JPH0387393A - Production of aqueous alkali hypochlorite solution - Google Patents

Production of aqueous alkali hypochlorite solution

Info

Publication number
JPH0387393A
JPH0387393A JP1220460A JP22046089A JPH0387393A JP H0387393 A JPH0387393 A JP H0387393A JP 1220460 A JP1220460 A JP 1220460A JP 22046089 A JP22046089 A JP 22046089A JP H0387393 A JPH0387393 A JP H0387393A
Authority
JP
Japan
Prior art keywords
alkali
solid polymer
polymer electrolyte
active material
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1220460A
Other languages
Japanese (ja)
Inventor
Kaoru Hirakata
平形 薫
Akihiko Fujii
昭彦 藤井
Shinichi Shimoda
慎一 下田
Takuro Kato
加藤 琢朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP1220460A priority Critical patent/JPH0387393A/en
Publication of JPH0387393A publication Critical patent/JPH0387393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To stably produce an aq. alkali hypochlorite soln. at a low electrolytic voltage over a long period by separating an electrolytic cell with an electrode obtained by coating the surface of a solid polymer electrolyte with an electrode active material, electrolyzing an alkali chloride soln. and mixing the products. CONSTITUTION:The electrolytic cell 1 is separated by an electrode obtained by coating the surface of a solid polymer electrolyte 2 with electrode active materials 3 and 4 into an anode chamber 5 and a cathode chamber 6. A fluorine- based cation-exchange membrane is appropriately used as the electrolyte 2. Carbon, graphite, PbO2, platinum-group metals or their oxides, etc., are used as the anode active material 5, and carbon, graphite, platinum-group metals, etc., as the cathode active material 6. An alkali chloride soln. is supplied to the anode chamber 5 and water to the cathode chamber 6, and electrolysis is carried out. The generated gaseous chlorine, the anolyte and catholyte freed of gaseous hydrogen are mixed in a reaction vessel 13 to cause a reaction, and an aq. alkali hypochlorite soln. is obtained at a low electrolytic voltage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水処理用薬剤として有用な次亜塩素酸アルカ
リ水溶液の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing an aqueous alkali hypochlorite solution useful as a water treatment agent.

(従来の技術) 従来、上水道でも下水道でも水の滅菌には通常塩素処理
が用いられているが、その塩素源としては高圧にて塩素
の液化を行いボンベに充填させた液体塩素、或いは次亜
塩素酸ソーダが使用されている。このような高圧ボンベ
の取扱いはボンベ自体が相当の重量があり、しかも内容
が高圧の有毒物であるので熟練した専門家を必要とする
。また次亜塩素酸ソーダ溶液を使用する場合も一定濃度
の水溶液として製造工場より運搬されてくる薬剤を使用
箇所に適した濃度および添加量に調整するため多くの手
間や付帯設備を必要とする。更に次亜塩素酸ソーダ製品
の濃度は通常12%程度であり、このような水溶液を運
搬することは多量の水を運ぶこととなり不経済でもある
(Prior art) Conventionally, chlorine treatment has been used to sterilize water in both water and sewerage systems, but the chlorine source is liquid chlorine, which is liquefied at high pressure and filled into a cylinder, or hypochlorite. Sodium chlorate is used. Handling of such high-pressure cylinders requires skilled professionals, as the cylinders themselves are quite heavy and contain highly pressurized toxic substances. Furthermore, when using a sodium hypochlorite solution, the chemical is transported from a manufacturing factory as an aqueous solution of a certain concentration, and it requires a lot of effort and additional equipment to adjust the concentration and amount to be added to the area where it will be used. Furthermore, the concentration of sodium hypochlorite products is usually about 12%, and transporting such an aqueous solution requires transporting a large amount of water, which is also uneconomical.

それ故、最近では使用場所に小型の隔膜式塩化アルカリ
電解槽を設備して食塩と水より飽和塩水をつくりこれを
電解して陽極室より塩素、陰極室より苛性ソーダ溶液を
得、別に設けた反応室でこれらを反応させて次亜塩素酸
ソーダ溶液を得る方法が行われつつある。この方法によ
れば通電量を調節することにより生−産量を調節しうる
のみでなく、多量の水を運搬する費用が節減されること
になる。
Therefore, recently, a small diaphragm-type alkaline chloride electrolyzer is installed at the place of use, and saturated brine is made from salt and water.This is electrolyzed to obtain chlorine from the anode chamber and a caustic soda solution from the cathode chamber, and a separate reaction chamber is installed. A method of reacting these in a chamber to obtain a sodium hypochlorite solution is being used. According to this method, not only can the production amount be adjusted by adjusting the amount of electricity, but also the cost of transporting a large amount of water can be reduced.

