JPH0386303A - Rolling reduction control device for rolling mill - Google Patents

Rolling reduction control device for rolling mill

Info

Publication number
JPH0386303A
JPH0386303A JP1223095A JP22309589A JPH0386303A JP H0386303 A JPH0386303 A JP H0386303A JP 1223095 A JP1223095 A JP 1223095A JP 22309589 A JP22309589 A JP 22309589A JP H0386303 A JPH0386303 A JP H0386303A
Authority
JP
Japan
Prior art keywords
rolling
steady
deviation
hydraulic cylinder
state deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1223095A
Other languages
Japanese (ja)
Other versions
JP2646396B2 (en
Inventor
Yasuto Ito
伊藤 保人
Toshiaki Ochi
俊昭 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP1223095A priority Critical patent/JP2646396B2/en
Publication of JPH0386303A publication Critical patent/JPH0386303A/en
Application granted granted Critical
Publication of JP2646396B2 publication Critical patent/JP2646396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/78Control of tube rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/62Roll-force control; Roll-gap control by control of a hydraulic adjusting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B17/00Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
    • B21B17/02Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling with mandrel, i.e. the mandrel rod contacts the rolled tube over the rod length

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To control a hydraulic cylinder at a target position with good accuracy by finding the steady state deviation of the target position and actual position of the hydraulic cylinder in non-rolling stage of a rolling cycle and controlling the position of the hydraulic cylinder based on the corrected steady state deviation in a rolling stage with its correction by a preset quantity. CONSTITUTION:A steady state deviation is subjected to sampling by comparing the set target position and actual position of a hydraulic cylinder in a nonrolling stage on each rolling cycle. A corrected steady state deviation is then found by correcting the steady state deviation by a preset quantity. The position control of the hydraulic cylinder is then performed based on the corrected steady state deviation in a rolling stage. Consequently, the steady state deviation generated in a rolling cycle can actually be offset and the position of the hydraulic cylinder can be controlled with good accuracy at a target position command value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は圧延機用圧下制御装置に関し、特に、マンドレ
ルミルに用いられ、圧下ロールの位置決めを行う油圧シ
リンダの制御を行うマンドレルミル用油圧圧下制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a reduction control device for a rolling mill, and in particular to a hydraulic reduction control device for a mandrel mill that controls a hydraulic cylinder for positioning a reduction roll. Regarding a control device.

(従来の技術) 一般に、ストレッチ・レデューサを最終仕上工程で用い
る熱間継目無鋼管製造ラインでは、ストレッチ・レデュ
ーサによる管端厚肉化現象のためクロップ代が大きくな
り、その結果、大幅に製品の歩留まりが低下してしまう
(Prior art) In general, in hot seamless steel pipe manufacturing lines that use stretch reducers in the final finishing process, the cropping allowance becomes large due to the phenomenon of thickening of the tube end due to the stretch reducers, and as a result, the product quality increases significantly. Yield will decrease.

このため、ストレッチ・レデューサの前工程であるマン
ドレルミルにおける圧延の際、予め圧延素管の管端部を
テーバ状に薄く形成してストレッチ・レデューサにおけ
る管端厚肉化現象を相殺している。
For this reason, during rolling in a mandrel mill, which is a pre-process of the stretch reducer, the tube end of the rolled blank tube is formed thin in advance into a tapered shape to offset the phenomenon of thickening of the tube end in the stretch reducer.

ところで、マンドレルミルでは、圧延素管を取り巻くよ
うにして複数の圧下ロールが配置され、各圧下ロールを
油圧シリンダで駆動して、圧延素管の通過に応じて油圧
シリンダを駆動制御し、これによって圧下ロールで圧延
素管の管端部をテーパ状に薄く形成している。
By the way, in a mandrel mill, a plurality of rolling rolls are arranged so as to surround the rolled raw pipe, each rolling roll is driven by a hydraulic cylinder, and the hydraulic cylinder is driven and controlled according to the passage of the rolled raw pipe. The ends of the rolled blank tube are formed into a thin, tapered shape using a reduction roll.

ここで、従来の圧下制御装置のm要について第4図を参
照して説明する。
Here, the main points of the conventional reduction control device will be explained with reference to FIG. 4.

