JPH038789A - Crystallization of amorphous thin film - Google Patents

Crystallization of amorphous thin film

Info

Publication number
JPH038789A
JPH038789A JP14255589A JP14255589A JPH038789A JP H038789 A JPH038789 A JP H038789A JP 14255589 A JP14255589 A JP 14255589A JP 14255589 A JP14255589 A JP 14255589A JP H038789 A JPH038789 A JP H038789A
Authority
JP
Japan
Prior art keywords
thin film
amorphous thin
substrate
container
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14255589A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamada
宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14255589A priority Critical patent/JPH038789A/en
Publication of JPH038789A publication Critical patent/JPH038789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To promote crystallization by irradiating an amorphous thin film not containing or containing crystallite formed on a substrate with active particles in a heated state of the thin film. CONSTITUTION:A substrate 8 having formed an amorphous thin film 8a is arranged on a substrate placing stand 9, is heated by a heater 16 and a container 10 for crystallizing the amorphous thin film and a container 1 for plasma formation are exhausted. Then H2, etc., is introduced as a raw material gas for active particles from a raw material gas supply pipe 2, electromagnetic wave is fed from a wave guide 7 and an electromagnetic wave feed window 6 to the container 1 for plasma formation, further an electric current is sent to an electromagnetic coil 4, a magnetic field is supported, an electron cyclotron resonance is generated and the H2 gas is made into plasma to form active particles such as positive charge ion H<+> or radical H. An active particle transportation pipe 14 is connected to a collecting electric source 19, an active particle flow 17 is condensed and sent to the substrate 8 side, an electric source 18 for accelerating the positive charge particles is connected to the substrate 8, the active particle flow is accelerated to the substrate side and the active particles are effectively irradiated to crystallize the amorphous thin film 8a.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、基板上に形成されている、微結晶を実質的に
含んでいないまたは○んでいる非晶質簿膜を結晶化さぼ
る非晶質薄膜結晶化法に関する。 (従来の技術] 従来、基板上に形成されている、微結晶を実質的に含ん
でいないまたは含んでいる非晶質薄膜(以下、簡単のた
め、単に非晶質薄膜と称す)を結晶化させる非晶質薄膜
結晶化法が提案されている。 非晶質薄膜の結晶化された薄膜は、非晶質薄膜に比し電
気的、熱的に安定であることから、その結晶化された薄
膜を用いて、非晶質薄膜を用いる場合に比し、電気的、
熱的に安定な各種別能素子を形成し得、また、結晶化さ
れた薄膜上に、多結晶膜などの結晶膜を、高品質に形成
することができ、そして、その結晶膜を用いて、高性能
な各種機能素子を形成することができる。 ところで、従来の非晶質薄膜結晶化法に213いては、
基板上に形成されている非晶質薄膜を高温に加熱するこ
とによって、非晶質薄膜を結晶化させていた。例えば、
非晶質薄膜がS)でなる場合、その非晶質薄膜を、80
0〜900°C以上の温度に加熱することによって、非
晶質薄膜を多結晶薄膜に結晶化ざ眩ていた。
The present invention relates to an amorphous thin film crystallization method for crystallizing an amorphous thin film formed on a substrate that substantially does not contain or contains microcrystals. (Prior Art) Conventionally, an amorphous thin film (hereinafter simply referred to as an amorphous thin film for simplicity) formed on a substrate that does not substantially contain or contains microcrystals is crystallized. An amorphous thin film crystallization method has been proposed. Compared to using an amorphous thin film, electrical and
It is possible to form various thermally stable functional elements, and it is also possible to form high-quality crystal films such as polycrystal films on crystallized thin films. , it is possible to form various high-performance functional elements. By the way, in the conventional amorphous thin film crystallization method, 213
By heating an amorphous thin film formed on a substrate to a high temperature, the amorphous thin film was crystallized. for example,
When the amorphous thin film is made of S), the amorphous thin film is
By heating to temperatures above 0-900°C, the amorphous thin film was crystallized into a polycrystalline thin film.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上述した従来の非晶質薄膜結晶化法の場
合、非晶質薄膜を高温度に加熱するのを必要とし、また
、非晶質薄膜が高温度に加熱されることから、基板が不
純物を含んでいる場合、その不純物が非晶質薄膜に熱拡
散し、結晶化された層が不純物を不必要に導入している
ものとして形成されたり、非晶質薄膜が基板と化学反応
し、結晶化された層が所期の組成を有していないものと
して得られたり、熱膨眼係数の差に起因して、結晶化さ
れた層が熱応力を多く残している膜として形成される、
などの欠点を有していた。 よって、本発明は、上述した欠点のない、新規な非晶質
簿B!A結晶化法を提案ぽんとするものである。
However, in the case of the conventional amorphous thin film crystallization method described above, it is necessary to heat the amorphous thin film to a high temperature. If the amorphous thin film contains impurities, the impurity will thermally diffuse into the amorphous thin film, resulting in a crystallized layer that contains impurities unnecessarily, or the amorphous thin film may chemically react with the substrate. A crystallized layer may be obtained without having the desired composition, or a crystallized layer may be formed as a film with a large amount of thermal stress due to a difference in thermal expansion coefficient. ,
It had drawbacks such as: Therefore, the present invention provides a novel amorphous book B! without the above-mentioned drawbacks. This is a proposal for the A crystallization method.