この種の小型隔膜電解槽としては合成樹脂製の隔膜を設
けて無隔膜電解槽による電流効率の低下を防ぎ、且つ陽
極室と陰極室との間に連通管を設けて陽極液を陰極液(
苛性アルカリ液)と混合し、陽極室で発生する塩素ガス
を電解槽に付設した別室で添加して次亜塩素酸アルカリ
溶液を製造しこれをそのまま水処理用薬剤として使用す
る方法が一般的である(特公昭57−53436号、特
開昭57−94579号)。
This type of small diaphragm electrolytic cell is equipped with a synthetic resin diaphragm to prevent a decrease in current efficiency caused by non-diaphragm electrolytic cells, and a communication tube is provided between the anode chamber and the cathode chamber to transfer the anolyte to the catholyte (
The common method is to mix hypochlorite with alkaline solution (caustic alkaline solution) and add chlorine gas generated in the anode chamber in a separate chamber attached to the electrolytic cell to produce an alkaline hypochlorite solution, which is used as is as a water treatment agent. Yes (Japanese Patent Publication No. 57-53436, Japanese Patent Publication No. 57-94579).

しかしこの形式の電解槽では製造される次亜塩素酸アル
カリ溶液中の有効塩素濃度が1重量%以下の場合では良
好な電流効率を維持しうるが、有効塩素濃度を3〜4重
量%に上げ塩水の分解率を高めようとすれば電流効率が
大幅に低下する欠点がある。また隔膜として陽イオン交
換膜を使用し、陰極液中の苛性アルカリ濃度を高めこれ
を塩素ガスと反応させて次亜塩素酸アルカリ溶液を製造
する方法は電解後の陽極液を塩化アルカリに再飽和させ
電解槽に循環させるので電解設備が大型化し、作業工程
が煩雑となるので、水処理施設に隣接して設けるには問
題が多い。また隔膜としてアスベスト隔膜を使用する方
式は陽極液を循環させない利点はあるが、陽イオン交換
膜法に比較して総体的に電流効率が低く、且つアスベス
ト隔膜の耐用年数が短い欠点がある。
However, in this type of electrolytic cell, good current efficiency can be maintained when the concentration of available chlorine in the alkaline hypochlorite solution produced is 1% by weight or less, but when the concentration of available chlorine is increased to 3 to 4% by weight, If an attempt is made to increase the decomposition rate of salt water, there is a drawback that the current efficiency will drop significantly. Another method uses a cation exchange membrane as a diaphragm to increase the caustic alkali concentration in the catholyte and reacts it with chlorine gas to produce an alkaline hypochlorite solution.After electrolysis, the anolyte is resaturated with alkali chloride. Because the electrolysis equipment is circulated through the electrolytic tank, the electrolysis equipment becomes large and the work process becomes complicated, so there are many problems when installing it adjacent to a water treatment facility. Furthermore, although the method of using an asbestos diaphragm as a diaphragm has the advantage of not circulating the anolyte, it has the drawbacks of lower overall current efficiency and a shorter service life of the asbestos diaphragm than the cation exchange membrane method.

これらの欠点を改善するために、陽イオン交換膜を隔膜
として陽極室に塩化アルカリ、陰極室に水を添加しなが
ら塩化アルカリの分解率50〜70%で電解を行い、陽
極液、陰極液、塩素ガスを混合して次亜塩素酸アルカリ
を製造し、これを水処理薬剤として使用する方法が提案
されている(特公平1−14830)。しかし市販の塩
化ナトリウムを使用すると陽イオン交換膜および陰極に
スケールが付着して摺電圧が上昇するので定期的に陰極
室を酸で洗浄する必要があるという欠点があった。
In order to improve these shortcomings, electrolysis is carried out at a decomposition rate of 50 to 70% of alkali chloride while adding alkali chloride to the anode chamber and water to the cathode chamber using a cation exchange membrane as a diaphragm. A method has been proposed in which alkali hypochlorite is produced by mixing chlorine gas and used as a water treatment agent (Japanese Patent Publication No. 1-14830). However, when commercially available sodium chloride is used, scale adheres to the cation exchange membrane and the cathode, increasing the sliding voltage, so there is a drawback that the cathode chamber must be periodically cleaned with acid.

