JPH0390501A - Manufacture of aluminum alloy powder for forging - Google Patents

Manufacture of aluminum alloy powder for forging

Info

Publication number
JPH0390501A
JPH0390501A JP1228152A JP22815289A JPH0390501A JP H0390501 A JPH0390501 A JP H0390501A JP 1228152 A JP1228152 A JP 1228152A JP 22815289 A JP22815289 A JP 22815289A JP H0390501 A JPH0390501 A JP H0390501A
Authority
JP
Japan
Prior art keywords
powder
raw material
obtd
alloy
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1228152A
Other languages
Japanese (ja)
Other versions
JP3159384B2 (en
Inventor
Yoshiaki Ito
嘉朗 伊藤
Yoshinobu Takeda
義信 武田
Yusuke Kotani
雄介 小谷
Tetsuya Hayashi
哲也 林
Toshihiko Kaji
鍛治 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Sumitomo Electric Industries Ltd
Original Assignee
Toyo Aluminum KK
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK, Sumitomo Electric Industries Ltd filed Critical Toyo Aluminum KK
Priority to JP22815289A priority Critical patent/JP3159384B2/en
Publication of JPH0390501A publication Critical patent/JPH0390501A/en
Application granted granted Critical
Publication of JP3159384B2 publication Critical patent/JP3159384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture Al alloy powder for forging having excellent fluidity and difficult-to-fly as dust without penetrating into gap of dies by crushing a formed body of raw material powder of the Al alloy and classifying to make the specific particle size distribution. CONSTITUTION:The raw material powder of Al alloy obtd. by rapidly cooling and solidifying with atomizing method, is formed with powder rolling device, etc. By this method, particles are once mechanically combined with each other. Successively, this formed body is crushed. The obtd. powder is classified by using a sieve to make the powder containing >=80mum the average particle diameter and <30% consists of <=44mum fine powder. By this method, the classified coursed particles and fine powder are returned back to the above forming process. The powder obtd. with this classifying process is annealed desirably at 150-<400 deg.C. By this method, the Al alloy powder for forging used for the forged body having excellent fluidity and little dispersion of tensile strength without deteriorating mechanical strength is obtd. Further, this powder has a little fear of burning the die by penetrating into gap between the dies and is difficult-to-fly as the dust and this is favorable to safety and sanitation.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、鍛造によって成形されるアルミニウム合金
粉末を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing aluminum alloy powder formed by forging.

[従来の技術および発明が解決しようとする隷迦]従来
より鍛造により成形されるアルミニウム合金粉末として
は、急冷凝固法によるアルミニウム合金粉末が用いられ
ている。このような急冷凝固法によるアルミ合金粉末は
平均粒径が40.czmと非常に細かい粉末であった。
[Prior Art and Problems to be Solved by the Invention] Conventionally, as aluminum alloy powder formed by forging, aluminum alloy powder produced by a rapid solidification method has been used. The aluminum alloy powder obtained by such a rapid solidification method has an average particle size of 40. It was a very fine powder of czm.

このため、流動性が悪く金型の中をうまく流動せず、こ
の結果として成形体中における密度にばらつきを生じ、
鍛造体の強度にばらつきを生じた。また細かい粉末であ
るため金型の隙間に入り込み金型成形時において焼付き
が発生するという問題もあった。また粉塵として舞い上
がりやすいため安全衛生上の問題も発生した。
For this reason, the fluidity is poor and it does not flow properly in the mold, resulting in variations in density in the molded product.
There were variations in the strength of the forged bodies. Furthermore, since it is a fine powder, it can get into the gaps between the molds and cause seizure during molding. It also caused safety and health problems because it was easily blown up as dust.

