JPH0390271A - Non-calcined brick for sliding nozzle plate - Google Patents

Non-calcined brick for sliding nozzle plate

Info

Publication number
JPH0390271A
JPH0390271A JP1226651A JP22665189A JPH0390271A JP H0390271 A JPH0390271 A JP H0390271A JP 1226651 A JP1226651 A JP 1226651A JP 22665189 A JP22665189 A JP 22665189A JP H0390271 A JPH0390271 A JP H0390271A
Authority
JP
Japan
Prior art keywords
weight
carbon
parts
molding
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1226651A
Other languages
Japanese (ja)
Inventor
Jusaku Yamamoto
山本 重作
Masayuki Sakaguchi
坂口 雅幸
Hirotaka Shintani
新谷 宏隆
Tatsuo Kawakami
川上 辰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Refractories Corp
Original Assignee
Kawasaki Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Refractories Co Ltd filed Critical Kawasaki Refractories Co Ltd
Priority to JP1226651A priority Critical patent/JPH0390271A/en
Publication of JPH0390271A publication Critical patent/JPH0390271A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the oxidation resistance of the SN plate by adding carbon fibers of a specific diameter and length, boron carbide and chromium carbide, respectively at specific parts wt., and a binder to the compd. of alumina aggregate, carbon and fine metallic powder, then kneading, molding the mixture and heat treating the molding at a specific temp. CONSTITUTION:The carbonaceous fibers having <=0.2mm diameter and 1 to 1mm length are added at 0.5 to 3 pts.wt., the boron carbide at 0.5 to 3 pts.wt. and the chromium carbide at 0.5 to 10 pts.wt. and phenol resin or pitch as the binder to the compd. contg. the alumina as the refractory aggregate and consisting of the others, such as carbon and fine metallic powder. The mixture composed thereof is kneaded and molded and the molding is heat treated at <=700 deg.C. The powder of a silicone resin having <=1mm grain size is added at 1 to 10 pts.wt. to this molding. The durability of the SN plate is enhanced in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製鋼工場において溶鋼流量の制御に使用される
スライディングノズル(以下SNという)装置のプレー
トれんかに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plate brick for a sliding nozzle (hereinafter referred to as SN) device used for controlling the flow rate of molten steel in a steel factory.

〔従来の技術〕[Conventional technology]

SNプレートれんがは使用時においてノズル孔部は約1
550〜1600℃の溶鋼流による急激な熱衝撃と摩耗
の物理的かつ化学的な侵食作用を受ける。一方、外周部
は約400〜600℃の温度に昇温するために摺動面部
のカーボンは酸化されやすい状況下にある。カーボンの
酸化によりれんが組織は脆弱化し、地金噛み込み時に摩
耗が大きくなり面荒れを生じ易くなる。近年、タンデイ
ツシュの再使用が行われており、それに伴いSNプレー
トれんがも再使用が行われている。再使用に際し、ノズ
ル孔部に付着した地金を除くために酸素ジェットにより
溶解し洗浄するので、ノズル孔部の酸化による耐用性の
低下が懸念される。このように、SNプレートれんがは
耐スポーリング性と耐食性ならびに耐酸化性を具備する
ことが望まれる。
When using the SN plate brick, the nozzle hole is approximately 1
It is subjected to the physical and chemical erosion effects of rapid thermal shock and wear caused by the molten steel flow at temperatures of 550 to 1600°C. On the other hand, since the temperature of the outer circumferential portion rises to approximately 400 to 600° C., carbon in the sliding surface portion is likely to be oxidized. The oxidation of carbon weakens the brick structure, causing increased wear and surface roughness when the metal is bitten. In recent years, tundishes have been reused, and along with this, SN plate bricks have also been reused. When reusing the nozzle hole, the base metal adhering to the nozzle hole is dissolved and cleaned using an oxygen jet to remove the metal, so there is a concern that durability may be reduced due to oxidation of the nozzle hole. Thus, it is desired that SN plate bricks have spalling resistance, corrosion resistance, and oxidation resistance.

従来、カーボンボンド坑底れんがはアルミナ、ムライト
等の骨材にカーボンブラック、グラフディト等を添加し
、液状フェノールレジンまたはピッチ等を添加、混練、
成形した後コークスプリーズ中の還元雰囲気下等で10
00〜1400℃で焼成されている。
Conventionally, carbon bond bottom mine bricks are made by adding carbon black, graphite, etc. to aggregates such as alumina and mullite, adding liquid phenol resin or pitch, etc., kneading,
After molding, 10
It is fired at a temperature of 00 to 1400°C.