(発明が解決しようとする問題点) 本発明は、上記の問題点を解決するためになされたもの
で、きわめて低い電解電圧で電解でき、かつ、スケール
の生成による摺電圧の上昇が少ない次亜塩素酸アルカリ
水溶液の製法を提供することにある。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned problems. An object of the present invention is to provide a method for producing an aqueous alkali chlorate solution.

(問題点を解決するための手段) すなわち本発明は、固体高分子電解質の表面に電極活性
物質を被覆して電極とし、この電極により区割すした電
解槽の陽極室に塩化アルカリ溶液を仕込んで電解するこ
とにより塩素ガスを発生させ、陽極液と陰極液と塩素ガ
スを混合して次亜塩素酸アルカリ水溶液を製造する方法
である。
(Means for Solving the Problem) That is, the present invention covers the surface of a solid polymer electrolyte with an electrode active substance to form an electrode, and charges an alkali chloride solution into the anode chamber of an electrolytic cell divided by the electrode. In this method, chlorine gas is generated by electrolysis, and the anolyte, catholyte, and chlorine gas are mixed to produce an alkaline hypochlorite aqueous solution.

以下図面によって本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第1図において、電解槽1には、電極活性物質として陽
極活性物質3と陰極活性物質4とを有する固体高分子電
解質2から成る電極が取り付けられる。本発明に用いら
れる固体高分子電解質には、陽イオン交換膜の使用が可
能であり、イオン選択性、耐食性の点からフッ素樹脂系
の陽イオン交換膜が適している。固体高分子電解質の表
面に施す陽極活性物質は炭素、黒鉛、二酸化鉛、白金族
金属、白金族金属酸化物の1種、またはこれらの混合物
が用いられる。また、陰極活性物質は炭素、黒鉛、白金
族金属が用いられる。
In FIG. 1, an electrolytic cell 1 is fitted with an electrode consisting of a solid polymer electrolyte 2 having an anode active material 3 and a cathode active material 4 as electrode active materials. A cation exchange membrane can be used as the solid polymer electrolyte used in the present invention, and a fluororesin-based cation exchange membrane is suitable from the viewpoint of ion selectivity and corrosion resistance. The anode active material applied to the surface of the solid polymer electrolyte is one of carbon, graphite, lead dioxide, platinum group metals, platinum group metal oxides, or a mixture thereof. Furthermore, carbon, graphite, and platinum group metals are used as the cathode active material.

固体高分子電解質に上記活性物質の被覆を施すには、ま
ずその表面を粗面化する必要があり、酸素、アルゴン等
の気流下で高周波低温プラズマ装置を用いてエツチング
を行なう方法とガラスピーズなどのブラスト材粒子を用
いてサンドブラストする方法がある。両方法とも固体高
分子電解質の機能を損なうことなく均一な無数の三次元
的微細孔からなるエツチング層を形成し得る。
In order to coat a solid polymer electrolyte with the above-mentioned active substance, it is first necessary to roughen its surface, and there are two methods: etching using a high-frequency low-temperature plasma device under a stream of oxygen, argon, etc., and glass beads, etc. There is a method of sandblasting using blasting material particles. Both methods can form an etching layer consisting of numerous uniform three-dimensional micropores without impairing the function of the solid polymer electrolyte.