溶融した金属粒子を噴射して急冷凝固し粉末を製造する
アトマイズ法によりアルミニウム合金粉末を製造する場
合、上述の問題点を解決するために大きな粒径の粉末を
得ようとすると、急冷による効果がなくなり、強度や靭
性の劣る合金となってしまう。
When producing aluminum alloy powder using the atomization method, in which molten metal particles are injected and rapidly solidified to produce a powder, when trying to obtain powder with a large particle size to solve the above-mentioned problems, the effect of rapid cooling is This results in an alloy with inferior strength and toughness.

また、他の造粒方法により、大きな粒径のアルミニウム
ご金粉末を製造しようとすると、通常バインダが必要と
なる。バインダを使用すると、このバインダを完全に除
去することが難しく、急冷凝固により得られるアルミニ
ウム合金粉末と同程度の機械的性質を得ることができな
い。
Further, when attempting to produce aluminum gold powder with a large particle size using other granulation methods, a binder is usually required. If a binder is used, it is difficult to completely remove the binder, and mechanical properties comparable to those of aluminum alloy powder obtained by rapid solidification cannot be obtained.

この発明の目的は、かかる従来の問題点を解消し、流動
性に優れ、かつ金型の隙間に入り込むことなく、また粉
塵として舞い上がりにくい鍛造用アルミニウム合金粉末
を製造する方法を提供することにある。
It is an object of the present invention to solve these conventional problems and provide a method for producing aluminum alloy powder for forging that has excellent fluidity, does not get into the gaps between molds, and is difficult to fly up as dust. .

[課題を解決するための手段] この発明の製造方法では、アルミニウム合金の原料粉末
を成形する工程と、成形体を粉砕する工程と、粉砕工程
の後の粉末を分級して、平均粒径が80μm以上でかつ
44μm以下の微粉が30%未満の粉末にする工程とを
備えている。
[Means for Solving the Problems] The manufacturing method of the present invention includes a step of compacting raw material powder of an aluminum alloy, a step of pulverizing the compact, and a step of classifying the powder after the pulverizing step, so that the average particle size is and a step of making powder with less than 30% of fine powder having a particle size of 80 μm or more and 44 μm or less.

この発明において、さらに好ましくは、分級工程の後の
粉末を150℃以上400℃未満の温度で焼鈍する工程
をさらに備えている。
More preferably, the present invention further includes a step of annealing the powder after the classification step at a temperature of 150° C. or more and less than 400° C.

この発明においてアルミニウム合金の原料粉末の成形は
、たとえば板状または棒状に圧延することにより行なう
ことができる。このようにして得られた板状または棒状
等の成形体を粉砕し、分級して、平均粒径が80μn1
以上で、かつ粒径44μm以下の微粉が30%未満の粒
度分布の粉末とする。
In the present invention, the raw material powder of the aluminum alloy can be shaped by rolling it into a plate or rod shape, for example. The plate-shaped or rod-shaped molded bodies obtained in this way are crushed and classified, and the average particle size is 80 μn1.
The powder has a particle size distribution above and in which the proportion of fine powder with a particle size of 44 μm or less is less than 30%.

[作用] この発明の製造方法では、アルミニウム合金の原料粉末
を粉末圧延装置等で成形し、粉末同士を一旦メカニカル
に結合させる。次にこの成形体を粉砕して所定の粒度分
布となるように分級する。
[Operation] In the manufacturing method of the present invention, raw material powder of an aluminum alloy is molded using a powder rolling machine or the like, and the powders are once mechanically bonded to each other. Next, this molded body is crushed and classified to have a predetermined particle size distribution.

この分級によって除去された微粉末や粗大な粉末は、も
う−度原料粉末とともに粉末圧延装置等の中に入れられ
原料として用いることができる。
The fine powder and coarse powder removed by this classification can be put into a powder rolling machine or the like together with the raw material powder and used as a raw material.

