JP2008268073A - Material evaluation method, and treatment apparatus for conducting the same evaluation method - Google Patents
Material evaluation method, and treatment apparatus for conducting the same evaluation method Download PDFInfo
- Publication number
- JP2008268073A JP2008268073A JP2007113150A JP2007113150A JP2008268073A JP 2008268073 A JP2008268073 A JP 2008268073A JP 2007113150 A JP2007113150 A JP 2007113150A JP 2007113150 A JP2007113150 A JP 2007113150A JP 2008268073 A JP2008268073 A JP 2008268073A
- Authority
- JP
- Japan
- Prior art keywords
- water
- ultrapure water
- pump
- sample
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Description
本発明は、ポンプ、タービン、コンプレッサ或いはブロアー等の回転機械の部材として使用する材料の評価方法及びそのような評価を行うのに使用可能な処理装置に関し、より詳しくは、超純水を取り扱う流体機械或いは超純水を潤滑剤として使用するシール、軸受け等に使用する材料を超純水を使用して評価する方法及びそのような評価を行うのに使用可能な処理装置に関する。 The present invention relates to a method for evaluating a material used as a member of a rotary machine such as a pump, a turbine, a compressor, or a blower, and a processing apparatus that can be used for such evaluation, and more particularly, a fluid that handles ultrapure water. The present invention relates to a method for evaluating a material used for a machine or ultrapure water as a lubricant, a seal, a bearing or the like using ultrapure water, and a processing apparatus usable for performing such an evaluation.
水を潤滑液として扱うポンプ等の回転機械の軸受け、軸シールにはシリコン系セラミックスである炭化ケイ素(SiC)、窒化ケイ素(Si3N4)などが広く使用されている。これらセラミックスは水中潤滑下での摺動中に、摺動面にゲル状の水酸化物や水和物の膜が容易に形成され易く、この効果により、低摩擦、耐磨耗性に優れている。
キャンドモータポンプのジャーナル軸受け、スラスト軸受けには回転側、固定側ともにSiCで構成することが広く行われている。また、ポンプシール部材においては、回転側をSiC、固定側を炭素質成形体で構成したり、両者を共にSiCで構成することが広く行われている。
上記の部材について超純水環境下における使用の可否については、超純水環境下において部材評価のための摺動試験を実施する以外に方法がなかった。
Silicon carbide (SiC), silicon nitride (Si 3 N 4 ) and the like, which are silicon-based ceramics, are widely used for bearings and shaft seals of rotating machines such as pumps that handle water as a lubricating liquid. These ceramics easily form a gel-like hydroxide or hydrate film on the sliding surface during sliding under water lubrication, and this effect is excellent in low friction and wear resistance. Yes.
A journal bearing and a thrust bearing of a canned motor pump are widely made of SiC on both the rotating side and the fixed side. Moreover, in the pump seal member, it is widely performed that the rotation side is composed of SiC and the stationary side is composed of a carbonaceous molded body, or both are composed of SiC.
Regarding whether or not the above members can be used in an ultrapure water environment, there was no method other than performing a sliding test for evaluating the members in an ultrapure water environment.
一般的に水道水は電気抵抗が0.001〜0.1MΩcmであり、このような環境下でシリコン系セラミックスを使用する場合は優れた特性を示す。しかしながら、電気抵抗4MΩcm以上の超純水(理論純水の電気抵抗は18.25MΩcmである。)を取扱い液とする場合、水中に含まれるSi濃度が小さいために、Si系水酸化物又はSi系水和物の水中への溶解速度が大きくなり、シリコン系セラミックスが腐食されていく。したがって、軸受け、シール部の表面があれて水膜切れを起こすことにより、滑り面が直接接触して磨耗し、水道水の場合と比較して極端に短い時間で回転トルクが上昇し、使用不能となる。
かかる材料を実際に軸受け或いはシール部材として使用した場合に、使用不能になるまでの期間は数ヶ月の単位になるので、材料評価を実機を模擬した摺動試験で行うと膨大な評価時間がかかってしまう問題がある。なお、上記腐食の例は水温が10〜20℃で発生するが、水温が高くなると一般的には化学反応の速度は大きくなるため、腐食速度は大きくなり、装置の寿命も短くなる。
In general, tap water has an electric resistance of 0.001 to 0.1 MΩcm, and exhibits excellent characteristics when silicon ceramics are used in such an environment. However, when ultrapure water having an electric resistance of 4 MΩcm or more (the electric resistance of theoretical pure water is 18.25 MΩcm) is used as the handling liquid, since the Si concentration contained in the water is small, Si-based hydroxide or Si The dissolution rate of water-based hydrates in water increases, and silicon ceramics are corroded. Therefore, the surface of the bearing and the seal part breaks and the water film breaks, so the sliding surface comes into direct contact and wears, and the rotational torque rises in an extremely short time compared to tap water, making it unusable. It becomes.