【課題を解決するための手段】[Means to solve the problem]

本発明による非晶質薄膜結晶化法は、基板上に形成され
ている、微結晶を含んでいるまたは含んでいない非晶質
薄膜を結晶化させるにつき、その非晶質薄膜を加熱して
いる状態で、その非晶質薄膜に、活性粒子を照射させる
The amorphous thin film crystallization method according to the present invention involves heating an amorphous thin film formed on a substrate, which may or may not contain microcrystals, in order to crystallize the amorphous thin film. In this state, the amorphous thin film is irradiated with active particles.

【作用・効果】[Action/effect]

本発明による非晶質薄膜結晶化法によれば、非晶質簿膜
に照射する活性粒子の非晶質IIに対する運動エネルギ
、非晶質薄膜内におけるダングリングボンドとの化学的
反応などによって、非晶質薄膜の結晶化が、非晶質薄膜
に活性粒子を照射しない前)ホした従来の非晶質薄膜結
晶化法の場合に比し格段的に促進される。 このため、非晶IQ RBtAを加熱するにしても、前
述した従来の非晶質λヶ膜結晶化法の場合に比・し格段
的に低い温度で加熱すればよく、また、ぞのように低い
温度でしか加熱しないにもかかわらず、非晶質薄膜を前
述した従来の非晶質簿膜結晶化法の場合に比し効果的に
結晶化させることができる。 よって、本発明による非晶質薄膜結晶化法によれば、前
述した従来の欠点を伴うことなしに、非晶質薄膜を効果
的に結晶化させることができる。 【実施例] 次に、第1図を伴って本発明による非晶質薄膜結晶化法
の実施例を述べよう。 第1図は、本発明による非晶質薄膜結晶化法の実施例及
びそれに用いる非晶質Re結晶化用装置の実施例を示す
。 第1図に示す本発明による非晶質薄膜結晶化法に用いる
非晶質薄膜結晶化用装置は、次に述べる描成を有する。 すなわち、外部からの活性粒子用原料ガスを原料ガス導
入管2を介して導入し、その活性粒子用原料ガスをプラ
ズマ化させて活性粒子を生成させるために用いるプラズ
マ化用容器1を有する。 この場合、プラズマ化用容器1は、導電性を有し、また
、後述する非晶質薄膜結晶化用容器10に連通する窓3
を有する。 また、プラズマ化用容器1内に磁場を与える磁場付与手
段としての電磁コイル4を有する。 この場合、電磁コイル4は、プラズマ化用容器1の周り
に、直流通電されることによってプラズマ化用容器1内
に後述する活性粒子引出部11の中心軸に沿う方向の直
流lit1gが生じるように配されている。 さらに、プラズマ化用容器1内に電磁波(マイクロ波)
を導入させる電磁波導入手段5を有する。 この電磁波導入手段5は、プラズマ化用容器1の一部を
形成するように配された板状の電16波導入窓6と、そ
の電磁波導入窓6から電磁波源に延長している導波管7
とを有する。 また、導電性を有する基板載置台9を用いて結晶化され
るべき非晶質薄膜8aを形成している基板8を配置し、
且つプラズマ化用容器1内で生成される活性粒子を、プ
ラズマ化用容器1の窓3に連通する窓12を有する活性
粒子引出部11を介して、基板8に向けて導入し、そし
て、活性粒子を基板8上の非晶質薄膜8aに照射させる
ことのために用いる非晶質簿膜結晶化用容器10を有す
る。 この場合、非晶質薄膜結晶化用容器10は、導電性を有
し、活性粒子引出部11のTi端において、絶縁リング
15を介して、プラズマ化用容器1と連結している。 また、非晶質簿膜結晶化用容器10は、基板載置台9か
らみて基板8側とは反対側から、外部の排気手段に連結
している排気管13を延長させている。 さらに、非晶質薄膜結晶化用容器10内に、活性粒子引
出部11内位置から基板8側に向って延長し且つ導電性
を有する活性粒子輸送管14が配されている。 また、基板載置台9に、ヒータ16が配されている。 以上が、本発明による非晶質薄膜結晶化法の実施例に用
いる非晶質薄膜結晶化用装置の実施例の構成である。 本発明による非晶質薄膜結晶化法の実施例においては、
上述した非晶質薄膜結晶化用装置を用いて、次のように
して、基板上に形成された非晶質薄膜を結晶化させる。 すなわら、非晶質薄膜結晶化用容器10内の基板載置台
9上に、非晶質薄膜8aを形成している基板8を配置す
る。 この場合、この場合の非晶質薄膜内aを形成している基
板8は、−例として、3irなる基板上に8102膜が
形成され、その5102膜上に反応性イオンビーム堆積
法によって、基板温痕を100〜150℃、イオンビー
ムの加速電圧を1008Vとする条件で、20nlTl
の厚さに堆積形成された3iでなる結晶化されるべき非
晶質薄膜が形成されている構成を有する。 上述したように基板載置台9上に、非晶質薄1]fJ8
aを形成している基板8を配置している状態で、その基
板8、従って非晶質薄膜8aを、ヒータ16によって加
熱した状態にし、また、非晶質薄膜結晶化用容器10内
を排気管13を介して、プラズマ化用容器1内とともに
排気させ、非晶質薄膜結晶化用容器10内を所要の圧力
に侃った状態で、プラズマ化用容器1内にガス導入管2
を介して、H2ガスを活性粒子用原料ガスとして導入さ
せ、また、プラズマ化用容器1内に、導波管7及び電磁
波導入窓6を介して、例えば、2.45GHzの周波数
を右するマイクロ波を電磁波として導入させ、さらに、
プラズマ化用容器1内に、電磁コイル4への直流通電に
よって、875ガウムの直流磁場を与え、それを、プラ
ズマ化用容器1内に導入された電磁波に、その電界に対
して直角に作用させることによって、プラズマ化用容器
1内で、電子サイクロトロン共鳴を生じしめ、よって、
プラズマ化用容器1内において、それに導入された活性
粒子用原料ガスとしてのト12ガスをプラズマ化さばで
、正゛ゐ荷イオンH1+  2+、1」 ラジカルト(などでなる活性粒子を生成させる。 そして、その活性も1子を、非晶質薄膜結晶化用容器1
0の排気が継続されているため、矢17で一般的に示さ
れている活性粒子流として、プラズマ化用容器1の窓3
を通じて非晶質薄膜結晶化用容器10内に基板8に向け
て導出させ、次で、活性粒子引出部11内及びプラズマ
輸送管14内を順次通って、基板8側に向わせ、よって
、その基板8上の非晶′貿薄膜8aに活性粒子を効果的