このように、この発明では乾式でかつ冷間で造粒してい
るため、原料粉末である急冷凝固法による粉末中の微細
組織を損なうことなく所定の粒度分布の粉末とすること
ができる。またこの発明の製造方法ではバインダを使用
していないので、バインダによる粉末表面の汚染がなく
、したがって機械的性質の劣化がなく、またバインダを
除去する工程が不要である。
As described above, in the present invention, since the granulation is carried out in a dry and cold manner, it is possible to obtain a powder having a predetermined particle size distribution without damaging the fine structure of the raw material powder, which is obtained by the rapid solidification method. Furthermore, since the manufacturing method of the present invention does not use a binder, there is no contamination of the powder surface by the binder, so there is no deterioration of mechanical properties, and there is no need for a step of removing the binder.

この発明の製造方法における分級工程では、平均粒径が
80μm以上となるように分級している。
In the classification step in the production method of this invention, the particles are classified so that the average particle size is 80 μm or more.

この理由は、平均粒径が80μm未満になると流動性の
改善が得られないからである。また44μm以下の粒子
が30%未満となるようにしている。
The reason for this is that when the average particle size is less than 80 μm, no improvement in fluidity can be obtained. In addition, the proportion of particles with a diameter of 44 μm or less is less than 30%.

この理由は、44μm以下の粉末が30%以上となると
金型の隙間に多くの粒子が入り込み金型の焼付きが著し
くなるからである。
The reason for this is that if the powder with a diameter of 44 μm or less exceeds 30%, many particles will enter the gaps in the mold, resulting in severe seizure of the mold.

また、この発明の好ましい実施態様では、分級工程の後
の粉末を150℃以上400℃未満の温度で焼鈍する工
程をさらに備えている。焼鈍の温度を150℃以上40
0℃未満としているのは、150℃未満であると、造粒
後の冷間加工による粉末硬さを低下させることができず
、金型成形密度が低下するからであり、また400℃以
上では、粉末の硬さ低下の効果が飽和するうえ、素材の
強度を損う可能性が高いからである。
Further, a preferred embodiment of the present invention further includes a step of annealing the powder after the classification step at a temperature of 150° C. or more and less than 400° C. Annealing temperature 150℃ or higher 40℃
The reason why the temperature is lower than 0°C is that if the temperature is lower than 150°C, the powder hardness due to cold working after granulation cannot be reduced, and the mold density will decrease. This is because the effect of reducing the hardness of the powder is saturated and there is a high possibility that the strength of the material will be impaired.

[実施例j 原料粉として、 42mesh以下、平均粒径40μm
のAQ−8t合金粉末を用い、これを粉末圧延して、幅
50mm厚さ3mmの長尺の板を連続的に成形した。こ
の成形体を粉砕し、第1図に示すような粒度分布を持つ
粉末を得た。なお、第1図には、原料粉の粒度分布も併
せて示す。
[Example j As raw material powder, 42 mesh or less, average particle size 40 μm
The AQ-8t alloy powder was powder rolled to continuously form a long plate with a width of 50 mm and a thickness of 3 mm. This compact was pulverized to obtain a powder having a particle size distribution as shown in FIG. Note that FIG. 1 also shows the particle size distribution of the raw material powder.

この粉砕した粉末をふるいを用いて一30mes hs
 +325me s hにふるい分けして造粒粉を製造
した。表1に造粒粉および原料粉の流れ性および見かけ
密度を示す。
This pulverized powder was passed through a sieve for 130ms hs.
A granulated powder was produced by sieving to +325 me s h. Table 1 shows the flowability and apparent density of the granulated powder and raw material powder.

表  1 表1から明らかなように、原料粉に比べ、この発明に従
い製造された造粒粉は良好な流れ性を示すことがわかる
Table 1 As is clear from Table 1, the granulated powder produced according to the present invention exhibits better flowability than the raw material powder.