When such a material is actually used as a bearing or a seal member, the period until it becomes unusable becomes a unit of several months. Therefore, if a material evaluation is performed by a sliding test simulating an actual machine, it takes an enormous amount of evaluation time. There is a problem. In addition, although the example of said corrosion generate | occur | produces at 10-20 degreeC of water temperature, since the speed | rate of a chemical reaction will generally become large when water temperature becomes high, a corrosion rate will become large and the lifetime of an apparatus will also be shortened.
本発明は、かかる問題に鑑み成されたものであって、実機を模擬した摺動試験に比較して短い時間で評価可能な材料の評価方法及びそのような評価に使用可能な処理装置を提供することを目的とする。
本発明の他の目的は、電気抵抗が大きい超純水を使用して、その超純水に対する材料の特性を評価する方法及びそのような評価に使用可能な処理装置を提供することである。
本発明の別の目的は、超純水を評価したい材料でできた被処理部材の表面に衝突させてその被処理部材の壊食深さ又は体積減少量を測定し、それによって、材料の耐食性を評価する方法及びそれに使用可能な処理装置を提供することである。
The present invention has been made in view of such problems, and provides a method for evaluating a material that can be evaluated in a shorter time than a sliding test simulating an actual machine, and a processing apparatus that can be used for such evaluation. The purpose is to do.
Another object of the present invention is to provide a method for evaluating the characteristics of a material with respect to the ultrapure water using ultrapure water having a large electric resistance, and a treatment apparatus usable for such evaluation.
Another object of the present invention is to measure the erosion depth or volume reduction amount of the treated member by colliding with the surface of the treated member made of the material to be evaluated, and thereby the corrosion resistance of the material. And a processing apparatus usable for the method.
本発明によれば、材料の評価方法であって、超純水の噴流を評価したい材料でできた被評価部材に衝突させ、それによって材料の耐食性を評価する方法が提供される。
なお、本発明において、超純水とは、4MΩcmないし18.25MΩcmの電気抵抗を有する水を言う。
上記方法において、前記超純水の噴流の流速は、好ましくは10m/s以上、より好ましくは20m/s以上である。その理由は、流速が10m/sより低いと壊食量が小さくなり評価しにくくなるため、評価時間を長くする必要があり、結果的にコストも高くなるからである。流速が高いほど壊食量が大きくなり評価時間は短縮できる。
また、超純水の噴流の直径は、好ましくは0.5mm以上、5mm以下であり、より好ましくは、1mm以上、3mm以下である。その理由は、直径が0.5mmより小さくなると流量が少なくなるため制御が難しくなる。一方、直径が5mmより大きいと所定の流速を確保するためには流量を多くする必要がある。従って、送水ポンプ、超純水製造装置などにハイグレードなものが必要になると同時に装置の寿命も短くなり試験コストが高くなるからである。
更に、超純水或いは試験片すなわち試料の温度は、好ましくは10℃以上、100℃未満である。その理由は、水温を10℃未満に下げると壊食量が小さくなって評価しにくくなるため、長時間の試験が必要になり試験コストが高くなるからである。一方水温が高いほど評価時間は短縮できるが、水温を100℃以上に上げると、気化してしまい評価不能となる。
超純水は、電気抵抗が好ましくは4MΩcmないし18.25MΩcmであり、より好ましく10MΩcmないし18.25MΩcmである。その理由は、超純水の電気抵抗が低いと壊食量が小さくなり評価しにくくなるため、評価時間を長くすると結局試験コストも高くなるからである。
更にまた、超純水を被評価部材に衝突させる時間は、好ましくは30時間以上、200時間以下であり、より好ましくは50時間以上、100時間以下である。その理由は、試験時間を30時間より短くしようとすると超純水の流速を高くする必要があり、前記のように試験のコスト高を招き、また、試験時間を200時間を超えるほど長くすると試験コストが高くなるからである。
According to the present invention, there is provided a method for evaluating a material, wherein a jet of ultrapure water is collided with a member to be evaluated made of the material to be evaluated, thereby evaluating the corrosion resistance of the material.
In the present invention, ultrapure water refers to water having an electrical resistance of 4 MΩcm to 18.25 MΩcm.
In the above method, the flow velocity of the jet of ultrapure water is preferably 10 m / s or more, more preferably 20 m / s or more. The reason is that if the flow velocity is lower than 10 m / s, the amount of erosion becomes small and it is difficult to evaluate, so it is necessary to lengthen the evaluation time, resulting in an increase in cost. The higher the flow rate, the greater the amount of erosion and the evaluation time can be shortened.