近年、れんがの製造工程の合理化、製造コスト等の低減
のために不焼成SNプレートれんがが開発され、広範に
使用されつつある。
In recent years, unfired SN plate bricks have been developed to streamline the brick manufacturing process, reduce manufacturing costs, etc., and are being widely used.

この不坑底SNプレートれんがは酸化後の組織劣化が焼
成品に較べて顕著であるところから、耐酸化性を向上さ
せるために種々検討されている。
Since the structural deterioration of these underground SN plate bricks after oxidation is more pronounced than that of fired products, various studies have been made to improve their oxidation resistance.

例えば、■BnC’PBNを添加し、酸化部でガラス層
を形成させる(例えば、特公昭63−32097)こと
、■炭素より酸素親和力の大きい金属アル藁ニウム粉末
を添加する(特公昭6O−16393)こと、等が行わ
れている。また、前述のように約500〜800℃に加
熱された部分ではバインダーの炭素化に伴い強度低下を
生じ、亀裂発生や摩耗による面荒れを生じ易いため、れ
んが組織の強度向上を図るためにアルミニウムファイバ
ー等の添加が行われている(例えば、特開昭60−81
068、特開昭6l−136966)。
For example, ■ Adding BnC'PBN to form a glass layer in the oxidized part (for example, Japanese Patent Publication No. 63-32097); ■ Adding metal aluminum powder, which has a higher affinity for oxygen than carbon (Japanese Patent Publication No. 63-16393). ), etc. are being carried out. In addition, as mentioned above, in areas heated to approximately 500 to 800°C, strength decreases due to carbonization of the binder, and surface roughness is likely to occur due to cracking and wear. Therefore, in order to improve the strength of the brick structure, aluminum Fibers, etc. are added (for example, Japanese Patent Application Laid-Open No. 60-81
068, Japanese Patent Publication No. 61-136966).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

不焼成SNプレートれんがは通常、耐火性骨材にフェノ
ールレジン等の熱硬化性樹脂をバインダーとして添加、
混練、成形した後、150〜600℃で加熱硬化処理し
て製造される。SNプレートれんがは使用時において、
ノズル孔部は約1600℃の高温になり、また、同周辺
部は比較的低温(約400〜600℃)であり、著しい
温度勾配を生じ、大きな熱応力を生じている。
Unfired SN plate bricks are usually made by adding thermosetting resin such as phenol resin to fire-resistant aggregate as a binder.
After kneading and molding, it is manufactured by heat curing treatment at 150 to 600°C. When using SN plate bricks,
The nozzle hole reaches a high temperature of about 1600°C, and the surrounding area has a relatively low temperature (about 400 to 600°C), creating a significant temperature gradient and causing large thermal stress.

不坑底れんがは熱衝埜ならびに熱応力に対し組織の柔軟
性があり、耐スポーリング性に優れるという長所がある
が、一方、カーボン含有の不焼成品は使用時にれんが中
のカーボン成分が酸化消失、すなわち脱炭されるとその
部分が脆弱化し溶損や摩耗が顕著になり、SNプレート
としての耐用性が著しく低下するという欠点や、約50
0〜800℃に加熱された部分ではバインダーの炭素化
に伴い強度低下を生じ、熱応力による亀裂発生や地金と
の接触による摩耗あるいは地金付着を生じ易いという欠
点がある。
Unfired bricks have the advantage of having a flexible structure against thermal shock and thermal stress, and are excellent in spalling resistance, but on the other hand, unfired bricks containing carbon are susceptible to oxidation of the carbon components in the bricks during use. Disappearance, that is, decarburization, weakens the part and causes noticeable erosion and wear, which significantly reduces the durability of the SN plate.
In the portion heated to 0 to 800° C., strength decreases due to carbonization of the binder, and there is a drawback that cracks due to thermal stress, wear due to contact with base metal, or base metal adhesion are likely to occur.

