JPH0385761A - Manufacture of semiconductor storage device - Google Patents

Manufacture of semiconductor storage device

Info

Publication number
JPH0385761A
JPH0385761A JP1223985A JP22398589A JPH0385761A JP H0385761 A JPH0385761 A JP H0385761A JP 1223985 A JP1223985 A JP 1223985A JP 22398589 A JP22398589 A JP 22398589A JP H0385761 A JPH0385761 A JP H0385761A
Authority
JP
Japan
Prior art keywords
insulating film
epitaxial layer
conductivity type
electrode
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1223985A
Other languages
Japanese (ja)
Inventor
Yoshihisa Nogami
野上 義久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1223985A priority Critical patent/JPH0385761A/en
Publication of JPH0385761A publication Critical patent/JPH0385761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To form an embedded contact without using a mask and to do the coupling between the embedded contact and a switching transistor in a self- alignment manner by removing the part formed between a specified position and the surface of an epitaxial layer out of an insulating film, and embedding a second conductivity type of electrode material therein, and then diffusing impurities into an epitaxial layer through a part from which the insulating film is removed from here. CONSTITUTION:A hole is opened in an Si3N4 film, and a trench 15 is digged, and an insulating film 16 is formed at the surface of the trench 15. Next, polysilicon doped into N<+> is deposited in the trench 15, and is etched back so as to form an embedded electrode lower part 17. Next, the part, lying above the surface of the polysilicon, of the insulating film 16 is eliminated, and polysilicon doped into N<+> is deposited again and is etched back so as to flatten the surface, whereby an embedded electrode upper part 19 is formed. Impurities diffuse sideward from on the embedded electrode, and an embedded contact 18 is formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体記憶装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor memory device.

[従来の技術] HO3[1RAH(メタル・オキサイド・七兆コンダク
タ・ダイナミック・ランタム・アクセス・メモリ)は集
積密度が3年で4倍になると言われるように年々微細化
が進んでいる。しかし、メモリセルの蓄積電荷にα線等
のノイズに対して十分なマージンを持たせる必要が有る
ため、メモリセルの専有面積をある程度以下に減少させ
ることは困難である。この問題に対処するためにメモリ
セルの3次元化が図られ、トレンチキャパシタセルやス
タックトキャパシタセ゛ル構造が開発されてきた。トレ
ンチキャパシタセル構造においては、同じ容量を有する
従来の2次元構造のメモリセルに比べてα線によるソフ
トエラーが生じやすいという欠点があり、この点から電
荷を基板表面ではなくトレンチ内の埋込み電極に蓄積す
るようにしたBSE(ベリド・ストレージ・エレクトロ
ード)セルかIEDH1985に記載されている。第3
図(a)はこのBSEセルの平面図であり、第3図(b
)は第3図(a)のBB断面図である。図中、50はr
)+基板、52はI)−エピタキシャル層、53は活性
領域、56は絶縁膜、57はN+ポリシリコンからなる
埋込み電極、58は埋込みコンタクト、62はスイッチ
ングトランジスタのトランスファゲート電極、63はス
イッチングトランジスタのドレイン、68は該トランジ
スタのソース、64は眉間絶縁膜、65はコンタクトポ
ール、66はAI(アルミニウム)からなるビットライ
ンである。
[Prior Art] HO3 [1RAH (Metal Oxide 7 Trillion Conductor Dynamic Random Access Memory) is being miniaturized year by year, so that the integration density is said to quadruple every three years. However, it is difficult to reduce the area occupied by the memory cell below a certain level because it is necessary to provide a sufficient margin for the accumulated charges in the memory cell against noise such as alpha rays. To address this problem, memory cells have been made three-dimensional, and trench capacitor cell and stacked capacitor cell structures have been developed. The trench capacitor cell structure has the disadvantage that it is more susceptible to soft errors caused by alpha rays than conventional two-dimensional structure memory cells with the same capacity. A BSE (Buried Storage Electrode) cell designed to store data is described in IEDH1985. Third
Figure (a) is a plan view of this BSE cell, and Figure 3 (b) is a plan view of this BSE cell.
) is a BB sectional view of FIG. 3(a). In the figure, 50 is r
) + substrate, 52 is an I) - epitaxial layer, 53 is an active region, 56 is an insulating film, 57 is a buried electrode made of N+ polysilicon, 58 is a buried contact, 62 is a transfer gate electrode of a switching transistor, 63 is a switching transistor , 68 is the source of the transistor, 64 is an insulating film between the eyebrows, 65 is a contact pole, and 66 is a bit line made of AI (aluminum).