このように粗面化した固体高分子電解質上に電極活性物
質の被覆を施す。被覆方法は数多く知られているが、被
覆する電極活性物質により好適な方法がある。すなわち
炭素および黒鉛の場合にはCVDや真空スパッタリング
法が良く、白金族金属は湿式化学メツキ法が良く、また
白金族金属酸化物、二酸化鉛はポリ四フッ化エチレン等
のバインダーを用いるホットプレス法が適している。本
発明による電極活性被覆は必ずしも固体高分子電解質の
表面を直接被覆しなくても良く、たとえば上記被覆を施
したチタンメツシュを固体高分子電解質の陽極面に押し
当ててもよい。
The thus roughened solid polymer electrolyte is coated with an electrode active material. Although many coating methods are known, some methods are more suitable depending on the electrode active material to be coated. In other words, for carbon and graphite, CVD or vacuum sputtering is better, for platinum group metals, wet chemical plating is better, and for platinum group metal oxides and lead dioxide, hot pressing using a binder such as polytetrafluoroethylene is better. is suitable. The electrode active coating according to the present invention does not necessarily have to directly cover the surface of the solid polymer electrolyte; for example, the coated titanium mesh may be pressed against the anode surface of the solid polymer electrolyte.

上記のように電極活性物質の被覆を施した固体高分子電
解質2により電解槽1は陽極室5と陰極室6とに区割す
されており、塩化アルカリ溶液は導管7より塩素ガス分
離器8を経て導管18より陽極室5の下部に導入される
。塩化アルカリとしては、塩化ナトリウム、塩化リチウ
ム、塩化カリウムを使用する。注水管9より水素ガス分
離器10を経て導管17より陰極室6の下部に導入され
る。電解後隅極液は発生塩素ガスのガスリフト効果によ
り塩素ガス分離器8に循環され、分離された塩素ガスは
導管11により、陽極液は導管12により反応槽13に
導かれる。陰極室6において生成した苛性アルカリ溶液
(陰極液)は発生水素ガスのガスリフト効果により水素
ガス分離器IOに循環され、分離された水素ガスは導管
18より排出され、陰極液は導管14により反応槽13
に導かれる。反応槽13においては、塩素ガス、陽極液
および陰極液が反応して所定濃度の次亜塩素酸アルカリ
溶液が生成され、導管15より排出され利用に供される
。陰極室6では陽極室5から固体高分子電解質2内を移
動したアルカリイオンに同伴した水が還元されて水素ガ
スと苛性アルカリが生成する。水素イオンは固体高分子
電解質2内を逆移動して塩素発生電流効率が低下するた
め陰極室6の水酸イオン濃度をできるだけ低くすべきで
ある。
As mentioned above, the electrolytic cell 1 is divided into an anode chamber 5 and a cathode chamber 6 by the solid polymer electrolyte 2 coated with an electrode active material, and the alkaline chloride solution is supplied from the conduit 7 to the chlorine gas separator 8. It is introduced into the lower part of the anode chamber 5 from the conduit 18 through the . As the alkali chloride, sodium chloride, lithium chloride, and potassium chloride are used. The water is introduced into the lower part of the cathode chamber 6 from the water injection pipe 9 through the hydrogen gas separator 10 and from the conduit 17. After electrolysis, the electrolyte is circulated to the chlorine gas separator 8 by the gas lift effect of the generated chlorine gas, and the separated chlorine gas is led to a reaction tank 13 through a conduit 11 and the anolyte through a conduit 12. The caustic alkaline solution (catholyte) generated in the cathode chamber 6 is circulated to the hydrogen gas separator IO by the gas lift effect of the generated hydrogen gas, the separated hydrogen gas is discharged from the conduit 18, and the catholyte is transferred to the reaction tank through the conduit 14. 13
guided by. In the reaction tank 13, the chlorine gas, the anolyte, and the catholyte react to produce an alkaline hypochlorite solution of a predetermined concentration, which is discharged through the conduit 15 and made available for use. In the cathode chamber 6, water accompanying the alkali ions that have moved within the solid polymer electrolyte 2 from the anode chamber 5 is reduced to generate hydrogen gas and caustic alkali. Since hydrogen ions move backward within the solid polymer electrolyte 2 and the chlorine generation current efficiency decreases, the hydroxide ion concentration in the cathode chamber 6 should be made as low as possible.