この発明は上記従来の事情に鑑みて提案されたものであ
って、酸化損耗が少なく強度低下が生じに<<、更に、
地金付着の少ない不坑底スライディングノズルプレート
れんがを提供することを0的とするものである。
This invention has been proposed in view of the above-mentioned conventional circumstances, and has the following characteristics:
An object of the present invention is to provide a bottom sliding nozzle plate brick with little metal adhesion.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達成するために以下の手段を採用
している。すなわち、アルミナを耐火骨材とし、その他
カーボン、金属微粉からなる配合物に直径0.2m以下
、長さ1〜511の炭素質ファイバーを0.5〜3重量
部、粒径0.044m以下の炭化ほう素を0.5〜3重
量部、粒径0゜1mm以下の炭化クロムを0.5〜10
重量部、バインダーとしてフェノールレジンあるいはピ
ッチを添加し、混練、成形、700℃以下で熱処理した
ものである。また、上記に加えて、粒径1fi以下のシ
リコーン樹脂粉末を1〜10重量部添加するとよ゛り好
ましい。
This invention employs the following means to achieve the above object. That is, 0.5 to 3 parts by weight of carbonaceous fibers with a diameter of 0.2 m or less and a length of 1 to 511 mm and a particle size of 0.044 m or less are added to a mixture consisting of alumina as a refractory aggregate, carbon, and fine metal powder. 0.5 to 3 parts by weight of boron carbide, 0.5 to 10 parts by weight of chromium carbide with a particle size of 0°1 mm or less
Part by weight, phenol resin or pitch is added as a binder, kneaded, molded, and heat treated at 700°C or less. In addition to the above, it is more preferable to add 1 to 10 parts by weight of silicone resin powder having a particle size of 1 fi or less.

〔作用〕[Effect]

上記の炭化ほう素(84G) 、炭化クロム(Cr= 
C,等)は空気によるカーボンの酸化を抑制するために
添加される。
The above boron carbide (84G), chromium carbide (Cr=
C, etc.) are added to suppress oxidation of carbon by air.

ここで、添加する炭化ほう素は酸化され易く、しかも生
成するほう酸ガラスが酸化層部を被覆し内部のカーボン
の酸化を抑制する効果を発揮すると考えられる。使用す
る炭化ほう素の添加量は0゜5〜3重量部であり、より
好ましくは1〜.3重量部である。炭化ほう素の添加量
が3重量部以上になると耐溶鋼侵食性の低下が顕著にな
り、また0゜5重量部以下では充分な効果を上げること
ができない、炭化ほう素は酸素との反応性を高め、かつ
、れんが内に均一に分散させてガラス層を形成させる観
点から、0.044m以下の微粉とするのが好ましい。
Here, it is thought that the added boron carbide is easily oxidized, and that the boric acid glass produced covers the oxidized layer and exerts the effect of suppressing the oxidation of the carbon inside. The amount of boron carbide used is 0.5 to 3 parts by weight, more preferably 1 to 3 parts by weight. It is 3 parts by weight. If the amount of boron carbide added is 3 parts by weight or more, the erosion resistance of molten steel will decrease significantly, and if it is less than 0.5 parts by weight, the sufficient effect cannot be achieved.Boron carbide is reactive with oxygen. It is preferable to use fine powder of 0.044 m or less from the viewpoint of increasing the particle size and uniformly dispersing it within the brick to form a glass layer.

炭化クロムは1000℃以上において酸化が顕著になり
、れんが中のカーボンの酸化を抑制する効果を発揮する
ものと考えられる。上記炭化クロムは種々のもの、例え
ば二炭化三クロム(Cr。
Oxidation of chromium carbide becomes significant at temperatures of 1000° C. or higher, and it is thought that chromium carbide exhibits the effect of suppressing oxidation of carbon in bricks. The chromium carbide mentioned above is various, for example trichromium dicarbide (Cr).

C2)、三炭化七タロム(Crt C3) 、炭化四ク
ロム(CraC)等があり、いずれも本使用目的に有効
であるが、最も一般的である二炭化三クロム(CriC
2)の使用例について記述する。
C2), heptalomum tricarbide (Crt C3), and tetrachromium carbide (CraC), all of which are effective for this purpose, but the most common is trichromium dicarbide (CriC).
An example of the use of 2) will be described.