に照射させる。 この場合、活性粒子輸送管14と接地との間に、集束用
電源1つを、そのプラズマ輸送管14側を正とする極性
で接続し、活性粒子流17を、基板8側に、集束させて
向かわせ、また、プラズマ化用容器1と基板8との間に
、基板代置台9を介して、正電荷粒子(イオン)加速用
電源18を、基板8を負とする極性で接続し、活性粒子
流17中の正電荷粒子くイオン)を、送板8側に加速さ
せ、活性粒子流17を、基板8側に、効果的に向かわせ
、よって、その基板8上の非晶質薄膜8aに活性粒子を
効果的に照DJさせて、その非晶質薄膜8aを結晶化さ
ける。 しかるときは、活性粒子の非晶質薄膜3aに対する運動
エネルギ(活性粒子中のH1+、H2+イオンが加速さ
れていることによる運動エネルギ、ラジカルHがプラズ
マ化用容器1と非晶質薄膜結晶化用容器10との間の差
圧による運動エネルギ)と、活性粒子の非晶質薄膜内に
おけるダングリングボンド<s i−s r間の結合H
)との化学的反応(とくにラジカルHによる化学反応に
よってダングリングボンドが除去される)などによって
、基板8上の非晶質薄膜8aが、結晶化時間を30分と
し、また、加速用電源18の電圧を正電荷粒子(イオン
)の加速電圧が100eVで得られる電圧としたときの
基板8の温瓜(°C)に対する結晶化率(%)を示して
いる第2図からも明らかなように、また、イオンの加速
電圧をパラメータとした結晶化時間(分)に対する結晶
化率(%)を示している第3図からも明らかなように、
前述した従来の非晶質薄膜結晶化法の場合に比し低い温
度と、高い結晶化率で結晶化させることができた。 上述したところから、第1図に示す本発明による非晶質
薄膜結晶化法によれば、非晶質薄膜に照射する活性粒子
の非晶質薄膜8aに対する運動エネルギ、非晶質薄膜内
におけるダングリングボンドとの化学的反応などによっ
て、非晶質薄膜8aの結晶化が、非晶質簿膜8aに活性
粒子を照射しない前述した従来の非晶質薄膜結晶化法の
場合に比し格段的に促進される。 このため、非晶質薄膜8aを°加熱するにしても、前述
した従来の非晶質7i!J膜結晶化法の場合に比し格段
的に低いf、5 IQで加熱すればよく、また、そのよ
うに低い温度でしか加熱しないにもかかわらず、非晶質
薄膜8aを前述した従来の非晶質薄膜結晶化法の場合に
比し効果的に結晶化さぼることがときる。 よって、第1図に示す本発明による非晶質薄膜結晶化法
によれば、前述した従来の欠点を[18うことなしに、
非晶質薄膜8aを効果的に結晶化させることができる。 なお、上述においては、活性粒子川原ねガスとして、)
−12ガスを用いた場合についてjホべたが、He、N
e、Arなどの不活性ガス、またはN、○、Fなどの多
結晶粒界の安定化にTi勾し得るガス、もしくはそれら
の混合ガスを用いて、同様の作用効果を得ることもでき
る。 また、活性粒子用原料ガスに、AsH,Pト13などの
導電型を与える元素を含むガスを混入させ、結晶化され
た薄膜をp型、n型を有する7iqIIとしてiqるこ
ともできる。 ざらに、上述においては3iでなる非晶質薄膜を結晶化
させる場合について述べたが、Fe−P、Fe−Bなど
のFe系、Ti系、Pd系−1■系などの金属非晶質7
rIJ膜を結晶化させる場合に適用することもでき、そ
の他、本発明の精神を脱することなしに、種々の変型、
変更をなし1qるであろう。
According to the amorphous thin film crystallization method according to the present invention, the kinetic energy of the active particles irradiated onto the amorphous film with respect to the amorphous II, the chemical reaction with the dangling bonds within the amorphous thin film, etc. Crystallization of the amorphous thin film is significantly promoted compared to the conventional amorphous thin film crystallization method in which the amorphous thin film is not irradiated with active particles. Therefore, even when amorphous IQ RBtA is heated, it only needs to be heated at a much lower temperature than in the case of the conventional amorphous λ film crystallization method described above, and Despite heating only at a low temperature, the amorphous thin film can be crystallized more effectively than in the conventional amorphous thin film crystallization method described above. Therefore, according to the amorphous thin film crystallization method according to the present invention, an amorphous thin film can be effectively crystallized without the above-mentioned conventional drawbacks. [Example] Next, an example of the amorphous thin film crystallization method according to the present invention will be described with reference to FIG. FIG. 1 shows an embodiment of the amorphous thin film crystallization method according to the present invention and an embodiment of the amorphous Re crystallization apparatus used therein. The