従来の隔膜電解では、このイオン濃度を低く保つために
陰極室に水を理知しており、苛性アルカリ濃度が数十g
/l以下になると電解液の抵抗が増大して電解不能にな
る問題があったが、本発明の方法では固体高分子電解質
2を用いるため、注水管9より注入する水量を多くして
苛性アルカリ濃度を極限まで低くしても電解電圧は、上
昇することはない。生成する水素は99.9%以上であ
り導管18より排出後回収可能であるが廃棄する場合に
は、爆発下限の濃度に空気希釈するか、あるいは触媒等
を用いて燃焼させる。
In conventional diaphragm electrolysis, water is placed in the cathode chamber to keep this ion concentration low, and the caustic alkali concentration is several tens of grams.
/l or less, there was a problem that the resistance of the electrolyte increases and electrolysis becomes impossible, but in the method of the present invention, since the solid polymer electrolyte 2 is used, the amount of water injected from the water injection pipe 9 is increased and the caustic alkali is Even if the concentration is made extremely low, the electrolytic voltage will not increase. The hydrogen produced is 99.9% or more and can be recovered after being discharged from the conduit 18, but if it is to be disposed of, it is diluted with air to a concentration that is at the lower explosive limit, or it is combusted using a catalyst or the like.

(実施例) 次に本発明を実施例により説明するが、本発明はこれに
何ら限定されるものではない。
(Example) Next, the present invention will be explained with reference to Examples, but the present invention is not limited thereto.

第1図に示した装置を使用して次亜塩素酸ソーダ水溶液
を連続的に製造した。
An aqueous sodium hypochlorite solution was continuously produced using the apparatus shown in FIG.

固体高分子電解質はフルオロカーボン系の陽イオン交換
膜(デュポン社製ナフィオンNX−90209)を使用
し、100メツシユのガラスパウダーをブラスト材に用
い、4Kg/cm2の空気圧でICm2当たり10秒間
のサンドブラスト処理を施した。
A fluorocarbon-based cation exchange membrane (Nafion NX-90209 manufactured by DuPont) was used as the solid polymer electrolyte, and 100 mesh glass powder was used as the blasting material, and sandblasting was performed for 10 seconds per ICm2 at an air pressure of 4 kg/cm2. provided.

この陽イオン交換膜の片面をシールして沸騰水中に30
分間浸漬し、次いで希塩酸中で1時間酸処理を行なった
後、塩化白金酸をアンモニア水に溶解した溶液に浸漬し
た。これを水素化ホウ素ナトリウムで還元した。次いで
塩化白金酸溶液に浸漬し厚く成長させる湿式化学メツキ
法により陰極活性被覆を施した。
Seal one side of this cation exchange membrane and immerse it in boiling water for 30 minutes.
The sample was immersed for 1 minute, then acid-treated in dilute hydrochloric acid for 1 hour, and then immersed in a solution of chloroplatinic acid dissolved in aqueous ammonia. This was reduced with sodium borohydride. A cathode active coating was then applied by a wet chemical plating method in which the film was immersed in a chloroplatinic acid solution to grow thick.

陽極活性被覆として、白金(実施例1)または白金−イ
リジウム合金(実施例2)を上記と同様の方法により陽
イオン交換膜上に被覆を施した。
As an anode active coating, platinum (Example 1) or platinum-iridium alloy (Example 2) was coated on the cation exchange membrane by the same method as above.

このようにして作製した電極を電解槽に組み込み塩化す
) IJウム300g/lを含有する陽極液を陽極室に
供給し、陰極室には水道水を定量ポンプで供給して電解
した。陽極電流密度50 A/dm2の条件で電解し、
陰極室の苛性ソーダ濃度は、3 g/ 1以下となるよ
うに制御して運転した。運転時の摺電圧と電流効率を第
1表に示し、た。500時間運転して陰極を観察した所
、スケールが少し付着していたが、摺電圧にほとんど変
化がなかった。生成した次亜塩素酸ソーダの平均濃度は
5.0重量%であった。
The thus prepared electrode was assembled in an electrolytic cell and chlorinated.) An anolyte containing 300 g/l of IJium was supplied to the anode chamber, and tap water was supplied to the cathode chamber using a metering pump for electrolysis. Electrolyzed at an anode current density of 50 A/dm2,
The caustic soda concentration in the cathode chamber was controlled to be 3 g/1 or less during operation. The sliding voltage and current efficiency during operation are shown in Table 1. When the cathode was observed after 500 hours of operation, a small amount of scale was observed, but there was almost no change in the sliding voltage. The average concentration of the produced sodium hypochlorite was 5.0% by weight.