マンドレルミルによる圧延サイクル中において油圧シリ
ンダ(図示せず)の目標位置指令値及び油圧シリンダの
位置検出値(例えば、位置センサで油圧シリンダの位置
を検出する)が減算器41に与えられ、目標位置指令値
と位置検出値との減算が行われる。これによって、減算
器41から偏差Δεが出力される。偏差Δεは比例ゲイ
ン補償器42でゲイン補償され、制御量(サーボ弁開度
指令値)としてサーボ弁(図示せず)に与えられ、サー
ボ弁はこのサーボ弁開度指令値によつその開度が調整さ
れる。これによって油圧シリンダに送られる油圧が制御
されて、圧下ロールの位置決め制御が行われる。
During the rolling cycle by the mandrel mill, a target position command value of a hydraulic cylinder (not shown) and a detected position value of the hydraulic cylinder (for example, the position of the hydraulic cylinder is detected by a position sensor) are given to the subtractor 41, and the target position is Subtraction is performed between the command value and the detected position value. As a result, the subtracter 41 outputs the deviation Δε. The deviation Δε is gain compensated by the proportional gain compensator 42 and given to a servo valve (not shown) as a control amount (servo valve opening command value), and the servo valve adjusts its opening according to this servo valve opening command value. degree is adjusted. As a result, the hydraulic pressure sent to the hydraulic cylinder is controlled, and the positioning of the reduction roll is controlled.

(発明が解決しようとする課題) ところで、従来の圧下制御装置の場合、単にフィードバ
ック制御によって制御しているにすぎないから、油温の
変化よるサーボ弁の開度ずれ(サーボ弁の中立(NUL
L)位置ずれ)、比例ゲイン補償器のドリフト、及びマ
ンドレルミルのフリクション等による外乱の影響により
油圧シリンダの位置制御において所謂定常位置偏差(定
常偏差)が生じてしまう。つまり、第5図に示すように
実際の油圧シリンダ位置(Aで示す)と目標位置指令値
(Bで示す)との間に常に定常位置偏差分の単離がある
(Problem to be Solved by the Invention) By the way, in the case of the conventional pressure reduction control device, since the control is simply performed by feedback control, the deviation in the opening of the servo valve due to changes in oil temperature (neutral (NUL) of the servo valve)
L) Positional deviation), drift of the proportional gain compensator, and disturbances such as friction of the mandrel mill cause a so-called steady position deviation (steady deviation) in the position control of the hydraulic cylinder. That is, as shown in FIG. 5, there is always an isolation between the actual hydraulic cylinder position (indicated by A) and the target position command value (indicated by B) by the amount of the steady position deviation.

このように、従来の圧下制御装置では、位置検出値を目
標位置指令値に精度よく制御することができない。この
ため、圧延素管を精度よく圧延することができず、製品
の品質の低下および歩留ま・りの低下が発生するという
問題点がある。特に、油圧シリンダの位置精度が悪いと
、圧延素管の管端部で、管の破れ或いは盛り上がり等が
発生し、製品として使用できなくなってしまう。
As described above, the conventional lowering control device cannot precisely control the position detection value to the target position command value. For this reason, there is a problem that the rolled blank pipe cannot be rolled with high accuracy, resulting in a decrease in product quality and a decrease in yield. In particular, if the positional accuracy of the hydraulic cylinder is poor, tearing or swelling of the tube may occur at the end of the rolled blank tube, making the tube unusable as a product.

本発明の目的は圧延サイクルにおいて極めて精度よく油
圧シリンダの位置を目標位置指令値に制御することので
きる圧延機用圧下fI4m装置を提供することにある。
An object of the present invention is to provide a rolling mill fI4m device that can control the position of a hydraulic cylinder to a target position command value with extremely high accuracy during a rolling cycle.