apparatus for amorphous thin film crystallization used in the amorphous thin film crystallization method according to the present invention shown in FIG. 1 has the following configuration. That is, it has a plasma generation container 1 used for introducing raw material gas for active particles from the outside through a raw material gas introduction pipe 2 and converting the raw material gas for active particles into plasma to generate active particles. In this case, the plasma generation container 1 has electrical conductivity, and a window 3 communicating with the amorphous thin film crystallization container 10 described later.
has. Further, it has an electromagnetic coil 4 as a magnetic field applying means for applying a magnetic field to the inside of the plasma generation container 1. In this case, the electromagnetic coil 4 is configured to apply direct current around the plasma generation container 1 so that a direct current lit1g is generated in the plasma generation container 1 in a direction along the central axis of the active particle extraction section 11, which will be described later. It is arranged. Furthermore, electromagnetic waves (microwaves) are generated in the plasma generation container 1.
It has electromagnetic wave introducing means 5 for introducing. The electromagnetic wave introduction means 5 includes a plate-shaped electric wave introduction window 6 arranged to form a part of the plasma generation container 1, and a waveguide extending from the electromagnetic wave introduction window 6 to the electromagnetic wave source. 7
and has. Further, the substrate 8 on which the amorphous thin film 8a to be crystallized is formed is placed using the conductive substrate mounting table 9,
In addition, the active particles generated in the plasma generation container 1 are introduced toward the substrate 8 via the active particle extraction section 11 having a window 12 that communicates with the window 3 of the plasma generation container 1, and the active particles are activated. It has an amorphous thin film crystallization container 10 used for irradiating the amorphous thin film 8a on the substrate 8 with particles. In this case, the amorphous thin film crystallization container 10 has electrical conductivity and is connected to the plasma generation container 1 via the insulating ring 15 at the Ti end of the active particle extracting section 11. Further, the amorphous film crystallization container 10 has an exhaust pipe 13 extending from the side opposite to the substrate 8 side as viewed from the substrate mounting table 9 and connected to an external exhaust means. Further, in the container 10 for amorphous thin film crystallization, an active particle transport pipe 14 that extends from a position inside the active particle draw-out section 11 toward the substrate 8 side and has electrical conductivity is disposed. Further, a heater 16 is arranged on the substrate mounting table 9. The above is the configuration of an embodiment of the amorphous thin film crystallization apparatus used in the embodiment of the amorphous thin film crystallization method according to the present invention. In an embodiment of the amorphous thin film crystallization method according to the present invention,
Using the amorphous thin film crystallization apparatus described above, an amorphous thin film formed on a substrate is crystallized in the following manner. That is, the substrate 8 on which the amorphous thin film 8a is formed is placed on the substrate mounting table 9 in the amorphous thin film crystallization container 10. In this case, the substrate 8 forming the amorphous thin film a in this case is, for example, an 8102 film formed on a 3ir substrate, and a reactive ion beam deposition method deposited on the 5102 film. 20nlTl under the conditions that the thermal trace is 100 to 150℃ and the ion beam acceleration voltage is 1008V.
It has a structure in which an amorphous thin film to be crystallized is formed by depositing 3i to a thickness of . As described above, the amorphous thin film 1]fJ8 is placed on the substrate mounting table 9.
While the substrate 8 forming the amorphous thin film a is placed, the substrate 8 and therefore the amorphous thin film 8a are heated by the heater 16, and the inside of the amorphous thin film crystallization container 10 is evacuated. The inside of the plasma generation container 1 is evacuated through the tube 13, and the gas introduction tube 2 is inserted into the plasma generation container 1 while the inside of the amorphous thin film crystallization container 10 is under the required pressure.
H2 gas is introduced as a raw material gas for active particles through the waveguide 7 and the electromagnetic wave introduction window 6 into the plasma generation container 1. The wave is introduced as an electromagnetic wave, and further,
A DC magnetic field of 875 gaum is applied to the plasma generation container 1 by direct current to the electromagnetic coil 4, and this is applied to the electromagnetic waves introduced into the plasma generation container 1 at right angles to the electric field. As a result, electron cyclotron resonance is generated within the plasma generation container 1, and therefore,
In the plasma generation container 1, the gas introduced therein as a raw material gas for active particles is converted into plasma to generate active particles consisting of positively charged ions H1+, 2+, 1'' radicals, etc. , its activity is also 1, and the amorphous thin film crystallization container 1
As the evacuation of 0 is continued, the active particle flow, generally indicated by arrow 17,
The particles are led out into the amorphous thin film crystallization container 10 toward the substrate 8 through the active particle extraction section 11 and the plasma transport tube 14, and then directed toward the substrate 8 side. The active particles are effectively irradiated onto the amorphous thin film 8a on the substrate 8. In this case, one focusing power source is connected between the active particle transport pipe 14 and the ground with the polarity of the plasma transport pipe 14 side being positive, and the active particle flow 17 is focused on the substrate 8 side. In addition, a positively charged particle (ion) acceleration power source 18 is connected between the plasma generation container 1 and the substrate 8 via a substrate stand 9 with the polarity of the substrate 8 being negative. The positively charged particles (ions) in the active particle stream 17 are accelerated toward the feeding plate 8 side, effectively directing the active particle stream 17 toward the substrate 8 side, thereby reducing the amorphous thin film on the substrate 8. 8a to effectively irradiate active particles to avoid crystallization of the amorphous thin film 8a. In such a case, the kinetic energy of the active particles against the amorphous thin film 3a (kinetic energy due to the acceleration of H1+ and H2+ ions in the active particles, and the radical H) The kinetic energy due to the differential pressure between the active particles and the dangling bond H in the amorphous thin film of the active particles
) (in particular, dangling bonds are removed by the chemical reaction caused by radical H), the amorphous thin film 8a on the substrate 8 is crystallized for 30 minutes, and the acceleration power source 18 As is clear from Fig. 2, which shows the crystallization rate (%) of the substrate 8 for warming (°C) when the voltage is set to the voltage obtained when the accelerating voltage of positively charged particles (ions) is 100 eV. In addition, as is clear from Figure 3, which shows the crystallization rate (%) against the crystallization time (minutes) using the ion accelerating voltage as a parameter,
Crystallization was possible at a lower temperature and higher crystallization rate than in the case of the conventional amorphous thin film crystallization method described above. From the above, according to the amorphous thin film crystallization method according to the present invention shown in FIG. Due to the chemical reaction with the ring bond, the crystallization of the amorphous thin film 8a is much more rapid than in the case of the conventional amorphous thin film crystallization method described above, in which the amorphous film 8a is not irradiated with active particles. will be promoted. Therefore, even if the amorphous thin film 8a is heated, the conventional amorphous film 7i! It is only necessary to heat the amorphous thin film 8a at a much lower f, 5 IQ than in the case of the J film crystallization method. Crystallization can be suppressed more effectively than in the case of amorphous thin film crystallization. Therefore, according to the amorphous thin film crystallization method according to the present invention shown in FIG.