このようにして得られた造粒粉に潤滑剤を混合し、4t
on/cm2の一定の圧力で直径11゜3mm、高さ1
0mmの円筒形状に成形した。また、比較として原料粉
に同一条件で潤滑剤を混合し、同様の円筒形状に成形し
た。得られた造粒粉および原料粉の成形体の抜き荷重(
kg)、成型密度(g/cm’)、およびラトラー値(
%)をそれぞれ、第2図、第3図、および第4図に示し
た。なお、上記実験の結果は、各図に“焼鈍なし“とし
て示した。
A lubricant was mixed with the granulated powder obtained in this way, and 4t.
Diameter 11゜3mm, height 1 at a constant pressure of on/cm2
It was molded into a 0 mm cylindrical shape. In addition, as a comparison, a lubricant was mixed with the raw material powder under the same conditions and molded into a similar cylindrical shape. Extraction load of the molded body of the obtained granulated powder and raw material powder (
kg), molding density (g/cm'), and Rattler value (
%) are shown in FIGS. 2, 3, and 4, respectively. Note that the results of the above experiments are shown as "no annealing" in each figure.

第2図、第3図および第4図から明らかなように、この
発明に従い製造された造粒粉は、原料粉に比べ優れたけ
だし荷重、成形体強度、および圧縮性を示すことがわか
る。
As is clear from FIG. 2, FIG. 3, and FIG. 4, the granulated powder produced according to the present invention exhibits superior punching load, compact strength, and compressibility compared to the raw material powder.

第5図に示すような成形の金型を用い、上記のようにし
て得られた造粒粉で段付きの成形体を製造した。第5図
において、1は上部パンチ、2は下部パンチ、3は成形
体、4はダイスを示している。
Using a mold as shown in FIG. 5, a stepped molded body was manufactured from the granulated powder obtained as described above. In FIG. 5, 1 is an upper punch, 2 is a lower punch, 3 is a molded body, and 4 is a die.

得られた成形体の各部分について密度(g/cm3)を
測定し、各部の密度を第6図に示したまた、比較として
原料粉に潤滑剤を加えて同様に第5図に示すような金型
で成形し、得られた成形体について各部の密度分布を測
定し第7図に示した。
The density (g/cm3) of each part of the obtained molded body was measured, and the density of each part is shown in Figure 6.For comparison, a lubricant was added to the raw material powder and the same as shown in Figure 5 was prepared. The density distribution of each part of the obtained molded product was measured and shown in FIG. 7.

第6図および第7図の比較から明らかなように、この発
明に従い得られた造粒粉は、原料粉のものに比べ、均一
な密度分布の成形体を与えることがわかる。
As is clear from the comparison of FIGS. 6 and 7, the granulated powder obtained according to the present invention provides a molded body with a more uniform density distribution than that of the raw material powder.

また、造粒粉および原料粉から得られた成形体を熱間鍛
造し、鍛造体の各部分から引張り試験片を取出して、引
張り強度を311定し、表2にこの結果を示した。
Further, a molded body obtained from the granulated powder and the raw material powder was hot forged, and tensile test pieces were taken from each part of the forged body, and the tensile strength was determined to be 311, and the results are shown in Table 2.

表2 表2から明らかなようにこの発明に従い製造された造粒
粉を用いた鍛造体は、原料粉からの鍛造体に比べ引張り
強度においてもばらつきの少ないことがわかる。
Table 2 As is clear from Table 2, forged bodies using granulated powder produced according to the present invention have less variation in tensile strength than forged bodies made from raw material powder.

次に、上記のように原料粉の成形体を粉砕して分級した
造粒粉を、350℃で2時間の焼鈍を行ない、上記と同
様に4ton/cm2の一定の圧力で、直径11.3m
m、高さ10mmの円筒状の成形体を成形し、この成形
体について成形特の抜き荷重(kg)、成型密度(g/
cm” ) 、およびラトラー値(%)を測定し、それ
ぞれ第2図、第3図、および第4図に併せて示した。な
お、各図には“焼鈍あり”として示した。
Next, the granulated powder obtained by crushing and classifying the raw material powder compact as described above was annealed at 350°C for 2 hours, and was heated to a diameter of 11.3 m under a constant pressure of 4 ton/cm2 in the same manner as above.
m, a cylindrical molded body with a height of 10 mm was molded, and the molding specific punching load (kg) and molding density (g/
cm") and Rattler value (%) were measured and shown in FIG. 2, FIG. 3, and FIG. 4, respectively. In addition, "with annealing" is shown in each figure.