(課題を解決するための手段) 本発明によれば、圧延ライン中に配置された複数の圧下
ロールの位置決めを油圧シリンダで行い、圧延工程部及
び非圧延工程部を有する圧延サイクルにおいて前記圧下
ロールで材料の圧延を行う圧延機に用いられ、予め設定
された目標位置と前記油圧シリンダの実位置とを比較し
て前記油圧シリンダをフィードバック制御する圧下制御
装置において、前記非圧延工程部で前記目標位置と前記
実位置との定常偏差をサンプリングするスイッチ手段と
、前記定常偏差を受け、該定常偏差を予め定められた量
だけ補正して補正定常偏差を求める定常偏差補正手段と
を有し、前記圧延工程部で前記補正定常偏差に基づいて
前記油圧シリンダを制御するようにしたことを特徴とす
る圧延機用圧下制御装置が得られる。
(Means for Solving the Problems) According to the present invention, a plurality of reduction rolls arranged in a rolling line are positioned using hydraulic cylinders, and the reduction rolls are positioned in a rolling cycle having a rolling process section and a non-rolling process section. In a rolling control device that is used in a rolling mill that rolls a material in a rolling machine and performs feedback control of the hydraulic cylinder by comparing a preset target position and an actual position of the hydraulic cylinder, a switch means for sampling a steady deviation between a position and the actual position; and a steady deviation correcting means for receiving the steady deviation and correcting the steady deviation by a predetermined amount to obtain a corrected steady deviation; A reduction control device for a rolling mill is obtained, characterized in that the hydraulic cylinder is controlled in the rolling process section based on the corrected steady-state deviation.

(作用) 本発明では、圧延サイクル毎に非圧延工程部において、
上記の定常偏差をサンプリングする。そして、この定常
偏差を予め定められた量だけ補正して補正定常偏差を求
め、圧延サイクルにおいて、この補正定常偏差に基づい
て油圧シリンダの位置制御を行う。
(Function) In the present invention, in the non-rolling process section in each rolling cycle,
Sample the steady-state deviation above. Then, this steady-state deviation is corrected by a predetermined amount to obtain a corrected steady-state deviation, and the position of the hydraulic cylinder is controlled in the rolling cycle based on this corrected steady-state deviation.

上述のように、予め定常偏差を補償できるように定常偏
差を補正して補正定常偏差を求め、圧延工程部において
、この補正定常偏差に基づいて油圧シリンダの位置制御
を行っているから、圧延サイクルにおいて発生する定常
偏差を実質的に相殺することができ、油圧シリンダの位
置を目標位置指令値に極めて精度よく制御することので
きる。
As mentioned above, the steady-state deviation is corrected in advance to obtain a corrected steady-state deviation so that the steady-state deviation can be compensated for, and the position of the hydraulic cylinder is controlled based on this corrected steady-state deviation in the rolling process section, so the rolling cycle It is possible to substantially cancel out the steady-state deviation that occurs in the position of the hydraulic cylinder, and to control the position of the hydraulic cylinder to the target position command value with extremely high accuracy.

(実施例) 以下本発明について実施例によって説明する。(Example) The present invention will be explained below with reference to Examples.

第1図を参照して、本発明による油圧圧下制御装置は偏
差算出器(減算器)11、定常偏差補償回路12、及び
比例ゲイン補償器13を備えており、定常偏差補償回路
12はスイッチ12a及び定常偏差補正部12bを有し
ている。
Referring to FIG. 1, the hydraulic pressure reduction control device according to the present invention includes a deviation calculator (subtractor) 11, a steady deviation compensation circuit 12, and a proportional gain compensator 13, and the steady deviation compensation circuit 12 is equipped with a switch 12a. and a steady-state deviation correction section 12b.