比較例1 デュポン社製のフルオロカーボン系陽イオン交換膜(ナ
フィオンNX−90209)を隔膜として用い、陽極に
は白金メツキチタン電極、陰極にチタン板を用いて通常
のイオン交換膜電解槽を組み立て、陰極液の苛性ソーダ
の濃度を50〜60g/lとして実施例と同様の電解条
件で運転した。
Comparative Example 1 A normal ion exchange membrane electrolytic cell was assembled using a fluorocarbon cation exchange membrane manufactured by DuPont (Nafion NX-90209) as a diaphragm, a platinum-plated titanium electrode for the anode, and a titanium plate for the cathode, and the catholyte The operation was carried out under the same electrolytic conditions as in the example, with the concentration of caustic soda being 50 to 60 g/l.

生成した次亜塩素酸ソーダの平均濃度は4.5重量%で
あった。運転時の摺電圧と電流効率を第1表に示した。
The average concentration of the produced sodium hypochlorite was 4.5% by weight. Table 1 shows the sliding voltage and current efficiency during operation.

500時間運転して陰極を観察したところ、白いスケー
ルが一面に付着していた。
When the cathode was observed after 500 hours of operation, white scale was observed all over the surface.

第1表 太l *2 陽極として白金メツキチタン板を使用 陰極としてチタン板を使用 (発明の効果) 固体高分子電解質の表面に電極活性物質を被覆した電極
を用いることにより、従来の電解電圧よりかなり低い電
圧で次亜塩素酸アルカリを製造できるようになった。ま
た長期間の運転を行なってもスケールが生成せず、低電
解電圧を維持でき酸洗浄を必要としなくなった。
Table 1 *2 A platinum-plated titanium plate is used as an anode and a titanium plate is used as a cathode (effects of the invention) By using an electrode coated with an electrode active material on the surface of a solid polymer electrolyte, the electrolytic voltage is considerably higher than that of conventional electrolytic voltage. Alkaline hypochlorite can now be produced at low voltage. Furthermore, even after long-term operation, no scale is generated, and a low electrolytic voltage can be maintained, eliminating the need for acid cleaning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の具体例を説明するフローシート
である。 1・・電解槽   2・・固体高分子電解質3・・陽極
活性物質  4・・陰極活性物質5・・陽極室  6・
・陰極室  8・・塩素ガス分離器  10・・水素ガ
ス分離器13・・反応槽
FIG. 1 is a flow sheet illustrating a specific example of the method of the present invention. 1. Electrolytic cell 2. Solid polymer electrolyte 3. Anode active material 4. Cathode active material 5. Anode chamber 6.
・Cathode chamber 8...Chlorine gas separator 10...Hydrogen gas separator 13...Reaction tank

Claims (1)

【特許請求の範囲】 1、塩化アルカリ溶液を電気分解して次亜塩素酸アルカ
リ水溶液を製造する方法において、固体高分子電解質の
表面に電極活性物質の被覆を施した電極により電解槽を
陽極室と陰極室とに区割りし、陽極室に塩化アルカリ溶
液を供給し、陰極室に水を供給して電解し、発生する塩
素ガス、陽極液および陰極液を混合することを特徴とす
る次亜塩素酸アルカリ水溶液の製法。 2、固体高分子電解質が、陽イオン交換膜である請求項
1記載の次亜塩素酸アルカリ水溶液の製法。
[Claims] 1. In a method for producing an aqueous alkali hypochlorite solution by electrolyzing an alkali chloride solution, an electrolytic cell is connected to an anode chamber by an electrode in which the surface of a solid polymer electrolyte is coated with an electrode active material. and a cathode chamber, an alkali chloride solution is supplied to the anode chamber, water is supplied to the cathode chamber for electrolysis, and the generated chlorine gas, anolyte and catholyte are mixed. Method for producing acid-alkali aqueous solution. 2. The method for producing an alkaline hypochlorite aqueous solution according to claim 1, wherein the solid polymer electrolyte is a cation exchange membrane.
JP1220460A 1989-08-29 1989-08-29 Production of aqueous alkali hypochlorite solution Pending JPH0387393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1220460A JPH0387393A (en) 1989-08-29 1989-08-29 Production of aqueous alkali hypochlorite solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1220460A JPH0387393A (en) 1989-08-29 1989-08-29 Production of aqueous alkali hypochlorite solution