[発明が解決しようとする課題J 上記のBSEセルを製造する際、埋込み電極57とスイ
ッチングトランジスタのソース68とを接続するための
埋込みコンタクト58は埋込み電@57を構成するN+
ポリシリコンからの不純物のP+基板50下方への拡散
により形成される。しかし、このためには埋込みコンタ
クト58の上部の酸化膜をマスクを用いて除去する必要
がある。従ってマスク合せ余裕をとるためにメモリセル
のサイズを小さくできないという問題があった。
[Problem to be Solved by the Invention J] When manufacturing the above BSE cell, the buried contact 58 for connecting the buried electrode 57 and the source 68 of the switching transistor is connected to the N+
It is formed by diffusion of impurities from polysilicon below the P+ substrate 50. However, for this purpose, it is necessary to remove the oxide film above the buried contact 58 using a mask. Therefore, there is a problem in that it is not possible to reduce the size of the memory cell in order to provide mask alignment margin.

本発明の目的は、埋込みコンタクトをマスクを用いずに
形成することが可能であり、埋込みコンタクトとスイッ
チングトランジスタとの結合が自己整合的に行われ得る
ことを特徴とする半導体記憶装置の製造方法をを提供す
ることにある。
An object of the present invention is to provide a method for manufacturing a semiconductor memory device, which is characterized in that a buried contact can be formed without using a mask, and that coupling between the buried contact and a switching transistor can be performed in a self-aligned manner. Our goal is to provide the following.

1課題を解決するための手段] 本発明の前記目的は、第1の導電型の基板の表面上に形
成されている第1の導電型のエピタキシャル層の表面に
前記基板内部に達する溝を形成し、該消の内面に絶縁膜
を形成した後に該清白に第2の導電型の電極材を前記溝
の底部から前記基板の表面と前記エピタキシャル層の表
面との間の所定の位置まで埋め込み、周囲に第2の導電
型の領域が形成されるように、前記絶縁膜のうち前記所
定位置と前記エピタキシャル層の表面との間に形成され
ている部分を除去した後に前記所定位置から前記エピタ
キシャル層の表面まで前記第2の導電型の電極材を更に
埋め込み、前記第2の導電型の電極材から前記絶縁膜が
除去された部分を通して前記エピタキシャル層中へ不純
物を拡散し、前記溝の周囲に第2の導電型の領域を形成
することを特徴とする半導体記憶装置の製造方法によっ
て達成される。
1. Means for Solving the Problem] The object of the present invention is to form a groove reaching the inside of the substrate on the surface of the epitaxial layer of the first conductivity type formed on the surface of the substrate of the first conductivity type. and after forming an insulating film on the inner surface of the eraser, burying an electrode material of the second conductivity type from the bottom of the groove to a predetermined position between the surface of the substrate and the surface of the epitaxial layer, The epitaxial layer is removed from the predetermined position after removing a portion of the insulating film that is formed between the predetermined position and the surface of the epitaxial layer so that a region of the second conductivity type is formed around the predetermined position. further embed the second conductive type electrode material up to the surface of the second conductive type electrode material, diffuse impurities into the epitaxial layer through the portion where the insulating film is removed from the second conductive type electrode material, and diffuse impurities into the epitaxial layer around the groove. This is achieved by a method of manufacturing a semiconductor memory device characterized by forming a region of the second conductivity type.

[実施例] 次に本発明の実施例について説明する。[Example] Next, examples of the present invention will be described.