すなわち、二炭化三クロムは1〜10重量部、好ましく
は1〜7重量部添加される。添加量が10重量部以上に
なると、酸化後のれんが組織の脆弱化が顕著になり耐溶
鋼侵食性の低下を生じ、また、1重量部以下では酸化防
止効果が少なくなる。炭化クロムの粒径は酸素との反応
性を高める観点から、0.1MX以下とするのが好まし
い。
That is, trichromium dicarbide is added in an amount of 1 to 10 parts by weight, preferably 1 to 7 parts by weight. If the amount added is 10 parts by weight or more, the brick structure after oxidation will become significantly weakened, resulting in a decrease in the corrosion resistance of molten steel, and if the amount is less than 1 part by weight, the oxidation prevention effect will be reduced. The particle size of chromium carbide is preferably 0.1 MX or less from the viewpoint of increasing reactivity with oxygen.

酸化を抑制するためには、アル湾ニウム、シリコーン等
の金属粉末を添加することもよい。更に、これ等金属粉
末は炭化物を生成し、れんがマトリックス部を補強し、
れんがの熱間強度の向上が期待される。すなわち、これ
ら金属の・酸素親和力が大きいことを利用して加熱過程
において、その金属粉末の酸化物を生成せしめ、酸化物
生成時の体積膨張により成形時の粒子間隙部を塞ぐこと
により緻密化を図り、高強度を発現すると同時に緻密化
による低通気性を作り出す。れんが内では耐火物の粉末
、炭素粉末、それにこれら粉末の界面では金属炭化物を
生成し、互いに結合し、外部との通気を遮断し、れんが
中のカーボンの酸化を抑制すると考えられる。
In order to suppress oxidation, metal powders such as aluminum powder and silicone may be added. Furthermore, these metal powders generate carbides, which strengthen the brick matrix,
It is expected to improve the hot strength of bricks. In other words, by taking advantage of the high oxygen affinity of these metals, oxides of the metal powder are generated during the heating process, and the volumetric expansion when the oxide is generated closes the gaps between particles during molding, thereby achieving densification. This creates high strength while at the same time creating low air permeability through densification. Inside the brick, refractory powder, carbon powder, and metal carbide are formed at the interface between these powders, bonding to each other, blocking ventilation with the outside, and suppressing oxidation of the carbon in the brick.

また、シリコーン樹脂を添加することによって、更に酸
化防止効果を高めることができる。この場合、使用時の
昇温時に熱分解生成物として繊維状の酸化珪素(Sil
l)を大気と接するれんが表面部で生成し、れんが中の
カーボンの酸化を抑制すると考えられる。また、シリコ
ーン樹脂等の添加により、れんが表面の酸化組織部にお
いてSiO2による焼結促進により酸化層の強度向上を
図ることができる。
Furthermore, by adding a silicone resin, the antioxidant effect can be further enhanced. In this case, fibrous silicon oxide (Sil) is produced as a thermal decomposition product when the temperature rises during use.
It is thought that 1) is generated on the surface of the brick in contact with the atmosphere and suppresses the oxidation of carbon in the brick. Furthermore, by adding silicone resin or the like, it is possible to improve the strength of the oxidized layer by promoting sintering by SiO2 in the oxidized structure on the surface of the brick.

上記シリコーン樹脂の添加量は1〜10重量部、好まし
くは1〜7重量部である。シリコーン樹脂の添加量が1
0重量部以上になると、れんが使用時の高温下において
シリコーン樹脂の熱分解によるれんが組織の結合強度が
顕著に低下し、また1重量部以下では充分な効果は見ら
れない。
The amount of the silicone resin added is 1 to 10 parts by weight, preferably 1 to 7 parts by weight. The amount of silicone resin added is 1
If it is more than 0 parts by weight, the bonding strength of the brick structure due to thermal decomposition of the silicone resin will be significantly reduced at high temperatures when the bricks are used, and if it is less than 1 part by weight, no sufficient effect will be observed.

本発明では、上記に加えて耐酸化性を向上させるために
窒化ほう素(BN)、炭化珪素(StC)、ガラス層を
形成する珪酸ソーダ、珪弗化ソーダを添加することがで
きる。
In the present invention, in addition to the above, boron nitride (BN), silicon carbide (StC), sodium silicate, and sodium silicofluoride that form the glass layer can be added to improve oxidation resistance.

