperature : Room temperature nozzle - test piece open circuit 1'tl : 65m5 Injection angle:
After spraying high-speed water under conditions of 90° spraying time: 600 seconds, the depth of the traces produced was measured and the erosion resistance was evaluated.

「高温耐食試験」はオートクレーブを用いて純水中で3
00°CX200hrで行い、その場合の腐食増量を測
定することで評価した。
"High-temperature corrosion resistance test" is conducted in pure water using an autoclave.
The test was carried out at 00°C for 200 hours, and the evaluation was made by measuring the corrosion weight increase in that case.

「耐環境性試験方法」は、原子炉中(γ線照射下)の環
境を想定して下記の条件で行った。
The "environmental resistance test method" was conducted under the following conditions assuming the environment inside a nuclear reactor (under γ-ray irradiation).

TwA線量率: 1.5X10’ rad/h圧カニ 
70〜80kgf/c+m” 濃度=275〜280℃ 水質: 500ppmB +2ppmL++水素曝気こ
の条件におけるFe、 Ni、 CrおよびCoの50
0 hrでの溶出量を調査した。
TwA dose rate: 1.5X10' rad/h pressure crab
70-80kgf/c+m” Concentration = 275-280℃ Water quality: 500ppmB +2ppmmL++ Hydrogen aeration 50% of Fe, Ni, Cr and Co under these conditions
The elution amount at 0 hr was investigated.

第2表にこれらの試験結果を示す。第1表に併記したよ
うに、本発明例(Nal〜10)は、全てZrC1また
は更に他の硬質粒子が分散した組織を有し、熱間加工性
にも問題がない。第2表から本発明のZr合金複合材料
は、耐摺動摩耗性および耐エロージヨン性が良好で比較
例であるステライトN116を凌いでおり、しかも原子
炉炉内に相当する環境での耐食性にも優れ、Zr基であ
るためCoの溶出がない。即ち、原子炉炉内構造材料と
して極めて有用であることが明らかである。第1表に示
すように、隘1〜4.8.9はマトリックスがβ単相に
なっており、それらの摺動摩耗it(第2表〉は、マト
リックスがα相のNcL5〜7よりも少ない。
Table 2 shows the results of these tests. As shown in Table 1, all of the invention examples (Nal to 10) have a structure in which ZrC1 or other hard particles are dispersed, and there is no problem in hot workability. From Table 2, the Zr alloy composite material of the present invention has good sliding wear resistance and erosion resistance, surpassing the comparative example Stellite N116, and also has good corrosion resistance in an environment equivalent to the inside of a nuclear reactor. Excellent, and because it is a Zr group, there is no elution of Co. That is, it is clear that it is extremely useful as a structural material inside a nuclear reactor. As shown in Table 1, the matrix of Nos. 1 to 4, 8, and 9 is a β single phase, and their sliding wear it (Table 2) is higher than that of NcL5 to 7, whose matrix is an α phase. few.

〔実施例2〕 次°に、本発明部材を肉盛法で作製した実施例を示す。[Example 2] Next, an example will be shown in which a member of the present invention was manufactured by a build-up method.

母材として純ジルコニウムの径100+wm、長さ40
++nの円板を用い、ZrCを13.6重量%にするた
め、Zr粉末に13重量%のCr3C1粉末を混合した
ものを肉盛材料として、第3表の条件で円板上にPTA
肉盛した。硬化深さ(母材面からの深さ)は2.8m−
としたが肉盛部に欠陥は見られず良好であった。この肉
盛した円板から径10mm、長さ4(lu+の摩耗試験
片を切り出してピンとし、肉盛面を約0.5問削除した
肉盛部を摺動面として、実施例1の条件(第1図)で摺
動摩耗試験を行ったところ、第1表の階1と同等の耐摩
耗性を示した。また、耐エロージヨン性、耐食性も第1
表のN11lと同等であった。
Pure zirconium as base material, diameter 100+wm, length 40
++n disc was used, and in order to make ZrC 13.6% by weight, PTA was applied onto the disc under the conditions shown in Table 3 using a mixture of Zr powder and 13% by weight Cr3C1 powder as overlay material.
Filled with meat. Hardening depth (depth from base metal surface) is 2.8m-
However, no defects were observed in the build-up area, which was in good condition. A wear test piece with a diameter of 10 mm and a length of 4 (lu + (Fig. 1), it showed wear resistance equivalent to floor 1 in Table 1.Erosion resistance and corrosion resistance were also
It was equivalent to N11l in the table.