第1図(a)は本発明に係る半導体記憶装置のメモリセ
ルの平面図、第1図(b)は第1図(a)のメモリセル
の^A断面を示ず図である。図中、10はP1基板、1
2はP−エピタキシャル層、13は活性領域、16は酸
化膜、17はN+ポリシリコンからなる埋込み電極上部
、18は埋込みコンタクト、19はN1ポリシリコンか
らなる埋込み電極上部、20は酸化膜、22はトランス
ファゲート電極、23はドレイン、28はソース、25
はコンタクトポール、26はA1からなるビットライン
である。P+基板10は電極としても使用されるので、
lXlO19個cm’程度の不純物濃度が必要である。
FIG. 1(a) is a plan view of a memory cell of a semiconductor memory device according to the present invention, and FIG. 1(b) is a cross-sectional view of the memory cell of FIG. 1(a), without showing the ^A cross section. In the figure, 10 is the P1 substrate, 1
2 is a P- epitaxial layer, 13 is an active region, 16 is an oxide film, 17 is an upper part of a buried electrode made of N+ polysilicon, 18 is a buried contact, 19 is an upper part of a buried electrode made of N1 polysilicon, 20 is an oxide film, 22 is a transfer gate electrode, 23 is a drain, 28 is a source, 25
is a contact pole, and 26 is a bit line consisting of A1. Since the P+ substrate 10 is also used as an electrode,
An impurity concentration of about 19 lXlO cm' is required.

エピタキシャル層12の不純物濃度は通常のLSI(大
規模集積回路)を形成するバルクの濃度1×1015個
c]13程度であり、また、その厚さは、素子の動作に
支障のない限り、できるだけ薄い方が良く、通常1.5
〜2゜0ミクロンである。
The impurity concentration of the epitaxial layer 12 is about 1×10 15 impurities (c)13, which is the bulk concentration for forming a normal LSI (Large Scale Integrated Circuit), and its thickness is as small as possible as long as it does not interfere with the operation of the device. The thinner the better, usually 1.5
~2°0 micron.

次に、この半導体記憶装置を製造する手順を第2図(a
)から第2図(g)を用いて説明する。
Next, the procedure for manufacturing this semiconductor memory device is shown in FIG.
) to FIG. 2(g).

先ず、エピタキシャル層12の表面に選択酸化により、
活性領域13を形成し、この上にSi3N4膜14を例
えばtpcvo(低圧化学気相成長)法により堆積する
(第2図(a))。続いてこのSi3N4膜を開孔し涌
15を掘り、該渭15の表面に例えば酸化により、絶縁
膜16を形成する。清のP+基板10内の深さは該基板
との間で適当な容量を得るために3ミクロン程度にする
(第2図(b))。次いでN+にドープされたポリシリ
コンを湧15内に埋込み、エッチバックして埋込み電極
下部17を形成する。この時、ポリシリコンをオーバー
エッチして該ポリシリコンの表面が活性領域13より少
し低くなるようにするく第2図(C)〉。次いで絶縁膜
16のポリシリコン17の表面より上方にある部分を削
除し、再度N+にドープされたポリシリコンを埋込みエ
ッチバックして表面を平坦にし、埋込み電極上部19を
形成する。該埋込み電極上部19から不純物が側方に拡
散し、埋込みコンタクト18が形成される(第2図(d
))。次いでSi3N4Mをマスクとして酸化を行い、
埋込み電極土部19の表面に酸化膜20を形成した後、
Si3N4膜、及び活性領域13を構成するS 102
膜を除去する(第2図(O))。次いで酸化により、ゲ
ート酸化膜21を形成し、ポリシリコンを堆積し、燐拡
散を行った後にパターニングしてトランスファゲート電
極22を形成する。この時、同時に図示しない周辺回路
のトランジスタも作られる(第2図(f))。次いでイ
オン注入により、ソース28及びドレイン23を形成し
、層間絶縁膜24を堆積する。そしてコンタクトホール
25を開孔し、AIからなるビットライン26及び図示
しない配線を形成し、パシベーション膜27を堆積する
(第2図(g))。
First, the surface of the epitaxial layer 12 is selectively oxidized.
An active region 13 is formed, and a Si3N4 film 14 is deposited thereon by, for example, TPCVO (low pressure chemical vapor deposition) (FIG. 2(a)). Subsequently, a hole is opened in this Si3N4 film to form a trough 15, and an insulating film 16 is formed on the surface of the trough 15 by, for example, oxidation. The depth inside the clear P+ substrate 10 is set to about 3 microns in order to obtain an appropriate capacitance between the substrate and the substrate (FIG. 2(b)). Next, N+ doped polysilicon is buried in the well 15 and etched back to form a buried electrode lower part 17. At this time, the polysilicon is over-etched so that the surface of the polysilicon is slightly lower than the active region 13 (FIG. 2C). Next, a portion of the insulating film 16 above the surface of the polysilicon 17 is removed, and polysilicon doped with N+ is buried again and etched back to flatten the surface and form a buried electrode upper part 19. The impurity diffuses laterally from the buried electrode upper part 19 to form a buried contact 18 (see FIG. 2(d)).
)). Next, oxidation is performed using Si3N4M as a mask.
After forming the oxide film 20 on the surface of the buried electrode soil portion 19,
Si3N4 film and S 102 forming the active region 13
The film is removed (FIG. 2(O)). Next, a gate oxide film 21 is formed by oxidation, polysilicon is deposited, phosphorus is diffused, and then patterned to form a transfer gate electrode 22. At this time, transistors for peripheral circuits (not shown) are also fabricated at the same time (FIG. 2(f)). Next, a source 28 and a drain 23 are formed by ion implantation, and an interlayer insulating film 24 is deposited. Then, a contact hole 25 is opened, a bit line 26 made of AI and wiring (not shown) are formed, and a passivation film 27 is deposited (FIG. 2(g)).