炭素質ファイバーを添加することにより材料の機械的強
度の向上を図ることができる。また、前記したように、
金属アルミニウム粉、シリコーン粉等の添加もれんがマ
トリックス部における炭化物の生成による機械的強度の
向上を図るこεができる。
By adding carbonaceous fibers, the mechanical strength of the material can be improved. Also, as mentioned above,
Addition of metal aluminum powder, silicone powder, etc. can improve mechanical strength by forming carbides in the brick matrix.

ここで、使用する炭素質ファイバーは、直径が0.2f
l以下で、長さが5w以下である。それ以上の大きさに
なると、その弾力性のために成形が困難になるので、好
ましくは直径0.1m以下、長さ2〜3nである。また
、この炭素質ファイバーの添加量は0.5〜3重量部、
より好ましくは1〜3重量部である。3重量部以上添加
すると混練時にファイバー同士の絡み合いが顕著になり
偏析する蝕害を生じる。
Here, the carbonaceous fiber used has a diameter of 0.2f.
1 or less, and the length is 5W or less. If the size is larger than this, molding becomes difficult due to its elasticity, so preferably the diameter is 0.1 m or less and the length is 2 to 3 nm. In addition, the amount of this carbonaceous fiber added is 0.5 to 3 parts by weight,
More preferably, it is 1 to 3 parts by weight. If 3 parts by weight or more is added, the entanglement of fibers becomes noticeable during kneading, resulting in segregation and corrosion.

〔実施例〕〔Example〕

本発明の実施例および比較例のれんがの配合割合を第1
表の上欄に示す。れんが試作に当たっては、フェノール
レジンまたはピッチを添加して、各配合物の混練を行っ
た。なお、成形時のラミネーションを防止するために、
フェノールレジン使用のはい土は60℃に保持した熱風
式乾燥機中で加熱処理を行い、揮発分が第1表に示す値
になるようにした。ピッチをパイン多゛−として使用し
た場合の混練は、配合原料をもキサ−の下部からバーナ
により加熱し約120℃に保持して行い、前記揮発分測
定値が第1表の値になるようにした。
The blending ratio of bricks in the examples and comparative examples of the present invention was
Shown in the upper column of the table. For trial production of bricks, each compound was kneaded with the addition of phenol resin or pitch. In addition, to prevent lamination during molding,
The potting soil using phenol resin was heat treated in a hot air dryer maintained at 60°C so that the volatile content became the value shown in Table 1. When pitch is used as pine powder, kneading is carried out by heating the blended raw materials from the bottom of the mixer with a burner and maintaining it at about 120°C, so that the volatile content measurement value becomes the value shown in Table 1. I made it.

成形は500トンフリクシツンプレスを用いてタンデイ
ツシュ用SNプレートを成形した。フェノールレジンを
使用した成形れんがは180℃で1日間保持し硬化処理
を行った。ピッチを使用した成形れんがはコークスプリ
ーズ中に埋め、500℃で5時間加熱処理を行った。
For molding, a 500 ton friction press was used to mold an SN plate for a tandem dish. The molded bricks using phenol resin were held at 180° C. for 1 day to undergo a hardening treatment. The molded bricks using pitch were buried in coke pleat and heat treated at 500°C for 5 hours.

このようにして作製したSNプレートの品質特性を第1
表の中欄に示す。なお、物性値は耐火物に対する通常法
によった。特性値は以下の要領により測定した。
The quality characteristics of the SN plate produced in this way were determined as follows.
Shown in the middle column of the table. Note that the physical property values were determined by the usual method for refractories. Characteristic values were measured in the following manner.

■酸化層の厚さ: 試作れんがより30X30X30簡
の試片を各2個切出し、所定の温度に保持した空気雰囲
気の電気炉内に試片を入れ3hr加熱処理を行った。酸
化層の厚さは加熱試験時の高さ中央部の切断面部で測定
した。
■Thickness of oxidized layer: Two specimens of 30x30x30 were cut out from a prototype brick, and the specimens were placed in an electric furnace in an air atmosphere maintained at a predetermined temperature and heat-treated for 3 hours. The thickness of the oxidized layer was measured at the cut surface at the center of the height during the heating test.

■摩耗量: 試作れんがより30X30X30m+の試
片を各2個切出し、所定の温度に保持した酸素−プロパ
ンバーナ加熱の回転炉に試片を入れlhr加熱しながら
回転させた。摩耗量は摩耗前後の試片の体積変化より測
定した。
■Amount of wear: Two specimens each measuring 30 x 30 x 30 m+ were cut out from a trial brick, placed in a rotary furnace heated by an oxygen-propane burner maintained at a predetermined temperature, and rotated while heating for 1 hour. The amount of wear was measured from the volume change of the specimen before and after wear.