第2図、第3図および第4図から明らかなように、造粒
粉をさらに焼鈍することにより、より優れたけだし荷重
、圧縮性、および成形体強度の得られることがわかる。
As is clear from FIG. 2, FIG. 3, and FIG. 4, it can be seen that by further annealing the granulated powder, better knock-out load, compressibility, and strength of the compact can be obtained.

[発明の効果] 以上説明したように、この発明の製造方法に従い得られ
るアルミニウム合金粉末は、流れ性に優れているため、
成形体における密度のばらつきや鍛造体における強度の
ばらつきが従来よりも小さくなる。また、44μm以下
の粉末が30%未満であるため、従来のように金型の隙
間に入り込んで金型が焼付くおそれが少なくなる。また
、粉塵が舞いに<<、安全および衛生面からも好ましい
[Effects of the Invention] As explained above, the aluminum alloy powder obtained according to the production method of the present invention has excellent flowability.
Variations in density in molded bodies and variations in strength in forged bodies are smaller than in the past. In addition, since the powder with a particle size of 44 μm or less is less than 30%, there is less risk of the powder entering the gap between the molds and seizing the molds as in the conventional case. In addition, it is preferable from the viewpoint of safety and hygiene, as it does not cause dust to fly.

さらに、乾式でかつ冷間で造粒する方法であるので、優
れた機械的性質の鍛造体を与える。
Furthermore, since it is a dry and cold granulation method, it provides a forged body with excellent mechanical properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の実施例において用いた原料粉と原
料粉を成形した後に粉砕した粉末の粒度分布を示す図で
ある。 第2図は、この発明の実施例で得られた造粒粉および原
料粉の成形体の抜き荷重を示す図である。 ′N53図は、この発明の実施例で得られた造粒粉およ
び原料粉の成形体の成型密度を示す図である。 第4図は、この発明の実施例で得られた造粒粉および原
料粉の成形体のラトラー値を示す図である。 第5図は、この発明の実施例でプレス成形した金型を示
す断面図である。 第6図は、この発明の実施例で得られた造粒粉の成形体
の密度分子1iを示す図である。 第7図は、この発明の実施例で用いた原料粉の成形体の
密度分布を示す図である。 図において、1は上部パンチ、2は下部パンチ、3は成
形体、4はダイスを示す。 高10 就テ上(刀m) 易2田 迂′Mt)P 原料す
FIG. 1 is a diagram showing the particle size distribution of the raw material powder used in Examples of the present invention and the powder obtained by molding the raw material powder and then pulverizing it. FIG. 2 is a diagram showing the pull-out load of molded bodies of granulated powder and raw material powder obtained in Examples of the present invention. Figure 'N53 is a diagram showing the molding density of molded bodies of granulated powder and raw material powder obtained in Examples of the present invention. FIG. 4 is a diagram showing the Rattler values of molded bodies of granulated powder and raw material powder obtained in Examples of the present invention. FIG. 5 is a sectional view showing a press molding die according to an embodiment of the present invention. FIG. 6 is a diagram showing the density molecules 1i of a molded body of granulated powder obtained in an example of the present invention. FIG. 7 is a diagram showing the density distribution of a molded body of raw material powder used in an example of the present invention. In the figure, 1 is an upper punch, 2 is a lower punch, 3 is a molded body, and 4 is a die. High school 10th grade (sword m) Yi 2ndana'Mt)P Raw materials

