JPH03856B2 - - Google Patents

Info

Publication number
JPH03856B2
JPH03856B2 JP57153369A JP15336982A JPH03856B2 JP H03856 B2 JPH03856 B2 JP H03856B2 JP 57153369 A JP57153369 A JP 57153369A JP 15336982 A JP15336982 A JP 15336982A JP H03856 B2 JPH03856 B2 JP H03856B2
Authority
JP
Japan
Prior art keywords
dihalogeno
reaction
phenylpropionaldehyde
phenylpropionic acid
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57153369A
Other languages
Japanese (ja)
Other versions
JPS5944339A (en
Inventor
Toshio Kikuchi
Tadashi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP57153369A priority Critical patent/JPS5944339A/en
Publication of JPS5944339A publication Critical patent/JPS5944339A/en
Publication of JPH03856B2 publication Critical patent/JPH03856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は2,3−ジハロゲノ−3−フエニルプ
ロピオン酸ハライドの製造方法に関する。 2,3−ジハロゲノ−3−フエニルプロピオン
酸ハライド自体は公知の化合物であり、このもの
は主に農薬製造の中間体として有用である。 従来2,3−ジハロゲノ−3−フエニルプロピ
オン酸ハライドの製造方法としては下記()式
で表わされるように (但し式中Xはハロゲン原子である。) 2,3−ジハロゲノ−3−フエニルプロピオン
アルデヒドを光照射下にハロゲン化する光化学反
応による方法〔ドポビデイ アカデミ ナウタ
ウクラインスコイ RSRキイン シリーズB
1975巻No.4 344〜346頁(1975);Dopovidi
Akademij Nauk Ukrains'koi RSR.Kijn Ser.
Bvol.1975 No.4 P.344〜346(1975)〕が知られ
ている。しかしながらこの方法は(1)光化学反応で
あるので装置が複雑かつ高価であること、(2)光源
の電力費によりコスト高となること、(3)光源が高
電圧のため危険性が高いこと及び(4)2,3−ジハ
ロゲノ−3−フエニルプロピオンアルデヒドから
の収率が75重量%以下という低収率であることな
ど全体として工業的に有利な方法とはいえない欠
点があつた。 本発明者等は上記に鑑み2,3−ジハロゲノ−
3−フエニルプロピオン酸ハライドの工業的に有
利な製造方法について種々研究した結果、前述の
()の反応をアゾ化合物の存在下で行うと、工
業的に高収率で目的物が得られることを見出し本
発明を完成した。 即ち本発明は、2,3−ジハロゲノ−3−フエ
ニルプロピオンアルデヒドをハロゲン化して2,
3−ジハロゲノ−3−フエニルプロピオン酸ハラ
イドを製造する方法において、一般式 [式中R,R′は低級アルキル基又はシクロア
ルキル基であり、Aはシアノ基、アルコキシカル
ボニル基を示す。]で表されるアゾ化合物を、2,
3−ジハロゲノ−3−フエニルプロピオンアルデ
ヒド1モルに対して50〜500mg存在させることを
特徴とする一般式 [式中Xはハロゲン原子を示す。]で表される
2,3−ジハロゲノ−3−フエニルプロピオン酸
ハライドの製造方法である。 本発明に使用する
ハロゲン化剤としては塩素、臭素等が一般的であ
る。 存在させるアゾ化合物の具体例としては 等の一種又は二種以上を挙げることができる。就
中α,α′−アゾビスイソブチロニトリルが好適で
ある。 これらのアゾ化合物は市販品を用いても良い
し、硫酸ヒドラジン、シアン化アルカリ、ケトン
からヒドラゾ化合物を得た後酸化すれば、収率よ
く得られるものである。これは2,3−ジハロゲ
ノ−3−フエニルプロピオンアルデヒドをハロゲ
ン化する際にラジカルを遊離し触媒機能を発揮す
る。 本発明は以上の原料を用いて反応を遂行するの
であるがその実施の態様を説明すると、まず2,
3−ジハロゲノ−3−フエニルプロピオンアルデ
ヒドを不活性有機溶媒、特にハロゲン化炭化水素
に混合し、次いでアゾ化合物を存在させ、更にハ
ロゲンを徐々に加えて反応を完了する。 この際使用できる不活性有機溶媒としては四塩
化炭素、クロロホルム、2塩化エタン、トリクロ
ロエチレン、テトラクロロエチレン、メチルクロ
ロホルム、モノクロルベンゼン等を挙げることが
でき、この内特に四塩化炭素が好ましい。その使
用量については特に限定されないが通常ハロゲン
導入、撹拌条件、温度条件、触媒の均一存在等に
支障のない範囲の量を用い、そのためには2,3
−ジハロゲノ−3−フエニルプロピオンアルデヒ
ドに対して2〜5倍容量も使用すれば良い。 存在させるアゾ化合物の量としては、2,3−
ジハロゲノ−3−フエニルプロピオンアルデヒド
1モルに対して50〜500mgで充分であり、好まし
くは100〜200mgである。50mg未満では目的物の収
率が充分でなく500mgを越えると目的物の収率が
下がるだけでなく
The present invention relates to a method for producing 2,3-dihalogeno-3-phenylpropionic acid halide. 2,3-dihalogeno-3-phenylpropionic acid halide itself is a known compound, and is mainly useful as an intermediate in the production of agricultural chemicals. The conventional method for producing 2,3-dihalogeno-3-phenylpropionic acid halide is as expressed by the following formula (). (However, in the formula, X is a halogen atom.) A photochemical reaction method in which 2,3-dihalogeno-3-phenylpropionaldehyde is halogenated under light irradiation [Dopovidei Academy Nauta]