試片の体積は水銀置換法にて測定した。The volume of the specimen was measured by the mercury displacement method.

■耐溶鋼侵食指数: 高周波炉に試料を内張すして16
50℃で3時間の溶鋼侵食試験を行った後、試料の中央
部を長手方向に切断し切断面における侵食面積を測定し
、比較例1の侵食面積を100とし各試料間の侵食面積
の相対値を求め耐溶鋼侵食指数とした。
■ Molten steel corrosion resistance index: 16 when the sample is lined in a high frequency furnace
After conducting a molten steel erosion test at 50°C for 3 hours, the center of the sample was cut in the longitudinal direction and the erosion area on the cut surface was measured.The erosion area of Comparative Example 1 was set as 100 and the relative erosion area between each sample was The value was determined and used as the molten steel corrosion resistance index.

比較例1、実施例1〜9の試作れんが各3セントをタン
デイツシュ用SNプレートとして実機使用した。実機使
用に当たって、溶鋼鍋1回分(約280トン)のモール
ドへの注入を1チヤージ(以下、chと略称〉として5
ch、連続注入した後、スラグの排出、酸素ジェットに
よるノズル孔部の洗浄、再使用連続5chの鋳込みを行
った(計10ch鋳込)。
Three cents each of the trial bricks of Comparative Example 1 and Examples 1 to 9 were used in actual machines as SN plates for tundishes. When using the actual machine, one charge (hereinafter abbreviated as ch) is defined as one charge of molten steel (approximately 280 tons) poured into the mold.
ch. After continuous injection, the slag was discharged, the nozzle hole was cleaned with an oxygen jet, and 5 channels of continuous reuse casting were performed (total of 10 channels of casting).

使用後高を回収し観察を行った結果、第1表の下欄に示
す損傷状態であった。この結果、ノズル内面やノズル孔
エツジ部の溶損や摺動面の酸化、地金噛み込みを抑える
ことができ、面荒れの低減を図ることができた。亀裂発
生状態はいずれの場合も比較的に小さくSNプレートの
廃却主因にはならなかった。
After use, the container was collected and observed, and as a result, it was found to be in a damaged state as shown in the lower column of Table 1. As a result, it was possible to suppress erosion of the inner surface of the nozzle and the edges of the nozzle hole, oxidation of the sliding surface, and metal entrapment, and to reduce surface roughness. In all cases, the occurrence of cracks was relatively small and did not become the main reason for the scrapping of the SN plates.

ノズル内面やノズル孔エツジ部の溶損が少なく、摺動面
の酸化や面荒れが少ないものが多数回の鋳込みが可能で
あると言え、この観点から本実施例1〜9は従来品に較
べ耐用性が向上したと判断される。
It can be said that a product with less erosion damage on the nozzle inner surface and nozzle hole edge, and less oxidation and surface roughness on the sliding surface can be cast many times, and from this point of view, Examples 1 to 9 are better than conventional products. It is judged that durability has improved.

(以下余白) 〔発明の効果〕 以上゛のように、本発明のSNプレートは従来の炭素含
有不焼底材質に炭素質ファイバー、炭化ほう素、炭化ク
ロムの添加、あるいは、更にシリコーン樹脂粉末の添加
、バインダーとしてフェノールレジン又はピッチを使用
することにより、耐酸化性の向上を図ることができた。
(Left below) [Effects of the Invention] As described above, the SN plate of the present invention is produced by adding carbon fiber, boron carbide, or chromium carbide to the conventional carbon-containing non-burning bottom material, or by adding silicone resin powder. By adding phenol resin or pitch as a binder, it was possible to improve the oxidation resistance.