Publications (1)

Publication Number Publication Date
JPH0387393A true JPH0387393A (en) 1991-04-12

Family

ID=16751465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1220460A Pending JPH0387393A (en) 1989-08-29 1989-08-29 Production of aqueous alkali hypochlorite solution

Country Status (1)

Country Link
JP (1) JPH0387393A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897874A (en) * 2011-07-29 2013-01-30 通用电气公司 Method for preparing bactericide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181879A (en) * 1977-12-09 1983-10-24 オロンジオ・ド・ノラ・イムピアンチ・エレットロキミシ・ソシエタ・ペル・アジオニ Halogen electrolysis manufacture
JPS616156A (en) * 1984-05-03 1986-01-11 エステイーシー・ピーエルシー Method of cladding optical fiber
JPS616155A (en) * 1984-06-19 1986-01-11 Nitto Electric Ind Co Ltd Cladding material for optical glass fiber
JPS645116A (en) * 1987-06-26 1989-01-10 Nec Corp Minimum value arithmetic unit and its control
JPS6414830A (en) * 1987-07-09 1989-01-19 Toshiba Corp Reed switch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181879A (en) * 1977-12-09 1983-10-24 オロンジオ・ド・ノラ・イムピアンチ・エレットロキミシ・ソシエタ・ペル・アジオニ Halogen electrolysis manufacture
JPS616156A (en) * 1984-05-03 1986-01-11 エステイーシー・ピーエルシー Method of cladding optical fiber
JPS616155A (en) * 1984-06-19 1986-01-11 Nitto Electric Ind Co Ltd Cladding material for optical glass fiber
JPS645116A (en) * 1987-06-26 1989-01-10 Nec Corp Minimum value arithmetic unit and its control
JPS6414830A (en) * 1987-07-09 1989-01-19 Toshiba Corp Reed switch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102897874A (en) * 2011-07-29 2013-01-30 通用电气公司 Method for preparing bactericide

Similar Documents

Publication Publication Date Title
US5041196A (en) Electrochemical method for producing chlorine dioxide solutions
EP0949205B1 (en) Use of an anode having an electroconductive diamond structure for producing acidic water containing dissolved hydrogen peroxide
US4224121A (en) Production of halogens by electrolysis of alkali metal halides in an electrolysis cell having catalytic electrodes bonded to the surface of a solid polymer electrolyte membrane
US5084149A (en) Electrolytic process for producing chlorine dioxide
US5437771A (en) Electrolytic cell and processes for producing alkali hydroxide and hydrogen peroxide
US5158658A (en) Electrochemical chlorine dioxide generator
US5693213A (en) Electrolytic process of salt water
CA1195949A (en) Hydrogen chloride electrolysis in cell with polymeric membrane having catalytic electrodes bonbed thereto
US4578159A (en) Electrolysis of alkali metal chloride brine in catholyteless membrane cells employing an oxygen consuming cathode
US5089095A (en) Electrochemical process for producing chlorine dioxide from chloric acid
JP3115440B2 (en) Electrolysis method of alkali chloride aqueous solution
US5227030A (en) Electrocatalytic cathodes and methods of preparation
US4919791A (en) Controlled operation of high current density oxygen consuming cathode cells to prevent hydrogen formation
EP1487747B1 (en) Use of an electrolyte composition for electrolysis of brine, method for electrolysis of brine, and for preparation of sodium hydroxide
CN113388849B (en) Hydrochloric acid electrolysis method by ion membrane method
CA1117895A (en) Method of reducing chlorate formation in a chlor-alkali electrolytic cell
JPH0387393A (en) Production of aqueous alkali hypochlorite solution
JPS6118495A (en) Preparation of water treating chemicals
US4488947A (en) Process of operation of catholyteless membrane electrolytic cell
RU2317351C2 (en) Alkaline metal chlorate producing process
US4056448A (en) Process for brine membrane cell operation with external caustic and nacl concentration control
CA1155792A (en) Air-depolarized chlor-alkali cell operation methods
JP3725685B2 (en) Hydrogen peroxide production equipment
US4360412A (en) Treatment of permionic membrane
JP3420790B2 (en) Electrolyzer and electrolysis method for alkali chloride electrolysis