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム合金の原料粉末を成形する工程と、 前記成形体を粉砕する工程と、 前記粉砕工程の後の粉末を分級して、平均粒径が80μ
m以上でかつ44μm以下の微粉が30%未満の粉末に
する工程とを備える、鍛造用アルミニウム合金粉末の製
造方法。
(1) A step of molding raw material powder of an aluminum alloy, a step of pulverizing the molded body, and a step of classifying the powder after the pulverizing step to obtain an average particle size of 80 μm.
A method for producing an aluminum alloy powder for forging, comprising the step of producing a powder containing less than 30% of fine powder with a particle size of 100 µm or more and 44 µm or less.
(2)前記分級工程の後の粉末を150℃以上400℃
未満の温度で焼鈍する工程をさらに備える、請求項1に
記載の鍛造用アルミニウム合金粉末の製造方法。
(2) The powder after the classification process is heated to 150°C or higher and 400°C.
The method for producing an aluminum alloy powder for forging according to claim 1, further comprising the step of annealing at a temperature below.
JP22815289A 1989-09-01 1989-09-01 Method for producing aluminum alloy powder for forging Expired - Fee Related JP3159384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22815289A JP3159384B2 (en) 1989-09-01 1989-09-01 Method for producing aluminum alloy powder for forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22815289A JP3159384B2 (en) 1989-09-01 1989-09-01 Method for producing aluminum alloy powder for forging

Publications (2)

Publication Number Publication Date
JPH0390501A true JPH0390501A (en) 1991-04-16
JP3159384B2 JP3159384B2 (en) 2001-04-23

Family

ID=16872042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22815289A Expired - Fee Related JP3159384B2 (en) 1989-09-01 1989-09-01 Method for producing aluminum alloy powder for forging

Country Status (1)

Country Link
JP (1) JP3159384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367674A (en) * 2022-03-22 2022-04-19 南通领跑者新材料科技有限公司 Method for preparing silver powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106862588B (en) * 2017-01-23 2019-01-25 湖南省国银新材料有限公司 A kind of preparation method of laser engraving touch screen silver paste super fine silver powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114367674A (en) * 2022-03-22 2022-04-19 南通领跑者新材料科技有限公司 Method for preparing silver powder

Also Published As

Publication number Publication date
JP3159384B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
DE3882397T2 (en) Metallic composite materials containing fly ash and process for their manufacture.
DE2365046A1 (en) POWDER METALLURGICAL PROCESSING OF HIGH PERFORMANCE ALLOYS
DE69809956T2 (en) METHOD FOR PRODUCING A PRECIOUS METAL WORKPIECE
JPH0390501A (en) Manufacture of aluminum alloy powder for forging
CN1705533B (en) Method of preparing iron-based components by compaction with elevated pressures
DE1404985B2 (en) Process for the production of a polytetrafluoroethylene press powder
JP2001342559A (en) METHOD FOR MANUFACTURING Te ALLOY TARGETING MATERIAL
DE3406171A1 (en) METHOD FOR COMPRESSING A METAL OR CERAMIC BODY
JP3521088B2 (en) Molding method of metal powder for powder metallurgy
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
DE886078C (en) Process for the production of metal objects
RU2533578C1 (en) Method of making billets from metal and composite powders
US3472656A (en) Method of manufacturing articles from particulate metal masses
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
CN110016622B (en) Powder metallurgy material and application thereof
JPH03290906A (en) Warm-worked magnet and its manufacture
JPS58120702A (en) Manufacture of rapid coagulated aluminum alloy powder
JP2752857B2 (en) Manufacturing method of powder alloy billet
JPH01255601A (en) Metal powder for press compacting
JPS6140724B2 (en)
SU1680538A1 (en) Process for making products from amber
AT255140B (en) Process for the production of sintered finished molded parts, in particular electrical contacts
SU1174160A1 (en) Method of producing powder articles of intricate shapes
DE1404985C (en) Process for the production of a poly tetrafluoroethylene molding powder
JPH05148502A (en) Aluminum powder and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees