JPH0387403A - Snow melting device - Google Patents

Snow melting device

Info

Publication number
JPH0387403A
JPH0387403A JP1227956A JP22795689A JPH0387403A JP H0387403 A JPH0387403 A JP H0387403A JP 1227956 A JP1227956 A JP 1227956A JP 22795689 A JP22795689 A JP 22795689A JP H0387403 A JPH0387403 A JP H0387403A
Authority
JP
Japan
Prior art keywords
hot water
heat
snow
pipe
heat pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1227956A
Other languages
Japanese (ja)
Inventor
Hitoshi Inoue
均 井上
Hisaaki Yamakage
久明 山蔭
Kenji Kataoka
片岡 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1227956A priority Critical patent/JPH0387403A/en
Publication of JPH0387403A publication Critical patent/JPH0387403A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Abstract

PURPOSE:To melt snow accumulated on a heat dissipation panel directly by installing a heat pipe on the side of track, and making one side of the pipe contact with a hot water flow section and the other side with the heat dissipation panel. CONSTITUTION:A heat pipe 15 is installed on the side of a track 4, and one side of the pipe contacts with a hot water flow section 12 and the other side contacts with a heat dissipation panel 16. In an elevated bridge 3, a snow collection groove 7 which collects snow 8 discharged by train is installed on the side of an elevated track 4, and a heat pipe 15, a heat dissipation panel 16, and a hot water flow section 12 are installed in the snow collection groove 7. Snow 8 accumulated on the heat dissipation panel 16 is melted directly.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は例えば高架軌道上の列車によって排除され貯
雪溝内に堆積した雪を融解処理し、列車走行を円滑にす
る融雪装置に関するものである。 〔従来の技術〕 従来の融雪装置は例えば実開昭56−68017号公報
に示されたものがあ#)、これを高架橋の高架軌道横に
設けられた貯雪溝内に堆積した雪の融解処理に利用した
場合を第4図及び第5図に示し、第4図は縦断面図、第
5図は横断面図をそれぞれ示し、これら各図にかいて、
(1)は基礎部が土壌(2)中に埋設された橋脚、(8
)は橋脚(1)の上部に設(すられた高架橋であり、高
架橋側壁(3a)と高架橋床(3b)を有している。(
4)は高架橋床(3b)に敷設された列車の高架軌道で
あり、枕木(5)とレール(6)とから構成されている
。(γ)は高架軌道(4)横に平行して設けられた貯雪
溝、(8)は列車によって排除され貯雪溝(γ)内に堆
積した雪、(9)は一方何(9eL)が土壌
[Industrial Field of Application] The present invention relates to a snow melting device that melts snow that has been removed by a train on an elevated track and accumulated in a snow storage groove, thereby smoothing the running of the train. [Prior Art] A conventional snow melting device is, for example, the one shown in Japanese Utility Model Application Publication No. 56-68017 (1988), which is used to melt snow accumulated in snow storage grooves provided next to the elevated track of an elevated bridge. Figures 4 and 5 show the case in which it is used. Figure 4 is a vertical cross-sectional view, and Figure 5 is a cross-sectional view.
(1) is a pier whose foundation is buried in the soil (2), (8
) is a viaduct built on the top of the pier (1), and has a viaduct side wall (3a) and a viaduct floor (3b).(
4) is an elevated train track laid on the elevated bridge floor (3b), and is composed of sleepers (5) and rails (6). (γ) is the snow storage groove installed parallel to the elevated track (4), (8) is the snow removed by the train and accumulated in the snow storage groove (γ), and (9) is what (9eL) is on the soil.

【2】中に
埋設され、他方側(9b)が高架橋(8)の貯雪溝(7
)底の下部に埋設され、内部に水、アンモニア等の作動
流体が封入されたヒートパイプである。 次に動作について説明する。冬期にかいて降雪があると
1列車の軌道上に積もった雪を軌道外に排除し、列車走
行を円滑に運ぶ必要がある。軌道が高架橋(8)の上に
設けられている場合は高架橋側壁(3a)があるため高
架橋(8)の外へ雪を排除することが困難であるので、
高架橋床(3b)に高架軌道(4)と平行に片言溝(γ
)を設け、この片言溝(γ)内に排除した雪(8)を堆
積させて貯留した上、この雪(8)をヒートパイプ(9
)の熱輸送作用により融解処理している。すなわち、ヒ
ートパイプ(9)の一方何(%)の温度に対しヒートパ
イプ(9)の他方側(9b)の温度が低くなると熱輸送
が行われる。例えば、積雪状態で片言溝(γ)内の温度
がOuC程度となる。一方、土壌(2)中の温度は地中
深110a程度にかいて冬期でも平均13〜15°O程
度である。この土壌(2)中の熱によυヒートパイプ(
9)の一方何(9a)が加熱され、ヒートパイプ(9)
内の作動流体は蒸気化し土壌(2)中の熱量を蒸発潜熱
として奪いヒートパイプ(9)内を通ってヒートパイプ
(9)の他方側(9b)に移動する。 ヒートパイプ(9)の他方側(9b)に移動した作動流
体の蒸気は片言溝(7)側の方が土壌(2)側よう低い
温度のため凝縮液化して貯雷溝(テ)側に凝縮潜熱を放
出する。液化した作動流体はヒートパイプ(9)の内壁
面を伝ってヒートパイプ(9)の一方何(9a)に還流
する。以上の動作が自然的に繰う返し行われることによ
り、土壌(2)の持つ熱量を片言溝(γ)側に熱輸送し
、片言溝(7)内をO″00以上熱することができ、片
言溝(γ)内に堆積した雪(8)を融解処理している。 〔発明が解決しようとする課題〕 しかしながら上述した従来装置では、土壌(2]を熱源
としているので、熱源の温度が低く、片言溝(7)内の
雷の堆積量が多い場合は十分な融雪効果を発揮できない
。また、融解処理している期間が継続すると、土壌(2
)の保有する熱が融解処理に消費とれるので土壌(2)
の温度も順次低下し、融雪効果も次第に低下するという
課題がある。また、ヒートパイプ(9)の一方何(91
)は土壌(2)中に地中深さlO胤程度まで埋設してい
るためその埋設工事が大変面倒なものとなっていた。ま
た、ヒートパイプ(9)の他方側(9b)は片言溝(7
)底の下部のコンクリート中に埋設しているためその埋
設工事が大変面倒なものとなると共に貯雷溝(γ)内の
雪の融解処理がヒートパイプ(9)の他方側(9b)か
らコンクリートを通じてのものであシ、熱伝達効率が悪
く融雪性能が低いものとなっていた。その結果、負荷応
答性が悪く、必要なときに速やかに融雪性能を発揮でき
ないという課題もある。 この発明は上記のような課題を解決するためになされた
ものであり、融雪性能が高い融雪装置を得ることを目的
とする。 〔課題を解決するための手段〕 この発明に係る融雪装置は、軌道横にヒートパイプを配
設し、ヒートパイプの一方側を温水流通部と熱的接触さ
せ、ヒートパイプの他方側に熱的接触して装着された放
熱パネルを設けたものである。 また、別のものは高架橋の高架軌道横にその高架軌道上
の列車により排除された雪を貯留する片言溝を設け、こ
の片言溝内にヒートパイプ、放熱パネル、温水流通部を
配設したものである。 〔作用〕 この発明における融雪装置は、温水流通部を流通する温
水の熱量をヒートパイプの一方側からヒートパイプの他
方側に熱輸送し、ヒートパイプの他方側から放熱パネル
に効率的に熱伝達てれ、放熱パネル上に堆積した雪を速
やかに融解処理する。 〔実施例〕 以下、この発明の一実施例を第1図に基づいて説明する
。w、1図にかいて、(1)は橋脚、(8)は高架橋、
 (3a)は高架橋側壁、(3b)は高架橋床、(4)
は高架軌道、(6)は枕木、(6)はレール、(γ)は
片言溝、(8)は雪、αQは温水源(図示せず)からの
温水を供給する送水管、αυは使用後の温水を温水源側
に戻す帰水管、 Q3は片言溝(7)内に配rltされ
、送水管曲からの温水が流通する温水流通部、r13は
受水管α0と温水流通部(13のに口側とを接続する第
1の接続管、1141は帰水管aDと温水流通部α2の
出口側とを接続する第2の接続管、αSは片言溝(7)
内に配設され、内部に水、アンモニア等の作動流体が封
入されたヒートパイプであυ、一方何(15a)が温水
流通部α望と熱的接触されて接続されている。叫はヒー
トパイプa!19の他方側(15b)に熱的接触して装
着された放熱パネルであり、この放熱バネ/I/rlQ
上に雪が堆積される。 次に動作について説明する。冬期において降雪があると
、列車の高架軌道(4)上の片言溝(7)内に配置され
た放熱パネル叩上に積雪する。高架軌道(4)上の積雪
はレール(6)上を走行するロータリー車あるいは先頭
列車(図示せず)によって排除され、片言溝(7)内の
放熱パネルq8上に堆積する。一方、温水源からの温水
は送水管叫から第1の接続管α3を経て放熱パネル叫の
下部に配置された温水流通部(1′IJ内を流通する。 この温水流通Stt■にヒートパイプαSの一方側(1
5a)が熱的接触してシカ1温水流通@Q3内の温水に
よりヒートパイプr1Sの一方側(15a )が加熱さ
れ、ヒートパイプαS内の作動流体は蒸気化し温水の熱
量を蒸発潜熱として奪いヒートパイプαS内を通ってヒ
ートパイプ(isの他方側(15b)に移動する。ヒー
トパイプr1!19の他方側(15b)に移動した作動
流体の蒸気は片言溝(7)内に配置された放熱パネル叫
の方が温水よう低い温度のため凝縮液化して片言溝(テ
)内に配置された放熱パネル叫に凝縮潜熱を放出する。 この凝縮潜熱によう放熱パネル叫は加熱ぢれて温度が高
くなる。液化した作動流体はヒートパイプαSの内壁面
を伝ってヒートパイプ(us(D一方何(15a)に還
流する。以上の動作が自然的に繰す返し行われることに
より1送水管叫から温水流通部器に流通される温水の熱
量がヒートパイプ(15)によう放熱パネル印に効率的
に熱輸送とれ、放熱パネル叫がd’o以上に加熱され、
貯雷溝(7)内の放熱パネル(1(11上に堆積した雷
(8)を融解処理する。尚、ヒートパイプffsにより
熱が奪われ低温となった温水は温水流通部匝から第2の
接続管+14を経て帰水管aυに流出して温水源に還流
され、高温処理されて再び送水管αQから温水流通部(
lzに流通される。 尚、上記実施例では高架橋(8)の1カ所の片言溝(テ
)の場合について述べたが、第2図に示すように高架橋
(8)に高架軌道(4)が2カ所ある場合には片言溝(
γンを3カ所設Cす、各貯雷溝(γンにそれぞれ放熱パ
ネル叫、ヒートパイプ[15、温水流通部a’aを設置
し送水管叫と帰水管αυを各温水流通部(13に接続す
るようにしてもよい。 また、第3図に示すように放熱パネル叫、ヒートパイプ
(Is 、温水流通部azのユニットを片言溝(γ)の
延在方向に複数ユニット配置し、各片言溝(γン内にそ
れぞれ送水管叫、帰水管CIIJを配置し、各温水流通
部Q3とは第1の接続管Q3 、第2の接続管04によ
υ接続し、また、送水管叫は3つに分岐して温水を供給
すると共に帰水管αDは3つを1つにまとめて温水源に
低温となった温水を還流させる構成としてもよい、要す
るに、片言溝(テ)の延在方向に複数ユニット配置すれ
ばその分だけ高架軌道(4)の融雪距離を延長すること
ができる。 以上のように、熱源として地熱利用から温水利用とした
ことにより1安定した熱量を確保できると共に負荷に応
じて温水の熱量調整ができる。また、ヒートパイプを土
壌中やコンクリート中に埋設するのではなく、片言溝内
に配置するので、ヒートパイプの配設工事が簡易となる
と共にコンクリートを通じた間接的な融解処理ではなく
放熱パネルによう直接的な融解処理であり、融雪性能が
著しく高いものとなる。その結果、負荷応答性が良くな
ると共に必要なときに速やかに十分に融雪性能を発揮す
ることができる。 ところで、上記説明では高架橋の高架軌道の融雪の場合
について述べたが、高架橋ではなく平坦軌道の融雪の場
合には平坦軌道横にヒートパイプ、放熱パネル、温水流
通部を配設し、送水管、帰水管を温水流通部に第1の接
続管、第2の接続管によう接続して融雪装置を構成すれ
ばよい。 〔発明の効果〕 この発明は以上説明した通シ、温水流通部を流通する温
水の熱量をヒートパイプの一方側から他方側に熱輸送し
、ヒートパイプの他方側から放熱パネルに効率的に熱伝
達するようにしたので、放熱パネル上に堆積した雪を直
接的に融解処理することができ、融雪性能が高く応答の
早い融雪装置を得ることができる。
[2] The other side (9b) is the snow storage groove (7) of the viaduct (8).
) It is a heat pipe that is buried in the bottom part and has a working fluid such as water or ammonia sealed inside. Next, the operation will be explained. When it snows in the winter, it is necessary to remove the snow that has accumulated on the tracks of a train to ensure smooth running of the trains. If the track is installed on the viaduct (8), it is difficult to remove snow from the viaduct (8) due to the side walls (3a) of the viaduct.
The elevated track (4) is parallel to the viaduct floor (3b) with a single groove (γ)
), and the removed snow (8) is deposited and stored in this groove (γ), and this snow (8) is transferred to a heat pipe (9).
) is melted by the heat transport effect. That is, when the temperature of the other side (9b) of the heat pipe (9) is lower than the temperature of one side (9b) of the heat pipe (9), heat transport is performed. For example, in snowy conditions, the temperature within the monochrome groove (γ) is approximately OuC. On the other hand, the temperature in the soil (2) is about 13 to 15 degrees O on average at a depth of about 110 a underground even in winter. The heat in this soil (2) is υ heat pipe (
9) is heated, and the heat pipe (9)
The working fluid inside the heat pipe (9) vaporizes and absorbs the amount of heat in the soil (2) as latent heat of vaporization, and moves through the heat pipe (9) to the other side (9b) of the heat pipe (9). The vapor of the working fluid that has moved to the other side (9b) of the heat pipe (9) condenses and liquefies because the temperature on the side of the trench (7) is lower than that on the soil (2) side, and flows to the side of the lightning storage trench (TE). Releases latent heat of condensation. The liquefied working fluid flows along the inner wall surface of the heat pipe (9) and returns to one end (9a) of the heat pipe (9). By repeating the above operations naturally, the amount of heat held by the soil (2) can be transported to the slit groove (γ) side, and the inside of the slit groove (7) can be heated to over O″00. , the snow (8) accumulated in the groove (γ) is melted. [Problem to be solved by the invention] However, in the conventional device described above, the soil (2) is used as the heat source, so the temperature of the heat source is If the snow melting effect is low and there is a large amount of lightning deposited in the trench (7), sufficient snow melting effect cannot be achieved.In addition, if the melting period continues, the soil (2
) can be consumed in the melting process, so soil (2)
The problem is that the snow melting effect gradually decreases as the temperature in the area gradually decreases. Also, what (91) is on one side of the heat pipe (9)?
) is buried in the soil (2) to a depth of about 10 tons, making the burying work very troublesome. Further, the other side (9b) of the heat pipe (9) is connected to the monochrome groove (7).
) Since the snow is buried in the concrete at the bottom of the bottom, the burying work is very troublesome, and the melting process for the snow in the storage groove (γ) is carried out from the other side (9b) of the heat pipe (9) to the concrete. However, the heat transfer efficiency was poor and the snow melting performance was low. As a result, the load response is poor, and snow melting performance cannot be quickly demonstrated when necessary. This invention was made in order to solve the above-mentioned problems, and an object thereof is to obtain a snow melting device with high snow melting performance. [Means for Solving the Problems] The snow melting device according to the present invention has a heat pipe arranged beside the track, one side of the heat pipe is brought into thermal contact with the hot water distribution section, and the other side of the heat pipe is brought into thermal contact with the hot water distribution section. It is provided with a heat dissipation panel that is attached in contact with the heat dissipation panel. Another method is to install a groove next to the elevated track of an elevated bridge to store snow removed by trains on the elevated track, and to install heat pipes, heat dissipation panels, and hot water distribution parts within this groove. It is. [Function] The snow melting device of the present invention transports the heat of the hot water flowing through the hot water distribution section from one side of the heat pipe to the other side of the heat pipe, and efficiently transfers heat from the other side of the heat pipe to the heat radiation panel. This will quickly melt the snow that has accumulated on the heat dissipation panels. [Example] Hereinafter, an example of the present invention will be described based on FIG. 1. w, In Figure 1, (1) is a bridge pier, (8) is a viaduct,
(3a) is the viaduct side wall, (3b) is the viaduct floor, (4)
is an elevated track, (6) is a sleeper, (6) is a rail, (γ) is a ditch, (8) is snow, αQ is a water pipe that supplies hot water from a hot water source (not shown), and αυ is a used water pipe. The return pipe that returns the hot water to the hot water source side, Q3 is placed in the groove (7) and is the hot water distribution part through which the hot water from the water pipe bend flows, and r13 is the hot water distribution part (13) that connects the water receiving pipe α0 and the hot water distribution part (13). 1141 is a second connecting pipe that connects the return pipe aD and the outlet side of the hot water distribution section α2, and αS is a monogram groove (7).
The heat pipe is disposed inside the heat pipe and has a working fluid such as water or ammonia sealed therein, and the heat pipe (15a) is connected to the hot water circulation part α in thermal contact. The shout is heat pipe a! This is a heat dissipation panel attached to the other side (15b) of 19 in thermal contact with the heat dissipation spring /I/rlQ.
Snow is deposited on top. Next, the operation will be explained. When it snows in winter, snow accumulates on the heat dissipation panels placed in the grooves (7) on the elevated train tracks (4). Snow on the elevated track (4) is removed by a rotary car or a leading train (not shown) running on the rails (6), and is deposited on the heat dissipation panel q8 in the groove (7). On the other hand, hot water from the hot water source flows from the water pipe through the first connecting pipe α3 and through the hot water distribution section (1'IJ) located at the bottom of the heat radiation panel.This hot water distribution Stt■ is connected to the heat pipe αS One side (1
5a) comes into thermal contact and one side (15a) of the heat pipe r1S is heated by the hot water in the deer 1 hot water distribution @Q3, and the working fluid in the heat pipe αS is vaporized and takes the heat of the hot water as latent heat of vaporization and generates heat. It passes through the pipe αS and moves to the other side (15b) of the heat pipe (is).The vapor of the working fluid that has moved to the other side (15b) of the heat pipe r1! Because the temperature of the panel heat is lower than that of hot water, it condenses and liquefies and releases condensed latent heat to the heat dissipation panel disposed in the groove.The heat dissipation panel heat is heated by this latent heat of condensation and its temperature increases. The liquefied working fluid flows along the inner wall surface of the heat pipe αS and flows back into the heat pipe (15a).The above operation is repeated naturally, resulting in one water pipe The amount of heat from the hot water distributed from the hot water distribution unit to the heat pipe (15) is efficiently transferred to the heat dissipation panel, and the heat dissipation panel is heated to a temperature exceeding d'o.
The lightning (8) accumulated on the heat dissipation panel (1 (11) in the lightning storage groove (7) is melted. The hot water, which has become low temperature due to the heat removed by the heat pipe ffs, is transferred from the hot water distribution part to the second It flows out to the return pipe aυ through the connecting pipe +14, is returned to the hot water source, is treated at a high temperature, and is returned from the water pipe αQ to the hot water distribution section (
It will be distributed to lz. In the above embodiment, the case where the viaduct (8) has a single track (te) at one location is described, but as shown in Fig. 2, when the viaduct (8) has two elevated tracks (4), monologue (
A heat dissipation panel, a heat pipe [15, and a hot water distribution section a'a] are installed in each lightning storage trench (γ), and a water supply pipe and return pipe αυ are installed in each hot water distribution section (13 Alternatively, as shown in Fig. 3, a plurality of units of heat dissipation panels, heat pipes (Is), and hot water distribution parts az may be arranged in the extending direction of the groove (γ), and each A water supply pipe and a water return pipe CIIJ are arranged in each groove, and each hot water distribution section Q3 is connected to the first connection pipe Q3 and the second connection pipe 04, and the water supply pipe may be branched into three to supply hot water, and the return pipe αD may be configured to combine the three pipes into one and return low-temperature hot water to the hot water source.In short, it is an extension of a te. By arranging multiple units in the same direction, the snow melting distance of the elevated track (4) can be extended by that amount.As described above, by changing the heat source from geothermal heat to hot water, it is possible to secure a stable amount of heat and reduce the load. The heat amount of hot water can be adjusted according to the temperature.In addition, since the heat pipe is not buried in the soil or concrete, it is placed in a trench, which simplifies the installation work of the heat pipe and allows indirect heat transfer through concrete. This is a direct melting process on the heat dissipation panel rather than a traditional melting process, resulting in extremely high snow melting performance.As a result, load response is improved and snow melting performance is quickly and fully demonstrated when needed. By the way, in the above explanation, we talked about the case of snow melting on elevated tracks of elevated bridges, but in the case of snow melting on flat tracks instead of elevated bridges, heat pipes, heat dissipation panels, and hot water distribution parts should be installed next to the flat tracks. The snow melting device may be configured by connecting the water supply pipe, the water return pipe, and the hot water distribution section to the first connection pipe and the second connection pipe. The amount of heat from the hot water flowing through the distribution section is transferred from one side of the heat pipe to the other side, and the heat is efficiently transferred from the other side of the heat pipe to the heat dissipation panel, so snow that accumulates on the heat dissipation panel is removed. A snow melting device that can perform direct melting processing, has high snow melting performance, and has a quick response can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による融雪装置を示す横断
面図、第2図はこの発明の他の実施例による融雪装置を
示す横断面図、第3図はこの発明の他の実施例による融
雪装置を示す系統図、第4図及び第5図は従来の融雪装
置を示す縦断面図及び横断面図である。 図にかいて、(8)は高架橋、(4)は高架軌道、(7
ンは片言溝、(8)は雪、α2は温水流通部、(151
はヒートパイプ、uQは放熱パネルである。 尚、図中同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing a snow melting device according to one embodiment of the present invention, FIG. 2 is a cross-sectional view showing a snow melting device according to another embodiment of the present invention, and FIG. 3 is a cross-sectional view showing a snow melting device according to another embodiment of the present invention. FIGS. 4 and 5 are a longitudinal sectional view and a cross sectional view showing a conventional snow melting apparatus. In the figure, (8) is an elevated bridge, (4) is an elevated track, and (7) is an elevated track.
(8) is snow, α2 is hot water distribution section, (151
is a heat pipe, and uQ is a heat dissipation panel. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)軌道横に配設されるヒートパイプと、上記ヒート
パイプの一方側と熱的接触され温水源からの温水が流通
する温水流通部と、上記ヒートパイプの他方側と熱的接
触して装着された放熱パネルとを備えたことを特徴とす
る融雪装置。
(1) A heat pipe disposed next to the track, a hot water distribution section that is in thermal contact with one side of the heat pipe and through which hot water from a hot water source flows, and a hot water distribution section that is in thermal contact with the other side of the heat pipe. A snow melting device characterized by comprising a heat dissipation panel attached thereto.
(2)高架橋の高架軌道横に設けられ、上記高架軌道上
の列車によつて排除された雪を貯留する貯雪溝と、上記
貯雪溝内に配設されたヒートパイプと、温水源から温水
が流通され、上記ヒートパイプの一方側と熱的接触して
配置された温水流通部と、上記貯雪溝内に配設され上記
ヒートパイプの他方側と熱的接触して装着され、上記雪
が堆積される放熱パネルとを備えたことを特徴とする融
雪装置。
(2) A snow storage groove installed next to the elevated track of the elevated track to store snow removed by trains on the elevated track, a heat pipe installed in the snow storage groove, and a hot water source. a hot water distribution section disposed in thermal contact with one side of the heat pipe; A snow melting device characterized by being equipped with a heat dissipation panel.
JP1227956A 1989-08-31 1989-08-31 Snow melting device Pending JPH0387403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1227956A JPH0387403A (en) 1989-08-31 1989-08-31 Snow melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1227956A JPH0387403A (en) 1989-08-31 1989-08-31 Snow melting device

Publications (1)

Publication Number Publication Date
JPH0387403A true JPH0387403A (en) 1991-04-12

Family

ID=16868896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1227956A Pending JPH0387403A (en) 1989-08-31 1989-08-31 Snow melting device

Country Status (1)

Country Link
JP (1) JPH0387403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106400683A (en) * 2016-11-29 2017-02-15 黑龙江省机场管理集团有限公司 Viaduct drainage ditch heating system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851561A (en) * 1981-09-24 1983-03-26 Hitachi Ltd Semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851561A (en) * 1981-09-24 1983-03-26 Hitachi Ltd Semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106400683A (en) * 2016-11-29 2017-02-15 黑龙江省机场管理集团有限公司 Viaduct drainage ditch heating system
CN106400683B (en) * 2016-11-29 2018-07-03 黑龙江省机场管理集团有限公司 A kind of overpass gutter heating system

Similar Documents

Publication Publication Date Title
JPH0387403A (en) Snow melting device
JP2550736B2 (en) Snow melting equipment
JP2893789B2 (en) Snow melting equipment
JPH0447012A (en) Snow melting device
JPH0387405A (en) Snow melting device
JPH0387404A (en) Snow melting device
JPS5851561B2 (en) Snow melting and freezing prevention methods on raceway surfaces
JPH10140503A (en) Snow-melting equipment for railway line
JPH04189906A (en) Snow melting device of solar heat storage type for road surface
JPH01169001A (en) Antifreezing device for railroad switch
JPH03100214A (en) Snow melting device
JPS6038487B2 (en) Snow and ice control device for bridge piers
JPH03100213A (en) Snow melting device
JPH03100215A (en) Snow melting device
JPH03100212A (en) Snow melting device
JPH03100211A (en) Snow melting device
JP2755023B2 (en) Snow melting and freezing prevention device at the track branch
JP2755009B2 (en) Snow melting and freezing prevention device at the track branch
JP2541974Y2 (en) Heat pipe type snow melting equipment
JP2850695B2 (en) Road snow removal structure
JP3336382B2 (en) Melting and coagulation equipment
JPH0827714A (en) Snow melting device of heat radiation pipe with upper fins
JPS60126404A (en) Heat pipe type snow melting system
JPH01190801A (en) Construction of snow melting road pavement surface
JPH0681307A (en) Heat pipe type road snow melting device