なお、肉盛部中にはZrCが均一に分散晶出しているの
が認められた。
In addition, it was observed that ZrC was uniformly dispersed and crystallized in the built-up portion.

〔実施例3〕 本発明部材を化学プラント用として検討した実施例を示
す。
[Example 3] An example in which the members of the present invention were studied for use in chemical plants will be shown.

実施例1のMal〜3の熱間圧延板より厚さ8mm×幅
20開×長さ20m+*の試験片を切り出し、耐酸性の
テストを実施した。
A test piece with a thickness of 8 mm x width of 20 mm x length of 20 m + * was cut out from the hot rolled plate of Mal~3 of Example 1, and an acid resistance test was conducted.

実験条件は50%硫酸、80℃とし、腐食量を測定した
。比較材としてSOS 304およびZr合金(第1表
の恥11と13)を用いた。試験結果を第4表に示す0
本発明のものは、SUS 304よりも極めて優れ、Z
r合金と同レベルの耐酸性を有している。また、先に第
2表に示したとおり、HT60鋼との摺動摩耗性および
耐エロージヨン性にも優れているから、化学プラント用
材料としても極めて有用であると言える。
The experimental conditions were 50% sulfuric acid and 80°C, and the amount of corrosion was measured. As comparison materials, SOS 304 and Zr alloys (Same 11 and 13 in Table 1) were used. The test results are shown in Table 4.0
The product of the present invention is extremely superior to SUS 304 and Z
It has the same level of acid resistance as r-alloy. Furthermore, as shown in Table 2, it has excellent sliding wear resistance and erosion resistance with respect to HT60 steel, so it can be said to be extremely useful as a material for chemical plants.

〔実施例4〕 本発明の部材を油井機器用材料として検討した実施例を
示す。
[Example 4] An example in which the member of the present invention was investigated as a material for oil well equipment will be shown.

第1表の漱1〜3の熱間圧延板から、長さ50問×幅5
011II×厚み10mmの板状試験片を切り出し、第
3図に示す^STM 038−73のCリング試験片と
し、耐硫化水素(Has)性を評価した0条件は第5表
のとおりである。比較材として第1表のN11llの5
US304と純ジルコニウムを同一形状に切り出して試
験した。試験結果を第6表に示す。N11l〜3のどれ
にもSCC(応力腐食割れ)は発生しなかったが、SU
S 304にはSCCが発生した。この結果から、本発
明の部材は、耐硫化水素性においてSUS 304を凌
ぐことが明らかである。また、先にのべたとおり耐摺動
摩耗性および耐エロージぢン性にも優れているから、油
井機器用材料としても極めて有用である。
From the hot rolled plates of Sou 1 to 3 in Table 1, 50 pieces in length x 5 pieces in width
Table 5 shows the conditions under which hydrogen sulfide (Has) resistance was evaluated by cutting out a plate-shaped test piece of 011II x 10 mm thickness and using it as a C-ring test piece of STM 038-73 shown in FIG. As a comparative material, N11ll 5 in Table 1
US304 and pure zirconium were cut into the same shape and tested. The test results are shown in Table 6. SCC (stress corrosion cracking) did not occur in any of N11l~3, but SU
SCC occurred in S304. From this result, it is clear that the member of the present invention exceeds SUS 304 in hydrogen sulfide resistance. In addition, as mentioned above, it has excellent sliding wear resistance and erosion resistance, so it is extremely useful as a material for oil well equipment.

(以下、余白) 第 3 表 第 表 第 表 負荷応力 0.80xσ。、t 0kg17m” ) 。(Hereafter, margin) No. 3 table No. table No. table Load stress 0.80xσ. ,t 0kg17m”).

Sは硫黄。S is sulfur.