その結果、ノズル内面やノズル孔エツジ部の溶損を軽減
し、摺動面への地金噛み込みを抑え面荒れの低減を図る
ことができ、耐用性が高められる効果が得られた。
As a result, it was possible to reduce melting damage on the nozzle inner surface and the nozzle hole edge, to prevent metal from getting caught in the sliding surface, to reduce surface roughness, and to improve durability.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミナを耐火骨材とし、その他カーボン、金属
微粉からなる配合物に直径0.2mm以下、長さ1〜5
mmの炭素質ファイバーを0.5〜3重量部、炭化ほう
素を0.5〜3重量部、炭化クロムを0.5〜10重量
部、バインダーとしてフェノールレジンあるいはピッチ
を添加し、混練、成形、700℃以下で熱処理したこと
を特徴とする不焼成スライディングノズルプレートれん
が。
(1) A mixture of alumina as a refractory aggregate, carbon, and fine metal powder, with a diameter of 0.2 mm or less and a length of 1 to 5 mm.
0.5 to 3 parts by weight of carbonaceous fiber of mm, 0.5 to 3 parts by weight of boron carbide, 0.5 to 10 parts by weight of chromium carbide, and phenol resin or pitch as a binder, kneaded, and molded. , an unfired sliding nozzle plate brick characterized by being heat-treated at 700°C or less.
(2)粒径1mm以下のシリコーン樹脂粉末を1〜10
重量部添加することを特徴とする請求項(1)記載の不
焼成スライディングノズルプレートれんが。
(2) 1 to 10 silicone resin powders with a particle size of 1 mm or less
The unfired sliding nozzle plate brick according to claim 1, wherein the unfired sliding nozzle plate brick is added in an amount by weight.
JP1226651A 1989-08-31 1989-08-31 Non-calcined brick for sliding nozzle plate Pending JPH0390271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1226651A JPH0390271A (en) 1989-08-31 1989-08-31 Non-calcined brick for sliding nozzle plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1226651A JPH0390271A (en) 1989-08-31 1989-08-31 Non-calcined brick for sliding nozzle plate

Publications (1)

Publication Number Publication Date
JPH0390271A true JPH0390271A (en) 1991-04-16

Family

ID=16848523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1226651A Pending JPH0390271A (en) 1989-08-31 1989-08-31 Non-calcined brick for sliding nozzle plate

Country Status (1)

Country Link
JP (1) JPH0390271A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450228B2 (en) 2005-04-19 2013-05-28 Krosaki Harima Corporation Refractory, method for manufacturing refractory, and refractory raw material
CN105254310A (en) * 2015-09-24 2016-01-20 济南新峨嵋实业有限公司 Mixing method of sliding bricks in steelmaking slide gate system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8450228B2 (en) 2005-04-19 2013-05-28 Krosaki Harima Corporation Refractory, method for manufacturing refractory, and refractory raw material
CN105254310A (en) * 2015-09-24 2016-01-20 济南新峨嵋实业有限公司 Mixing method of sliding bricks in steelmaking slide gate system

Similar Documents

Publication Publication Date Title
US4585485A (en) Refractory sliding nozzle plate
EP2792656B1 (en) Method for producing a silicon carbide whisker-reinforced refractory ceramic composition
WO2017090929A1 (en) Refractory composition and well block for steel casting manufactured therefrom
JPH0390271A (en) Non-calcined brick for sliding nozzle plate
JPS6348828B2 (en)
JP2599428B2 (en) Method for producing unburned MgO-C brick
JPH03109253A (en) Production of carbon-containing unburned brick
JP2001039776A (en) Refractory batch, formed body produced by using the same and production of the formed body
JPS62158561A (en) Nozzle for low-temperature casting of molten steel
JP4193419B2 (en) Resin granulated graphite and graphite-containing refractories
JPH0354172A (en) Production of non-calcined sliding nozzle plate brick
JPS6050748B2 (en) Manufacturing method of highly corrosion resistant continuous casting nozzle
JPH01167268A (en) Carbon-containing uncalcined refractory
JP6974801B2 (en) Graphite-containing refractory
JP2683217B2 (en) Nozzle for molten steel casting
JPH03169477A (en) Plate brick for unburnt sliding nozzle
JPH039066B2 (en)
JP2816585B2 (en) Method for producing refractory material containing magnesia
JPH03205352A (en) Carbon-containing unburned refractory brick
JPH0437466A (en) Non-calcined plate brick for sliding nozzle
JP2004083361A (en) Regenerated castable refractory
JP2778760B2 (en) Sliding nozzle plate brick
JPH06321626A (en) Production of mgo-c unburned refractory
JPH0388760A (en) Carbon-containing unfired firebrick
JPS63157746A (en) Submerged nozzle for continuous casting