Moreover, the diameter of the jet of ultrapure water is preferably 0.5 mm or more and 5 mm or less, and more preferably 1 mm or more and 3 mm or less. The reason for this is that when the diameter is smaller than 0.5 mm, the flow rate decreases, so that control becomes difficult. On the other hand, if the diameter is larger than 5 mm, it is necessary to increase the flow rate in order to ensure a predetermined flow rate. Therefore, a high-grade water pump, ultrapure water production apparatus, etc. are required, and at the same time, the life of the apparatus is shortened and the test cost is increased.
Furthermore, the temperature of the ultrapure water or the test piece, that is, the sample is preferably 10 ° C. or higher and lower than 100 ° C. The reason is that if the water temperature is lowered below 10 ° C., the amount of erosion becomes small and it is difficult to evaluate, so that a long-time test is required and the test cost is increased. On the other hand, as the water temperature is higher, the evaluation time can be shortened. However, if the water temperature is raised to 100 ° C. or higher, the vaporization occurs and the evaluation becomes impossible.
The ultrapure water preferably has an electric resistance of 4 MΩcm to 18.25 MΩcm, more preferably 10 MΩcm to 18.25 MΩcm. The reason for this is that if the electrical resistance of ultrapure water is low, the amount of erosion becomes small and the evaluation becomes difficult, and therefore, if the evaluation time is lengthened, the test cost also increases.
Furthermore, the time for which the ultrapure water collides with the member to be evaluated is preferably 30 hours or more and 200 hours or less, more preferably 50 hours or more and 100 hours or less. The reason is that if the test time is shorter than 30 hours, it is necessary to increase the flow rate of ultrapure water. As described above, the test cost increases, and if the test time is longer than 200 hours, the test time is increased. This is because the cost becomes high.
本発明によれば、超純水を圧送するポンプと、被処理部材を取り外し可能に保持するホルダと、前記ポンプの吐出部に接続されていてポンプから送られた超純水を前記被処理部材の面に向かって噴射するノズルとを備え、前記被処理部材に超純水を噴射させることにより被処理部材の表面を処理することを特徴とする処理装置が提供される。
超純水自体の温度制御装置あるいは試験片すなわち試料自体の温度を制御する装置があってもよい。ただし、高温環境での試験の場合、超純水自体の温度を高温にすると超純水流路内壁からの流出量が増加するため超純水の温度が低下する。従って、試料自体の温度を高温に制御することが望ましい。
上記発明において、処理装置が、超純水の衝突による被処理部材の壊食深さ又は体積減少量を測定することによって、材料の耐食性を評価する評価装置であっても良く、或いは超純水の衝突により被処理部材の表面を加工処理する処理装置であっても良い。
また、上記発明において、ノズルの内径は、好ましくは0.5mm以上、5mm以下であり、より好ましくは、1mm以上、3mm以下である。その理由は、[0005]で記載した理由と同じである。
また、前記超純水の噴流の流速は、好ましくは10m/s以上、より好ましくは20m/s以上である。その理由は、[0005]で記載した前記理由と同じである。
更に、使用する超純水の電気抵抗は、好ましくは4MΩcmないし18.25MΩcmであり、より好ましくは10MΩcmないし18.25MΩcmである。その理由は、[0005]で記載した前記理由と同じである。
According to the present invention, a pump for pumping ultrapure water, a holder for detachably holding a member to be treated, and a member to be treated for ultrapure water that is connected to a discharge portion of the pump and sent from the pump. There is provided a processing apparatus characterized in that the surface of the member to be treated is treated by spraying ultrapure water onto the member to be treated.
There may be a temperature control device for the ultrapure water itself or a device for controlling the temperature of the test piece, that is, the sample itself. However, in the case of a test in a high temperature environment, if the temperature of the ultrapure water itself is increased, the amount of outflow from the inner wall of the ultrapure water channel increases, so the temperature of the ultrapure water decreases. Therefore, it is desirable to control the temperature of the sample itself to a high temperature.
In the above invention, the treatment device may be an evaluation device for evaluating the corrosion resistance of the material by measuring the erosion depth or volume reduction amount of the member to be treated due to the collision of ultra pure water, or ultra pure water. The processing apparatus which processes the surface of a to-be-processed member by collision of this may be sufficient.
Moreover, in the said invention, the internal diameter of a nozzle becomes like this. Preferably it is 0.5 mm or more and 5 mm or less, More preferably, it is 1 mm or more and 3 mm or less. The reason is the same as described in [0005].
Moreover, the flow velocity of the jet of ultrapure water is preferably 10 m / s or more, more preferably 20 m / s or more. The reason is the same as the reason described in [0005].
Furthermore, the electrical resistance of the ultrapure water used is preferably 4 MΩcm to 18.25 MΩcm, more preferably 10 MΩcm to 18.25 MΩcm. The reason is the same as the reason described in [0005].
本発明によれば、次のような効果を奏することが可能である。すなわち、従来は水道水による潤滑下において優れた摩擦磨耗特性を発揮するシリコン系セラミックスは、水潤滑軸受け、シールとして広く使用されてきた。しかし不純物の非常に少ない超純水中での摺動環境ではシリコン系セラミックスは腐食により減耗してしまう。超純水中で優れた耐食性を有する材料を評価し、選定するには、摺動試験を実施すればよいが、壊食速度が非常に遅いため評価するために多くの時間を費やす必要があり、時間的及びコスト的に非常に効率が悪い。しかし本発明によれば、超純水の噴流を評価しようとする材料でつくった試料すなわち被評価材料或いは被処理材料に衝突させて行うので、実機による評価よりも短時間で評価できる。 According to the present invention, the following effects can be obtained. That is, conventionally, silicon-based ceramics that exhibit excellent friction wear characteristics under lubrication with tap water have been widely used as water-lubricated bearings and seals. However, in a sliding environment in ultrapure water with very few impurities, silicon ceramics wear out due to corrosion. To evaluate and select a material with excellent corrosion resistance in ultrapure water, a sliding test may be performed. However, since the erosion rate is very slow, it is necessary to spend a lot of time to evaluate the material. Very inefficient in time and cost. However, according to the present invention, it is performed by colliding with a sample made of a material to be evaluated for the jet of ultrapure water, that is, the material to be evaluated or the material to be processed.
以下、図面を参照して本発明による評価方法及び評価装置について説明する。
図1及び図2において、本発明による材料の評価方法を実施するのに適した処理装置の一実施形態が示されている。この実施形態の処理装置1は、台板10上に配設された超純水の加圧供給部2と、評価したい材料でできた被評価部材(以下ここでは試料と呼ぶ)を保持する試料保持部3と、試料保持部により保持された試料に加圧された超純水を吹き付けるノズル部4と、ポンプ制御装置5とを備えている。加圧供給部2は、取り付け部材11を介して台板10に取り付けられた送水ポンプ21と、その送水ポンプに直結された駆動モータ25とを含んでいる。送水ポンプ21及びそれに直結された駆動モータ25は公知の構造のものでよいが、超純水を100kPaないし1000kPaの圧力で、0.5ないし5.0リットル/分の流量で供給可能な能力を有することが好ましい。送水ポンプ21の吸入部22は図示しない超純水の供給源に接続されている。なお、ここで超純水とは、4MΩcmないし18.25MΩcmの電気抵抗を有する水を言う。
Hereinafter, an evaluation method and an evaluation apparatus according to the present invention will be described with reference to the drawings.
1 and 2, an embodiment of a processing apparatus suitable for carrying out the material evaluation method according to the present invention is shown. The processing apparatus 1 of this embodiment is a sample that holds a pressurized supply unit 2 of ultrapure water disposed on a base plate 10 and a member to be evaluated (hereinafter referred to as a sample) made of a material to be evaluated. A holding unit 3, a nozzle unit 4 that sprays pressurized ultrapure water onto the sample held by the sample holding unit, and a pump control device 5 are provided. The pressure supply unit 2 includes a water supply pump 21 attached to the base plate 10 via the attachment member 11 and a drive motor 25 directly connected to the water supply pump. The water pump 21 and the drive motor 25 directly connected to the water pump 21 may have a known structure, but have the ability to supply ultrapure water at a pressure of 100 kPa to 1000 kPa and a flow rate of 0.5 to 5.0 liters / minute. It is preferable to have. The suction part 22 of the water pump 21 is connected to a supply source of ultrapure water (not shown). Here, ultrapure water refers to water having an electric resistance of 4 MΩcm to 18.25 MΩcm.
試料保持部3は、台板10に配置されていて支持フレーム12によってその台板10に配設固定された保持台31と、保持台31の中央部に配置されたホルダ32とを備えている。保持台31は平面形状が四角形(この実施形態では正方形)のトレー状になっていて、底には排水ポート33が形成され、その排水ポート33には排水管34が接続されている。ホルダ32のヘッド部32aには固定ねじ35が複数個取り付けられ、これらの固定ねじにより試料Mをホルダ32に着脱可能に固定できるようになっている。この場合、試料Mをねじ穴付きの支持部材に溶接等により固定し、その支持部材のねじ穴に固定ねじを螺合させることによってホルダへの試料の固定が行われてもよい。ホルダ32はトレー状の保持台31内で前後方向(後述するノズル部に対して接近、離間する方向で図1及び2において左右方向)に移動可能になっていて、ノズル先端と試料表面との距離を調整できるようになっている。保持台31に対するホルダ32の移動及び固定は公知の手段でよいが、本実施形態では、保持台上に固定された案内部材に複数のガイドロッド36を取り付け、そのガイドロッドをホルダ32の基部32bに形成されたそれぞれのスロット37内で受けて両者の前後(図で左右)に相対移動可能にし、固定ボルト38で基部32bを、それによってホルダを固定するようになっている。試料保持部3は、更に、透明なプラスチック或いはガラスのような透明な材料でできたカバー39を備えている。このカバー39は下端がトレー状の保持台内に受けられるようになっていて、装置の動作中に超純水が外部に飛散するのを防止する。 The sample holder 3 includes a holder 31 that is disposed on the base plate 10 and is fixed to the base plate 10 by the support frame 12, and a holder 32 that is disposed at the center of the holder 31. . The holding base 31 is a tray having a quadrangular shape (in this embodiment, a square shape), a drain port 33 is formed at the bottom, and a drain pipe 34 is connected to the drain port 33. A plurality of fixing screws 35 are attached to the head portion 32a of the holder 32, and the sample M can be detachably fixed to the holder 32 with these fixing screws. In this case, the sample M may be fixed to the holder by fixing the sample M to a support member with a screw hole by welding or the like and screwing a fixing screw into the screw hole of the support member. The holder 32 is movable in the tray-like holding table 31 in the front-rear direction (the left-right direction in FIGS. 1 and 2 in the direction of approaching and separating from the nozzle unit described later), and between the nozzle tip and the sample surface. The distance can be adjusted. The holder 32 can be moved and fixed with respect to the holding table 31 by known means, but in this embodiment, a plurality of guide rods 36 are attached to a guide member fixed on the holding table, and the guide rods are attached to the base 32b of the holder 32. The base 32b is fixed by a fixing bolt 38, and the holder is fixed thereby. The sample holder 3 further includes a cover 39 made of a transparent material such as transparent plastic or glass. The lower end of the cover 39 is received in a tray-like holding table, and prevents ultrapure water from splashing outside during operation of the apparatus.
ノズル部4は、送水ポンプ21と試料保持部3との間において保持台31に固定されたノズル支持板42に取り付けられたノズル41とを備えている。送水ポンプの吐出部はノズルの後端に接続され、送水ポンプから送られた超純水をノズル41から噴出できるようになっている。ノズル41は前後方向(図1及び2で左右方向)に一直線状に伸びており、超純水の噴流を試料の表面に衝突させるようになっていて、噴流と試料表面のなす角度は0゜〜90゜の任意の範囲で設定できる。ノズル41の先端のノズル孔の直径(内径)は、好ましくは0.5mm以上、5mm以下であり、より好ましくは、1mm以上、3mm以下である。ノズル41の構造自体は公知のもので良く、したがって、その詳細な説明は省略する。
台板10の上には、更に公知の構造のポンプ制御装置5が配設固定されている。このポンプ制御装置は、送水ポンプ22用の駆動モータの回転数を制御してノズルからの超純水の吐出量を制御できるようになっている。
The nozzle unit 4 includes a nozzle 41 attached to a nozzle support plate 42 fixed to the holding table 31 between the water pump 21 and the sample holding unit 3. The discharge part of the water pump is connected to the rear end of the nozzle so that the ultrapure water sent from the water pump can be ejected from the nozzle 41. The nozzle 41 extends in a straight line in the front-rear direction (left-right direction in FIGS. 1 and 2), and the jet of ultrapure water collides with the surface of the sample. The angle formed between the jet and the sample surface is 0 °. It can be set within an arbitrary range of ~ 90 °. The diameter (inner diameter) of the nozzle hole at the tip of the nozzle 41 is preferably 0.5 mm or more and 5 mm or less, and more preferably 1 mm or more and 3 mm or less. The structure itself of the nozzle 41 may be a known one, and therefore a detailed description thereof is omitted.
A pump control device 5 having a known structure is disposed and fixed on the base plate 10. This pump control device can control the amount of ultrapure water discharged from the nozzle by controlling the rotational speed of the drive motor for the water pump 22.
上記構成の評価装置において、評価したい材料でできた試料Mを前述のようにしてホルダ32に固定する。次に、ノズル41の先端から試料Mの表面までの距離が所定の値になるようにホルダ32を保持台に関して相対移動し、その位置でホルダを保持台に固定した後、保持台31にカバーを被せる。次に駆動モータ25により送水ポンプを作動させ、超純水をノズル41に送り、そのノズルから超純水を噴射させ、その超純水の噴流を試料Mの表面に衝突させる。かかる動作は試料の材質によって決まる時間、好ましくは30時間以上行う。所定の時間噴流を衝突させたらポンプの動作を停止させ、試料をホルダから取り出す。その後、試料の表面の状態、例えば壊食深さ或いは体積減少量を測定することによって、材料の耐食性を評価する。 In the evaluation apparatus having the above configuration, the sample M made of the material to be evaluated is fixed to the holder 32 as described above. Next, the holder 32 is moved relative to the holding table so that the distance from the tip of the nozzle 41 to the surface of the sample M becomes a predetermined value, and the holder is fixed to the holding table at that position. Put on. Next, the water pump is actuated by the drive motor 25, ultrapure water is sent to the nozzle 41, ultrapure water is injected from the nozzle, and the jet of ultrapure water collides with the surface of the sample M. This operation is performed for a time determined by the material of the sample, preferably 30 hours or more. When the jet flow collides for a predetermined time, the pump operation is stopped and the sample is taken out of the holder. Thereafter, the corrosion resistance of the material is evaluated by measuring the surface condition of the sample, for example, the erosion depth or the volume reduction.
[試験例1]
前記処理装置1を用いて、焼結体SiCについて、水の純度(電気抵抗)を変化させて噴流衝突試験を行った。
ノズル41の先端から試験片である試料の表面までの距離を25mmに設定し、ノズルからの水の噴流が試料の表面に衝突するように(噴流と試料表面の成す角度は0゜〜90゜の任意の範囲に)設定した。内径1mmの噴出口を有するノズルから水を流速18m/sで100時間噴出させ、試料の表面に衝突させた。水は、電気抵抗が約0.007MΩcm(通常の水道水そのまま)、4.0MΩcm及び18.0MΩcm(超純水)である3種類使用し、各水を衝突させた試験片すなわち試料について体積減少量を測定した。
[Test Example 1]
Using the processing apparatus 1, a jet collision test was performed on the sintered body SiC while changing the purity (electric resistance) of water.
The distance from the tip of the nozzle 41 to the surface of the sample, which is a test piece, is set to 25 mm, and the jet of water from the nozzle collides with the surface of the sample (the angle between the jet and the sample surface is 0 ° to 90 °). Set to any range of). Water was ejected from a nozzle having an inner diameter of 1 mm at a flow rate of 18 m / s for 100 hours to collide with the surface of the sample. Three types of water are used whose electrical resistance is about 0.007 MΩcm (normal tap water as it is), 4.0 MΩcm and 18.0 MΩcm (ultra pure water), and the volume of the test piece, ie, the sample, which collides with each water, is reduced The amount was measured.
図2は上記試験した試料の表面断面曲線を示す。図2から明らかなように、電気抵抗が18.0MΩcmである超純水の噴流を衝突させると、他の水(電気抵抗が0.007MΩcm及び4.0MΩcmの水)に比較して使用の表面が顕著に壊食されるのがわかる。上記試験結果に基づいて水の電気抵抗と最大壊食深さとの関係を示すと、図3に示されるようになる。なお、試験直後の試料表面には酸化物と思われる生成物が壊食部に付着して覆っているので、この付着物をブラシ等で除去した後断面曲線を測定した。電気抵抗が4.0MΩcmより大きくなると壊食が進行し始めるが、迅速な材料の評価には最大壊食深さがある程度大きくなっている必要があるので、評価方法としては電気抵抗が4.0MΩcm以上の水を使用するのが好ましい。 FIG. 2 shows the surface cross-sectional curve of the tested sample. As is clear from FIG. 2, when a jet of ultrapure water having an electric resistance of 18.0 MΩcm is collided, the surface of the used surface is compared to other water (water having an electric resistance of 0.007 MΩcm and 4.0 MΩcm). Is noticeably eroded. FIG. 3 shows the relationship between the electrical resistance of water and the maximum erosion depth based on the test results. In addition, since the product considered to be an oxide adheres to and covers the erosion portion on the sample surface immediately after the test, a cross-sectional curve was measured after removing the deposit with a brush or the like. Erosion begins to progress when the electrical resistance is greater than 4.0 MΩcm, but the maximum erosion depth needs to be increased to some extent for rapid material evaluation. Therefore, the electrical resistance is 4.0 MΩcm as an evaluation method. It is preferable to use the above water.
次に電気抵抗18.0MΩcmの水を使用し、その水の噴流を100時間にわたって試料(SiC焼結体)に衝突させた場合の水の流速と最大壊食深さとの関係を示すと図4に示されるようになる。なお、水温は10〜25℃とした。図4から、噴流の流速が大きいほど最大壊食深さが大きくなる傾向を示すことがわかる。迅速な材料評価を行うために、噴流の速度は10m/s以上とするのが好ましい。 Next, when water having an electric resistance of 18.0 MΩcm is used and the jet of the water is collided with the sample (SiC sintered body) for 100 hours, the relationship between the water flow velocity and the maximum erosion depth is shown in FIG. As shown in The water temperature was 10-25 ° C. It can be seen from FIG. 4 that the maximum erosion depth tends to increase as the jet flow velocity increases. In order to perform quick material evaluation, the jet velocity is preferably 10 m / s or more.
一方、電気抵抗18.0MΩcmの水を使用し、水の流速を18m/sで前記と同じ材質の試料に衝突させた場合の試験時間(噴流を衝突させている時間)と最大壊食深さとの関係を示すと、図5に示されるようになる。この場合の水温も10〜25℃とした。迅速な材料評価を行うには最大壊食深さがある程度大きな値であることが必要であるが、図5から材料の評価に必要な試験時間は30時間以上であることが好ましいことがわかる。 On the other hand, when water having an electric resistance of 18.0 MΩcm is used and the flow velocity of water is made to collide with a sample of the same material as described above, the test time (the time when the jet is made to collide) and the maximum erosion depth FIG. 5 shows the relationship. The water temperature in this case was also 10-25 ° C. Although it is necessary for the maximum erosion depth to be a somewhat large value in order to perform quick material evaluation, it can be seen from FIG. 5 that the test time required for evaluating the material is preferably 30 hours or more.
[試験例2]
SiC製のスパイラルグルーブ付きスラスト軸受け部材を実機ポンプに即した条件である電気抵抗18.0MΩcmの水中で軸受面圧2.2MPa、周速度12m/sで500時間運転した。水温は10〜25℃とした。この試験結果による軸受け部材滑り面の試験後の外観写真と断面曲線を示すと図6に示されるようになる。図6に示されるように、回転側軸受け部材は部分的に磨耗しているが、磨耗している位置は固定側軸受け部材に形成されたグルーブの終端近傍(環状の軸受け部材の半径方向内側近傍)に相当する部分であることがわかる。これは水に依るエロージョン・コロージョン作用によるものと推定される。最大壊食深さは、固定側の軸受け部材(スパイラルグルーブ付き部材)で約3μm、回転側の軸受け部材(スパイラルグルーブなしの部材)では2μmであった。500時間試験しても壊食量が少なく、実機に即した試験を評価方法として用いると評価時間が非常に長くなってしまうことがわかる。
[Test Example 2]
A thrust bearing member with a spiral groove made of SiC was operated for 500 hours at a bearing surface pressure of 2.2 MPa and a peripheral speed of 12 m / s in water having an electrical resistance of 18.0 MΩcm, which is a condition suitable for an actual pump. The water temperature was 10-25 ° C. FIG. 6 shows an appearance photograph and a cross-sectional curve after the test of the bearing member sliding surface according to this test result. As shown in FIG. 6, the rotating side bearing member is partially worn, but the worn position is near the end of the groove formed on the fixed side bearing member (near the radially inner side of the annular bearing member) ). This is presumed to be due to erosion and corrosion caused by water. The maximum erosion depth was about 3 μm for the bearing member on the fixed side (member with spiral groove), and 2 μm for the bearing member on the rotation side (member without spiral groove). It can be seen that even if the test is performed for 500 hours, the amount of erosion is small and the evaluation time becomes very long if a test according to the actual machine is used as the evaluation method.
なお、上記実施例及び試験例は、処理装置を材料の評価方法に使用する場合について説明したが、処理装置は、材料の切断、表面の切削等の加工装置として使用することも可能である。
例えば、切断用の加工装置として使用する場合、切断しようとする部材に超純水の噴流を垂直に衝突させるように被切断部材をホルダで保持する。この場合噴流の位置に対して被切断部材の位置を変える必要があるときは、公知の手段を用いてホルダのヘッド部を他の部材、例えば保持台に対して2次元方向或いは3次元方向に移動可能にして、噴流の位置に対して被切断部材の位置を、噴流の向きに対して直角の方向に自動的に移動させるようにすればよい。
In addition, although the said Example and test example demonstrated the case where a processing apparatus was used for the evaluation method of material, a processing apparatus can also be used as processing apparatuses, such as material cutting and surface cutting.
For example, when used as a processing device for cutting, a member to be cut is held by a holder so that a jet of ultrapure water collides vertically with a member to be cut. In this case, when it is necessary to change the position of the member to be cut with respect to the position of the jet, the head portion of the holder is moved in a two-dimensional direction or a three-dimensional direction with respect to another member, for example, a holding table, using a known means. The position of the member to be cut may be automatically moved in a direction perpendicular to the direction of the jet to be movable.
本発明は、超純水を扱う流体機械の軸受け部材或いはシール部材用の材料の評価に利用可能である。 The present invention can be used for evaluating a material for a bearing member or a seal member of a fluid machine that handles ultrapure water.
1 処理装置 2 加圧供給部
3 試料保持部 4 ノズル部
5 ポンプ制御装置 10 台板
21 送水ポンプ 25 駆動モータ
32 保持台 32 ホルダ
41 ノズル
DESCRIPTION OF SYMBOLS 1 Processing apparatus 2 Pressurization supply part 3 Sample holding part 4 Nozzle part 5 Pump control apparatus 10 Base plate 21 Water supply pump 25 Drive motor 32 Holding stand 32 Holder 41 Nozzle
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007113150A JP2008268073A (en) | 2007-04-23 | 2007-04-23 | Material evaluation method, and treatment apparatus for conducting the same evaluation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007113150A JP2008268073A (en) | 2007-04-23 | 2007-04-23 | Material evaluation method, and treatment apparatus for conducting the same evaluation method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008268073A true JP2008268073A (en) | 2008-11-06 |
Family
ID=40047762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007113150A Pending JP2008268073A (en) | 2007-04-23 | 2007-04-23 | Material evaluation method, and treatment apparatus for conducting the same evaluation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008268073A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0390535A (en) * | 1989-09-01 | 1991-04-16 | Sumitomo Metal Ind Ltd | Wear-resistnat zr alloy member and its manufacture |
JP2001033389A (en) * | 1999-07-26 | 2001-02-09 | Sumitomo Metal Ind Ltd | Method and apparatus for evaluating corrosion resistance of steel product |
JP2001096144A (en) * | 1999-09-28 | 2001-04-10 | Ebara Corp | Member for apparatus using supercritical water and subcritical water |
JP2002012990A (en) * | 2000-06-28 | 2002-01-15 | Hitoshi Soyama | Method for inhibitting corrosion on metal workpiece surface by cavitation and for reducing cavitation corrosion, and product treated to improve corrosion resistance and prevention property for cavitation corrosion |
-
2007
- 2007-04-23 JP JP2007113150A patent/JP2008268073A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0390535A (en) * | 1989-09-01 | 1991-04-16 | Sumitomo Metal Ind Ltd | Wear-resistnat zr alloy member and its manufacture |
JP2001033389A (en) * | 1999-07-26 | 2001-02-09 | Sumitomo Metal Ind Ltd | Method and apparatus for evaluating corrosion resistance of steel product |
JP2001096144A (en) * | 1999-09-28 | 2001-04-10 | Ebara Corp | Member for apparatus using supercritical water and subcritical water |
JP2002012990A (en) * | 2000-06-28 | 2002-01-15 | Hitoshi Soyama | Method for inhibitting corrosion on metal workpiece surface by cavitation and for reducing cavitation corrosion, and product treated to improve corrosion resistance and prevention property for cavitation corrosion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5957466B2 (en) | Method and apparatus for processing at least one workpiece | |
JP2016215343A (en) | Machine tool having cleaning means | |
KR20130036216A (en) | Dispenser for highly viscous fluid | |
JP5352650B2 (en) | Machining apparatus and machining method using the same | |
CA2756891C (en) | Cutting liquid supply device for machine tool | |
JP2012135864A (en) | Instantaneous heat treatment method for metal product | |
CN205588088U (en) | Stainless steel stamping workpiece grinding burr | |
CN107683381B (en) | Seal protection and lubrication in worm drive power tools | |
CN107427789A (en) | For disperseing improving equipment for water-soluble polymer | |
JP2006150557A (en) | End mill cutting method of titanium alloy in water | |
KR100999445B1 (en) | Conditioner for chemical mechanical polishing apparatus | |
JP2015505719A (en) | A device for emitting a jet of cryogenic fluid, including a plenum chamber | |
JP2008268073A (en) | Material evaluation method, and treatment apparatus for conducting the same evaluation method | |
JP2007000967A (en) | Cutting device | |
JP2010149204A (en) | Blast nozzle and blasting method | |
CN114734369B (en) | Pressurizing container, pressurizing device, finishing device and pressurizing method of hydraulic oil | |
CN207983132U (en) | Sapphire high pressure waterjet device | |
JP5166064B2 (en) | Work chuck rotary table mechanism | |
JP2008110430A (en) | Machining method and machine tool | |
JP2009202285A (en) | Clogging chip removing method and clogging chip removing device | |
CN106112686B (en) | A kind of cooling system at vertical drilling-tapping center | |
JP2008137152A (en) | Method and device for machining | |
RU2008126618A (en) | DEVICE FOR CLEANING THE INTERNAL CAVITY OF THE PIPELINE | |
JP2008311382A (en) | Washing method for porous ceramic-made chuck | |
Park et al. | Efficient MQL-based drilling of Inconel 601 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100326 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20110818 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110909 |
|
A02 | Decision of refusal |
Effective date: 20120216 Free format text: JAPANESE INTERMEDIATE CODE: A02 |