第2図も参照して、マンドレルミルによる圧延サイクル
は非圧延工程部22及び非圧延工程部22に続く圧延工
程部21を備えており、圧延工程部21は図示のように
待機動作部21a1圧延素管の先端部を圧延する先端動
作部21b1定常圧延部21C1及び圧延素管の後端部
を圧延する後端動作部21dを有している。マンドレル
ミルでは、非圧延工程部22が終わると、圧延素管が圧
延ローラにかみ込まれる直前に待機動作部21aが、か
み込みのタイミングで先端動作部21bが行われ、その
後、定常圧延部21cに移行する。そして、圧延素管が
抜ける直前に後端動作部21dが行われて、1圧延サイ
クルが終了する。このようにして、順次複数の圧延素管
に対して圧延サイクル繰り返される。
Referring also to FIG. 2, the rolling cycle by the mandrel mill includes a non-rolling process section 22 and a rolling process section 21 following the non-rolling process section 22, and the rolling process section 21 has a standby operation section 21a1 rolling as shown in the figure. It has a tip operating section 21b1 that rolls the tip of the raw tube, a steady rolling section 21C1, and a rear end operating section 21d that rolls the rear end of the rolled tube. In the mandrel mill, when the non-rolling process section 22 is finished, the standby operation section 21a is carried out just before the rolled raw pipe is bitten by the rolling rollers, the tip operation section 21b is carried out at the timing of biting, and then the steady rolling section 21c is carried out. to move to. Then, just before the rolled blank pipe is removed, the rear end operation section 21d is performed, and one rolling cycle is completed. In this way, the rolling cycle is repeated for a plurality of rolled raw pipes in sequence.

第1図に示すように、減算器11には油圧シリンダ(図
示せず)の目標位置指令値及び油圧シリンダの位置検出
値(例えば、位置センサで油圧シリンダの位置を検出す
る)が入力され、ここで、偏差が求められる。
As shown in FIG. 1, a target position command value of a hydraulic cylinder (not shown) and a detected position value of the hydraulic cylinder (for example, the position of the hydraulic cylinder is detected by a position sensor) are input to the subtracter 11. Here, the deviation is determined.

非圧延工程部22においては、この偏差が比例ゲイン補
償器13に与えられ、ここで、ゲイン補償を受けて制御
偏差(サーボ弁開度指令値)としてサーボ弁(図示せず
)に入力される。そして、サーボ弁はこの制御偏差に応
じて弁開度が調節され、サーボ弁を介して油圧が油圧シ
リンダに与えられる。これによって油圧シリンダは圧延
ロールの位置決めを行う。
In the non-rolling process section 22, this deviation is given to the proportional gain compensator 13, where it receives gain compensation and is input to a servo valve (not shown) as a control deviation (servo valve opening command value). . Then, the valve opening degree of the servo valve is adjusted according to this control deviation, and hydraulic pressure is applied to the hydraulic cylinder via the servo valve. This causes the hydraulic cylinder to position the rolling rolls.

上述のようにして油圧シリンダの制御を行った際、制御
系に与えられる外乱によって位置検出値が目標位置指令
値に一致せず、位置検出値と目標位置指令値との間に常
に偏差がある状態に到達する。つまり、定常偏差が生じ
てしまう。特に、油圧シリンダをプリセットした際、上
記の外乱の影響によって定常偏差が発生してしまう。
When controlling the hydraulic cylinder as described above, the detected position value does not match the target position command value due to disturbances applied to the control system, and there is always a deviation between the detected position value and the target position command value. reach the state. In other words, a steady-state deviation occurs. In particular, when the hydraulic cylinder is preset, steady-state deviation occurs due to the influence of the above-mentioned disturbance.

そこで、非圧延工程部22の開始点でスイッチ12aを
閉じる。これによって、減算器11からの定常偏差Δε
がスイッチ12を介して定常偏差補正部12bに与えら
れる。そして、非圧延工程部22の終了点でスイッチ1
2aを開く、つまり、非圧延工程部22で2m5ec、
毎に定常偏差Δεのサンプリングを行う。
Therefore, the switch 12a is closed at the starting point of the non-rolling process section 22. As a result, the steady deviation Δε from the subtractor 11
is applied to the steady-state deviation correction section 12b via the switch 12. Then, at the end point of the non-rolling process section 22, the switch 1
2a is opened, that is, 2m5ec in the non-rolling process section 22,
The steady-state deviation Δε is sampled at each time.

定常偏差補正部12bはリミッタ121及び積分器12
2を備えている。リミッタ121には予めしきい値(例
えば、±1μm)が設定されており、リミッタ121で
は減算器11によって2m5ec、毎に出力される定常
偏差Δεを前記しきい値をリミットとして、リミット定
常偏差αを積分器122に出力する。このリミット定常
偏差αは積分器122に入力されて、積分器122で積
分されて積分値βとして出力される。なお、積分器12
2には予め定められたしきい値(例えば、±500μm
)が設定されたリミッタ(図示せず)が備えられており
、その結果、積分値βはこのしきい値に押さえられる(
例えば、±500μm)。
The steady deviation correction section 12b includes a limiter 121 and an integrator 12.
It is equipped with 2. A threshold value (for example, ±1 μm) is set in the limiter 121 in advance, and the limit steady deviation α is output to the integrator 122. This limit steady deviation α is input to an integrator 122, integrated by the integrator 122, and output as an integral value β. Note that the integrator 12
2 has a predetermined threshold value (for example, ±500 μm
) is provided with a limiter (not shown), and as a result, the integral value β is suppressed to this threshold value (
For example, ±500 μm).

圧延工程部21において、積分値βは加算器123で定
常偏差Δεと加算され、補正定常偏差γとして出力され
る。この補正定常偏差は比例ゲイン補償器13でゲイン
補償されて、補正制御偏差(補正サーボ弁開度指令値)
としてサーボ弁に与えられる。サーボ弁は補正制御偏差
に応じてその開度が調節され、補正制御偏差に応じた油
圧が油圧シリンダに加えられる。
In the rolling process section 21, the integral value β is added to the steady-state deviation Δε by an adder 123, and the result is output as a corrected steady-state deviation γ. This corrected steady deviation is gain compensated by the proportional gain compensator 13, and the corrected control deviation (corrected servo valve opening command value) is
as a servo valve. The opening degree of the servo valve is adjusted according to the correction control deviation, and hydraulic pressure corresponding to the correction control deviation is applied to the hydraulic cylinder.

その後、フィードバック制御によって、減算器11で順
次定常偏差Δεを求め、積分値βを加算して、補正定常
偏差を求め、この補正定常偏差に基づいて油圧シリンダ
をか制御する。
Thereafter, by feedback control, the subtractor 11 sequentially obtains the steady-state deviation Δε, adds the integral value β to obtain a corrected steady-state deviation, and controls the hydraulic cylinder based on this corrected steady-state deviation.

1圧延サイクルの非圧延工程部22の開始点で再びスイ
ッチ12aが閉じられ、減算器11からの定常偏差Δε
′がサンプリングされる。その後、非圧延工程部22の
終了点でスイッチ12aが開かれる。積分器122から
は定常偏差Δε′に基づいて積分値β′かを出力される
。加算器123で定常偏差Δε′と積分値β′とを加算
して補正定常偏差γ′を出力する。圧延工程部21にお
いて、補正定常偏差γ′に基づいて油圧シリンダが制御
される。
The switch 12a is closed again at the starting point of the non-rolling process section 22 of one rolling cycle, and the steady deviation Δε from the subtractor 11 is
′ is sampled. Thereafter, the switch 12a is opened at the end point of the non-rolling process section 22. The integrator 122 outputs an integral value β' based on the steady-state deviation Δε'. An adder 123 adds the steady deviation Δε' and the integral value β' to output a corrected steady deviation γ'. In the rolling process section 21, the hydraulic cylinders are controlled based on the corrected steady-state deviation γ'.

以下同様にして非圧延工程部22において、減算器11
からの定常偏差がサンプリングされて、補正定常偏差が
求められ、圧延工程部21で補正定常偏差に基づいて油
圧シリンダが制御される。
Similarly, in the non-rolling process section 22, the subtracter 11
The steady-state deviation from the normal deviation is sampled to obtain a corrected steady-state deviation, and the hydraulic cylinder is controlled in the rolling process section 21 based on the corrected steady-state deviation.

なお、非圧延工程部22は通常の場合、制御同期が2m
5ec、毎に存在するから、2m5ec毎にサンプリン
グが行われることになる。また、例えば、積分器122
のリミッタに入力される値が±500μmを越えた場合
には、アラームとして定常偏差異常信号が出力されるよ
うにしてもよい。
In addition, in the non-rolling process section 22, control synchronization is normally 2 m.
Since it exists every 5ec, sampling is performed every 2m5ec. Also, for example, the integrator 122
If the value input to the limiter exceeds ±500 μm, a steady deviation abnormal signal may be output as an alarm.