(以下、余白) (発明の効果) 本発明によれば、Zr合金の本来の耐食性を損なわず、
その合金で製造される部材に優れた耐摩耗性、耐エロー
ジヨン性を具備させることができる。
(Hereinafter, blank space) (Effects of the invention) According to the present invention, the original corrosion resistance of Zr alloy is not impaired,
It is possible to provide members manufactured with the alloy with excellent wear resistance and erosion resistance.

本発明の部材は、耐酸性、耐硫化水素性、耐摩耗、耐エ
ロージヨン性に優れ、特に原子炉炉心構造材料としても
高い耐食性を示し、CO基合金のように放射性元素に起
因する問題を生じるおそれもない。
The member of the present invention has excellent acid resistance, hydrogen sulfide resistance, wear resistance, and erosion resistance, and exhibits high corrosion resistance especially as a nuclear reactor core structural material, and does not cause problems caused by radioactive elements like CO-based alloys. There's no fear.

本発明部材はその優れた熱間加工性を生かして板材、管
材等として利用してもよく、通常のZ「合金製部材の表
面に耐摩耗性の肉盛層を形成させて使用してもよい0本
発明部材の応用範囲は、各種化学プラント、油井関係機
器、原子力発電プラント等、きわめて広範である。
The members of the present invention may be used as plate materials, pipe materials, etc. by taking advantage of their excellent hot workability, and may also be used by forming a wear-resistant build-up layer on the surface of ordinary Z alloy members. The range of application of the members of the present invention is extremely wide, including various chemical plants, oil well related equipment, nuclear power plants, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、摺動摩耗試験方法を説明する概念図である。 第2図は、エロージョン試験法を説明する概念図である
。 第3図は、ASTM G38−73に基づく耐硫化水素
性調査用Cリング試験片の説明図である。
FIG. 1 is a conceptual diagram illustrating the sliding wear test method. FIG. 2 is a conceptual diagram explaining the erosion test method. FIG. 3 is an explanatory diagram of a C-ring test piece for investigating hydrogen sulfide resistance based on ASTM G38-73.

Claims (4)

【特許請求の範囲】[Claims] (1)ZrまたはZr合金製の部材であって、その少な
くとも表層部が、素地にZrCの分散した組織であるこ
とを特徴とする耐摩耗性Zr合金製部材。
(1) A wear-resistant Zr alloy member, characterized in that at least the surface layer thereof has a structure in which ZrC is dispersed in the base material.
(2)ZrまたはZr合金製の部材であって、その少な
くとも表層部が、素地にZrCおよびZrC以外の硬質
粒子の分散した組織であることを特徴とする耐摩耗性Z
r合金製部材。
(2) A wear-resistant Z member made of Zr or Zr alloy, characterized in that at least the surface layer thereof has a structure in which ZrC and hard particles other than ZrC are dispersed in the base material.
r Alloy members.
(3)ZrまたはZr合金に炭素または/および金属炭
化物、或いは更に硬質粒子を混合して溶解し、素地にZ
rC、或いは更にZrC以外の硬質粒子を分散させるこ
とを特徴とする請求項(1)または(2)の耐摩耗性Z
r合金部材の製造方法。
(3) Zr or Zr alloy is mixed and dissolved with carbon or/and metal carbide, or even hard particles, and Zr is added to the base material.
Wear resistance Z according to claim (1) or (2), characterized in that hard particles other than rC or ZrC are further dispersed.
A method for manufacturing an r-alloy member.
(4)ZrまたはZr合金製部材の表面に、炭素または
/および金属炭化物、或いは更に硬質粒子を含む肉盛材
料を用いて肉盛し、前記部材の表層部を素地にZrC、
或いは更にZrC以外の硬質粒子の分散した組織とする
ことを特徴とする請求項(1)または(2)の耐摩耗性
Zr合金部材の製造方法。
(4) Overlaying the surface of a Zr or Zr alloy member using a build-up material containing carbon and/or metal carbide, or further hard particles, and using the surface layer of the member as a base material to coat ZrC,
The method for manufacturing a wear-resistant Zr alloy member according to claim 1 or 2, further comprising a structure in which hard particles other than ZrC are dispersed.
JP22787789A 1989-09-01 1989-09-01 Wear-resistnat zr alloy member and its manufacture Pending JPH0390535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22787789A JPH0390535A (en) 1989-09-01 1989-09-01 Wear-resistnat zr alloy member and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22787789A JPH0390535A (en) 1989-09-01 1989-09-01 Wear-resistnat zr alloy member and its manufacture