上述の実施例では絶縁膜16として酸化膜(SiO膜)
を用いたが、これをS i O2/ S i N /5
502の多層構造、あるいは高誘電率の絶縁膜としても
良い。また、トランスファゲート電極として、WSi 
 やM o S i2のような高融点金属シリサイド及
びこれらのポリサイド等を用いることが可能である。
In the above embodiment, an oxide film (SiO film) is used as the insulating film 16.
was used, but this was converted into S i O2/ S i N /5
A multilayer structure of 502 or a high dielectric constant insulating film may be used. In addition, as a transfer gate electrode, WSi
It is possible to use high melting point metal silicides such as or M o Si2, polycides thereof, and the like.

[発明の効果] 本発明の半導体記憶装置の製造方法においては、埋込み
コンタクトをパターニングマスクを用いずに形成するこ
とが可能であり、埋込みコンタクトとスイッチングトラ
ンジスタとの結合が自己整合的に形成されるので、メモ
リセルのサイズを縮小することが可能であり、また、製
造工程が短縮されることにより、コストが低減される。
[Effects of the Invention] In the method for manufacturing a semiconductor memory device of the present invention, it is possible to form a buried contact without using a patterning mask, and the connection between the buried contact and the switching transistor is formed in a self-aligned manner. Therefore, it is possible to reduce the size of the memory cell, and the manufacturing process is shortened, thereby reducing costs.

また、埋込み電極がエピタキシャル層から突出しておら
ず、平坦であるのでワードラインを形成することが容易
に行なえる。
Further, since the buried electrode does not protrude from the epitaxial layer and is flat, word lines can be easily formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)は本発明に係る半導体記憶装置
のメモリセルの平面図及び断面図、第2図(a)から第
2図(0は本発明の半導体記憶装置の製造工程の説明図
、第3図(a)及び第3図(b)は従来のBSFセルの
平面図及び断面図である。 10.50・・・P+基板、12.52・・・P−エピ
タキシャル層、13.53・・・活性領域、14・・・
Si3N4膜、15・・・消、16,20.56・・・
酸化膜、17・・・埋込み電極下部、19・・・埋込み
電極上部、18.58・・・埋込みコンタクト、57・
・・埋込み電極、21・・・ゲート酸化膜、22’、6
2・・・1〜ランスフアゲート電極、23.63・・・
ドレイン、28,68・・・ソース、24.64・・・
層間絶縁膜、25.65・・・コンタクトホール、26
.66・・・ビットライン、27・・・パシベーション
膜。
FIGS. 1(a) and (b) are a plan view and a cross-sectional view of a memory cell of a semiconductor memory device according to the present invention, and FIGS. 10.50...P+ substrate, 12.52...P- epitaxial layer. , 13.53...active region, 14...
Si3N4 film, 15... erase, 16, 20.56...
Oxide film, 17... Buried electrode lower part, 19... Buried electrode upper part, 18.58... Buried contact, 57.
...Buried electrode, 21...Gate oxide film, 22', 6
2...1~lanspher gate electrode, 23.63...
Drain, 28,68... Source, 24.64...
Interlayer insulating film, 25.65... Contact hole, 26
.. 66... Bit line, 27... Passivation film.

Claims (1)

【特許請求の範囲】[Claims] 第1の導電型の基板の表面上に形成されている第1の導
電型のエピタキシャル層の表面に前記基板内部に達する
溝を形成し、該溝の内面に絶縁膜を形成した後に該溝内
に第2の導電型の電極材を前記溝の底部から前記基板の
表面と前記エピタキシャル層の表面との間の所定の位置
まで埋め込み、周囲に第2の導電型の領域が形成される
ように、前記絶縁膜のうち前記所定位置と前記エピタキ
シャル層の表面との間に形成されている部分を除去した
後に前記所定位置から前記エピタキシャル層の表面まで
前記第2の導電型の電極材を更に埋め込み、前記第2の
導電型の電極材から前記絶縁膜が除去された部分を通し
て前記エピタキシャル層中へ不純物を拡散し、前記溝の
周囲に第2の導電型の領域を形成することを特徴とする
半導体記憶装置の製造方法。
A groove reaching the inside of the substrate is formed on the surface of the epitaxial layer of the first conductivity type formed on the surface of the substrate of the first conductivity type, and an insulating film is formed on the inner surface of the groove. burying an electrode material of a second conductivity type from the bottom of the groove to a predetermined position between the surface of the substrate and the surface of the epitaxial layer so that a region of the second conductivity type is formed around the bottom of the groove; , after removing a portion of the insulating film between the predetermined position and the surface of the epitaxial layer, further embedding the second conductivity type electrode material from the predetermined position to the surface of the epitaxial layer; , an impurity is diffused into the epitaxial layer through a portion where the insulating film is removed from the electrode material of the second conductivity type to form a region of the second conductivity type around the groove. A method for manufacturing a semiconductor memory device.
JP1223985A 1989-08-30 1989-08-30 Manufacture of semiconductor storage device Pending JPH0385761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1223985A JPH0385761A (en) 1989-08-30 1989-08-30 Manufacture of semiconductor storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1223985A JPH0385761A (en) 1989-08-30 1989-08-30 Manufacture of semiconductor storage device

Publications (1)

Publication Number Publication Date
JPH0385761A true JPH0385761A (en) 1991-04-10

Family

ID=16806774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1223985A Pending JPH0385761A (en) 1989-08-30 1989-08-30 Manufacture of semiconductor storage device

Country Status (1)

Country Link
JP (1) JPH0385761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656655A2 (en) * 1993-12-03 1995-06-07 International Business Machines Corporation A self-aligned buried strap for trench type DRAM cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656655A2 (en) * 1993-12-03 1995-06-07 International Business Machines Corporation A self-aligned buried strap for trench type DRAM cells
EP0656655A3 (en) * 1993-12-03 1998-07-29 International Business Machines Corporation A self-aligned buried strap for trench type DRAM cells

Similar Documents

Publication Publication Date Title
JP2673952B2 (en) Memory cell manufacturing method
US5023683A (en) Semiconductor memory device with pillar-shaped insulating film
JP2906807B2 (en) Semiconductor memory cell and manufacturing method thereof
JPH06169069A (en) Semiconductor memory device and its manufacture
JPS61280654A (en) Vertical dram cell and making thereof
EP0334927A1 (en) Integrated circuit trench cell
US5523542A (en) Method for making dynamic random access memory cell capacitor
TW473996B (en) Semiconductor device and method for manufacturing the same
JP2002222873A (en) Improved vertical mosfet
KR0151197B1 (en) Semconductor device &amp; its manufacturing method
KR19980063330A (en) Semiconductor device and manufacturing method
JP3222188B2 (en) Semiconductor device and manufacturing method thereof
JP3180760B2 (en) Method for manufacturing semiconductor device
JPH0385761A (en) Manufacture of semiconductor storage device
JP3489090B2 (en) Semiconductor device and manufacturing method thereof
KR100275114B1 (en) Semiconductor device having low bit line capacitance and method for forming the same
US6531361B1 (en) Fabrication method for a memory device
JP2906875B2 (en) Semiconductor memory cell and method of manufacturing the same
JPS6240765A (en) Read-only semiconductor memory and manufacture thereof
JP2511852B2 (en) Method for manufacturing semiconductor device
JP2583123B2 (en) Method of forming memory cell
JP2740543B2 (en) Method for manufacturing semiconductor memory device
JP2827377B2 (en) Semiconductor integrated circuit
JPS616857A (en) Semiconductor memory storage
JPS62152156A (en) Semiconductor memory device