上述のように、圧延工程部21では補正定常偏差に基づ
いて油圧シリンダを制御しているから、実質的に定常偏
差をゼロ付近に押さえることがでる。つまり、第3図に
示すように油圧シリンダの位置(Cで示す)を目標位置
(Dで示す)に精度良く追従させることができる。また
、非圧延工程部22において外乱等が変化しても、つま
り、定常偏差が変化しても定常偏差に基づいて補正定常
偏差を求めているから、定常偏差を精度よく補正するこ
とができ、しかも、定常偏差を非圧延時に行っているか
ら、圧延時の動作の影響を受けず、真の定常偏差をとら
えることができる。
As described above, since the hydraulic cylinders are controlled in the rolling process section 21 based on the corrected steady-state deviation, the steady-state deviation can be substantially suppressed to near zero. That is, as shown in FIG. 3, the position of the hydraulic cylinder (indicated by C) can be made to accurately follow the target position (indicated by D). Furthermore, even if the disturbance or the like changes in the non-rolling process section 22, that is, even if the steady deviation changes, the corrected steady deviation is calculated based on the steady deviation, so the steady deviation can be corrected with high accuracy. Moreover, since the steady-state deviation is measured during non-rolling, it is possible to capture the true steady-state deviation without being affected by the operation during rolling.

上述の実施例では、マンドレルミルに適用した場合につ
いて説明したが、圧延ロール及び油圧シリンダを備える
圧延機に同様にして適用できる。
In the above-described embodiments, the case where the present invention is applied to a mandrel mill has been described, but the present invention can be similarly applied to a rolling mill equipped with a rolling roll and a hydraulic cylinder.

(発明の効果) 以上説明したように、本発明では、予め定常偏差を補償
できるように定常偏差を補正して補正定常偏差を求め、
圧延工程部において、この補正定常偏差に基づいて油圧
シリンダの位置制御を行っているから、圧延サイクルに
おいて発生する定常偏差を実質的に相殺することができ
、油圧シリンダの位置を目標位置指令値に極めて精度よ
く制御することのできるという効果がある。
(Effects of the Invention) As explained above, in the present invention, the steady deviation is corrected in advance so that the steady deviation can be compensated for, and the corrected steady deviation is obtained.
In the rolling process section, the position of the hydraulic cylinder is controlled based on this corrected steady-state deviation, so the steady-state deviation that occurs during the rolling cycle can be substantially canceled out, and the position of the hydraulic cylinder can be adjusted to the target position command value. This has the effect of allowing extremely precise control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による油圧圧下制御装置の一実施例を示
すブロック図、第2図は圧延サイクルを説明するための
図、第3図は本発明による油圧圧下制御装置を用いた際
における油圧シリンダの位置と目標位置との関係を示す
図、第4図は従来の油圧圧下制御装置の一例を示すブロ
ック図、第5図は従来の油圧圧下制御装置を用いた際に
おける油圧シリンダの位置と目標位置との関係を示す図
である。 11・・・減算器、12・・・定常偏差補償回路、13
・・・比例ゲイン補償器。
Fig. 1 is a block diagram showing an embodiment of the hydraulic pressure reduction control device according to the present invention, Fig. 2 is a diagram for explaining a rolling cycle, and Fig. 3 is a diagram showing the hydraulic pressure when using the hydraulic pressure reduction control device according to the present invention. A diagram showing the relationship between the position of the cylinder and the target position, Fig. 4 is a block diagram showing an example of a conventional hydraulic pressure reduction control device, and Fig. 5 shows the position of the hydraulic cylinder when using the conventional hydraulic pressure reduction control device. It is a figure showing the relationship with a target position. 11... Subtractor, 12... Steady-state deviation compensation circuit, 13
...Proportional gain compensator.

Claims (1)

【特許請求の範囲】[Claims] 1、圧延ライン中に配置された複数の圧下ロールの位置
決めを油圧シリンダで行い、圧延工程部及び非圧延工程
部を有する圧延サイクルにおいて前記圧下ロールで材料
の圧延を行う圧延機に用いられ、予め設定された目標位
置と前記油圧シリンダの実位置とを比較して前記油圧シ
リンダをフィードバック制御する圧下制御装置において
、前記非圧延工程部で前記目標位置と前記実位置との定
常偏差をサンプリングするスイッチ手段と、前記定常偏
差を受け、該定常偏差を予め定められた量だけ補正して
補正定常偏差を求める定常偏差補正手段とを有し、前記
圧延工程部で前記補正定常偏差に基づいて前記油圧シリ
ンダを制御するようにしたことを特徴とする圧延機用圧
下制御装置。
1. A hydraulic cylinder is used to position a plurality of reduction rolls arranged in a rolling line, and used in a rolling mill that rolls material with the reduction rolls in a rolling cycle having a rolling process section and a non-rolling process section. In a rolling control device that performs feedback control of the hydraulic cylinder by comparing a set target position and the actual position of the hydraulic cylinder, a switch that samples a steady deviation between the target position and the actual position in the non-rolling process section. and steady-state deviation correcting means for receiving the steady-state deviation and correcting the steady-state deviation by a predetermined amount to obtain a corrected steady-state deviation; A reduction control device for a rolling mill, characterized in that it controls a cylinder.
JP1223095A 1989-08-31 1989-08-31 Roll-down control device for rolling mill Expired - Lifetime JP2646396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223095A JP2646396B2 (en) 1989-08-31 1989-08-31 Roll-down control device for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223095A JP2646396B2 (en) 1989-08-31 1989-08-31 Roll-down control device for rolling mill

Publications (2)

Publication Number Publication Date
JPH0386303A true JPH0386303A (en) 1991-04-11
JP2646396B2 JP2646396B2 (en) 1997-08-27

Family

ID=16792755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223095A Expired - Lifetime JP2646396B2 (en) 1989-08-31 1989-08-31 Roll-down control device for rolling mill

Country Status (1)

Country Link
JP (1) JP2646396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447317A (en) * 2013-09-05 2013-12-18 太原重工股份有限公司 Hydraulic control system for upper roll balancing device of rotary forging mill
JP2019166531A (en) * 2018-03-22 2019-10-03 日鉄エンジニアリング株式会社 Rolling machine and manufacturing method of rolled steel material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103447317A (en) * 2013-09-05 2013-12-18 太原重工股份有限公司 Hydraulic control system for upper roll balancing device of rotary forging mill
JP2019166531A (en) * 2018-03-22 2019-10-03 日鉄エンジニアリング株式会社 Rolling machine and manufacturing method of rolled steel material

Also Published As

Publication number Publication date
JP2646396B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US6866729B2 (en) Method for controlling and/or regulating the cooling stretch of a hot strip rolling mill for rolling metal strip, and corresponding device
US5461894A (en) Control system for a hot and/or cold rolling process
CN105834225A (en) Thickness controlling method for flying gauge changing rolling of cold tandem mill and controlling system for cold tandem mill
JPH0386303A (en) Rolling reduction control device for rolling mill
JP6781411B2 (en) Metal plate thickness control method and equipment, and metal plate manufacturing method and equipment
JPS623818A (en) Rolling control method
Hwang et al. Design of a robust thickness controller for a single-stand cold rolling mill
JPH09276915A (en) Dynamic setup method in continuous rolling mill
JP3327236B2 (en) Cluster rolling mill and plate shape control method
JPS5890308A (en) Method and device for controlling shape of rolled material
JPH0128642B2 (en)
JP2005262233A (en) Zero-adjustment method of roller leveler
JPH02117709A (en) Method for controlling sheet thickness in rolling mill
JPH1085812A (en) Method for zero regulation in leveling of hot roll finish rolling mill
JPH07204722A (en) Method for controlling strip position by automatic level adjusting device
JPH06238313A (en) Method for rolling thick plate material
JPH0380562B2 (en)
JPH0144403B2 (en)
JPS5570408A (en) Roll draft controller
SU770587A1 (en) Apparatus for adjusting rolling roll parallelism
JPS5744413A (en) Controlling method for rolling work by reeling mill
JPS59191511A (en) Device for controlling plate thickness of rolling mill
JPH05269516A (en) Method for controlling shape in rolling of thick plate
JPH03291109A (en) Control method of outside diameter of rolled tube
JPH0475714A (en) Method for controlling top end sheet thickness of hot continuous rolling mill