The amorphous thin film 8a can be effectively crystallized. In addition, in the above, as active particle Kawahara Negas)
-12 gas was used, but He, N
A similar effect can also be obtained by using an inert gas such as e, Ar, etc., a gas capable of stabilizing the polycrystalline grain boundaries such as N, O, F, etc., or a mixed gas thereof. Furthermore, it is also possible to mix a gas containing an element that imparts a conductivity type, such as AsH or P, into the raw material gas for active particles, and form a crystallized thin film as 7iqII having p-type and n-type. In general, the case where an amorphous thin film made of 3i is crystallized is described above, but it is also possible to crystallize a metal amorphous film such as Fe-based, Ti-based, Pd-based, etc. 7
It can also be applied to the case of crystallizing the rIJ film, and various modifications and variations can be made without departing from the spirit of the present invention.
There will be 1q of changes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図151、本発明による非晶質薄膜結晶化法に用い
る非晶質薄膜結晶化用装置の実施例を示す路線図である
。 第2図は、本発明による非晶質薄膜結晶化法の説明に供
する、非晶質薄膜の結晶化温度(’C)に対する結晶化
率(%)の関係を示す図である。 第3図は、同様に、本発明による非晶質薄膜結晶化法の
説明に供する、活性粒子の加速電圧をパラメータとする
、非晶質薄膜の結晶化時間(分)に対する結晶化率(%
)の関係を示す図である。 1・・・・・・・・・・・・・・・プラズマ化用容器2
・・・・・・・・・・・・・・・原料ガス導入管3・・
・・・・・・・・・・・・・窓 4・・・・・・・・・・・・・・・電磁コイル5・・・
・・・・・・・・・・・・電磁波)9人手段6・・・・
・・・・・・・・・・・電磁波導入窓7・・・・・・・
・・・・・・・・ス9波管8・・・・・・・・・・・・
・・・基板9・・・・・・・・・・・・・・・基板載置
台0・・・・・・・・・・・・・・・非晶質薄膜結晶化
用容器1・・・・・・・・・・・・・・・活性粒子引出
部2・・・・・・・・・・・・・・・窓
FIG. 151 is a route map showing an embodiment of the amorphous thin film crystallization apparatus used in the amorphous thin film crystallization method according to the present invention. FIG. 2 is a diagram showing the relationship between the crystallization temperature ('C) and the crystallization rate (%) of an amorphous thin film, which is used to explain the amorphous thin film crystallization method according to the present invention. Similarly, FIG. 3 shows the crystallization rate (%) versus the crystallization time (minutes) of the amorphous thin film, with the accelerating voltage of active particles as a parameter, which is used to explain the amorphous thin film crystallization method according to the present invention.
) is a diagram showing the relationship between 1・・・・・・・・・・・・・・・Plasma conversion container 2
・・・・・・・・・・・・ Raw material gas introduction pipe 3...
・・・・・・・・・・・・・Window 4・・・・・・・・・・・・・・・Electromagnetic coil 5...
...... Electromagnetic waves) 9 people means 6...
...... Electromagnetic wave introduction window 7...
・・・・・・・・・S9 wave tube 8・・・・・・・・・・・・
...Substrate 9...Substrate mounting table 0...Container for amorphous thin film crystallization 1...・・・・・・・・・・・・Active particle extraction section 2・・・・・・・・・・・・Window