Publications (1)

Publication Number Publication Date
JPH0390535A true JPH0390535A (en) 1991-04-16

Family

ID=16867749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22787789A Pending JPH0390535A (en) 1989-09-01 1989-09-01 Wear-resistnat zr alloy member and its manufacture

Country Status (1)

Country Link
JP (1) JPH0390535A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536541A (en) * 2005-03-15 2008-09-11 セブ ソシエテ アノニム Easy-to-clean cooking surfaces and household appliances including such surfaces
JP2008268073A (en) * 2007-04-23 2008-11-06 Ebara Corp Material evaluation method, and treatment apparatus for conducting the same evaluation method
JP2017025643A (en) * 2015-07-27 2017-02-02 新日鐵住金株式会社 Well excavation method and drill pipe and tool joint used therein

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536541A (en) * 2005-03-15 2008-09-11 セブ ソシエテ アノニム Easy-to-clean cooking surfaces and household appliances including such surfaces
JP2008268073A (en) * 2007-04-23 2008-11-06 Ebara Corp Material evaluation method, and treatment apparatus for conducting the same evaluation method
JP2017025643A (en) * 2015-07-27 2017-02-02 新日鐵住金株式会社 Well excavation method and drill pipe and tool joint used therein

Similar Documents

Publication Publication Date Title
Yang et al. Review on chromium coated zirconium alloy accident tolerant fuel cladding
Prashar et al. Influence of heat treatment on surface properties of HVOF deposited WC and Ni-based powder coatings: a review
Zhang et al. Microstructure formation and corrosion behaviour in HVOF-sprayed Inconel 625 coatings
Hu et al. Comparison of the cavitation erosion and slurry erosion behavior of cobalt-based and nickel-based coatings
CA1307137C (en) Cobalt-free, iron-base hardfacing alloys
Evangeline et al. Cold metal arc transfer (CMT) metal deposition of Inconel 625 superalloy on 316L austenitic stainless steel: microstructural evaluation, corrosion and wear resistance properties
US5981081A (en) Transition metal boride coatings
US4743513A (en) Wear-resistant amorphous materials and articles, and process for preparation thereof
He et al. Effect of solution treated 316L layer fabricated by laser cladding on wear and corrosive wear resistance
Johnson et al. The resistance of nickel and iron aluminides to cavitation erosion and abrasive wear
NO300553B1 (en) Amorphous coatings resistant to abrasion and corrosion and coating process
CN101838758B (en) Cobalt-free nickel-based alloy
Levin et al. Weld overlay coatings for erosion control
Betz High temperature alloys for gas turbines and other applications, 1986:: proceedings of a conference held in Liege, Belgium, 6-9 October 1986
EP1521859B1 (en) Wear-resistant, corrosion-resistant cobalt-based alloys
Tawancy et al. Comparative performance of turbine blades used in power generation: damage vs. microstructure and superalloy composition selected for the application
Rai et al. Study of microstructure and wear properties of laser borided Inconel 718
Shen et al. Effect of Cr x C y–NiCr coating on the hydrogen embrittlement of 17-4 PH stainless steel using the smooth bar tensile test
JPH0390535A (en) Wear-resistnat zr alloy member and its manufacture
Rubino et al. Evaluating the Corrosion Resistance of Inconel 625 Coatings, Processed by Compact Plasma Spray, for Applications in Concentrating Solar Power Plants
JPS5952228B2 (en) Sliding structure for nuclear reactor
Johnson et al. Friction, wear and corrosion of Laves-hardened nickel alloy hardsurfacing in sodium
JPH02129330A (en) High wear-resistant titanium alloy material
GB1588464A (en) Nickel-base alloy
US7828913B1 (en) Peritectic, metastable alloys containing tantalum and nickel