Claims (1)

【特許請求の範囲】[Claims] 基板上に形成されている、微結晶を実質的に含んでいな
いまたは含んでいる非晶質薄膜を結晶化させるにつき、
上記非晶質薄膜を加熱している状態で、上記非晶質薄膜
に、活性粒子を照射させることを特徴とする非晶質薄膜
結晶化法
For crystallizing an amorphous thin film formed on a substrate that does not substantially contain or contains microcrystals,
An amorphous thin film crystallization method characterized in that the amorphous thin film is irradiated with active particles while the amorphous thin film is being heated.
JP14255589A 1989-06-05 1989-06-05 Crystallization of amorphous thin film Pending JPH038789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14255589A JPH038789A (en) 1989-06-05 1989-06-05 Crystallization of amorphous thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14255589A JPH038789A (en) 1989-06-05 1989-06-05 Crystallization of amorphous thin film

Publications (1)

Publication Number Publication Date
JPH038789A true JPH038789A (en) 1991-01-16

Family

ID=15318065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14255589A Pending JPH038789A (en) 1989-06-05 1989-06-05 Crystallization of amorphous thin film

Country Status (1)

Country Link
JP (1) JPH038789A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834345A (en) * 1995-09-28 1998-11-10 Nec Corporation Method of fabricating field effect thin film transistor
KR100365327B1 (en) * 1998-10-22 2003-03-15 엘지.필립스 엘시디 주식회사 Crystallization equipment of amorphous film using electric field and plasma
KR100469503B1 (en) * 1997-08-14 2005-05-27 엘지.필립스 엘시디 주식회사 How to crystallize amorphous film
KR100480367B1 (en) * 1997-07-15 2005-07-18 엘지.필립스 엘시디 주식회사 How to crystallize amorphous film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834345A (en) * 1995-09-28 1998-11-10 Nec Corporation Method of fabricating field effect thin film transistor
KR100480367B1 (en) * 1997-07-15 2005-07-18 엘지.필립스 엘시디 주식회사 How to crystallize amorphous film
KR100469503B1 (en) * 1997-08-14 2005-05-27 엘지.필립스 엘시디 주식회사 How to crystallize amorphous film
KR100365327B1 (en) * 1998-10-22 2003-03-15 엘지.필립스 엘시디 주식회사 Crystallization equipment of amorphous film using electric field and plasma

Similar Documents

Publication Publication Date Title
US4443488A (en) Plasma ion deposition process
CA2388016A1 (en) Method for fabricating electrode for rechargeable lithium battery
JPS5941510B2 (en) Beryllium oxide film and its formation method
JP2004087546A (en) Composition for silicon film formation and method for forming silicon film
US20130160849A1 (en) Polycrystalline silicon solar cell panel and manufacturing method thereof
JPS5963732A (en) Thin film forming device
JPH038789A (en) Crystallization of amorphous thin film
JP2009231574A (en) SiC SEMICONDUCTOR ELEMENT, ITS MANUFACTURING METHOD AND ITS MANUFACTURING APPARATUS
TW200824140A (en) Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
JPH0692280B2 (en) Crystal thin film manufacturing method
CN111910171A (en) Device and method for synthesizing two-dimensional material by regulating and controlling electric field and/or magnetic field
JPS634454B2 (en)
JPH0324053B2 (en)
JP3505987B2 (en) Method and apparatus for forming silicon-based thin film
US6451637B1 (en) Method of forming a polycrystalline silicon film
JP3102540B2 (en) Method for forming low hydrogen content amorphous silicon semiconductor thin film
JPS63176393A (en) Production of aluminum nitride thin film
JP2014043599A (en) METHOD OF MANUFACTURING Ge CLATHRATE
JPH031377B2 (en)
JPH079059B2 (en) Method for producing carbon thin film
JPS6395200A (en) Production of hard boron nitride film
JP2615406B2 (en) Method for manufacturing silicon substrate having silicon carbide buried layer
JPH0319325A (en) Polycrystalline thin film substrate and manufacture thereof
JP4534585B2 (en) Thin film semiconductor substrate and manufacturing method thereof
JP3276415B2 (en) Method and apparatus for forming ceramic film