Ukraineskoy RSR Kiin Series B
Volume 1975, No. 4, pages 344-346 (1975); Dopovidi
Akademij Nauk Ukrains'koi RSR.Kijn Ser.
Bvol.1975 No.4 P.344-346 (1975)] is known. However, this method requires (1) complicated and expensive equipment because it is a photochemical reaction, (2) high cost due to the electricity cost of the light source, and (3) high risk due to the high voltage of the light source. (4) The method had drawbacks such as a low yield of 75% by weight or less from 2,3-dihalogeno-3-phenylpropionaldehyde, which made it not an industrially advantageous method overall. In view of the above, the present inventors have determined that 2,3-dihalogen
As a result of various studies on industrially advantageous production methods for 3-phenylpropionic acid halide, it was found that the desired product can be obtained industrially in high yield when the above reaction () is carried out in the presence of an azo compound. They found this and completed the present invention. That is, the present invention provides 2,3-dihalogeno-3-phenylpropionaldehyde by halogenating it.
In the method for producing 3-dihalogeno-3-phenylpropionic acid halide, the general formula [In the formula, R and R' are a lower alkyl group or a cycloalkyl group, and A represents a cyano group or an alkoxycarbonyl group. ], an azo compound represented by 2,
General formula characterized by the presence of 50 to 500 mg per mole of 3-dihalogeno-3-phenylpropionaldehyde [In the formula, X represents a halogen atom. ] This is a method for producing 2,3-dihalogeno-3-phenylpropionic acid halide. Chlorine, bromine, etc. are commonly used as halogenating agents in the present invention. Specific examples of azo compounds to be present include One or more of these can be mentioned. Among these, α,α'-azobisisobutyronitrile is preferred. These azo compounds may be commercially available, or they can be obtained in good yield by obtaining the hydrazo compound from hydrazine sulfate, alkali cyanide, or ketone and then oxidizing it. This releases radicals and exhibits a catalytic function when halogenating 2,3-dihalogeno-3-phenylpropionaldehyde. The present invention carries out the reaction using the above-mentioned raw materials, and to explain its implementation mode, first 2.
The 3-dihalogeno-3-phenylpropionaldehyde is mixed in an inert organic solvent, especially a halogenated hydrocarbon, then the azo compound is present, and further halogen is gradually added to complete the reaction. Examples of inert organic solvents that can be used in this case include carbon tetrachloride, chloroform, ethane dichloride, trichloroethylene, tetrachloroethylene, methylchloroform, and monochlorobenzene, among which carbon tetrachloride is particularly preferred. The amount used is not particularly limited, but it is usually used within a range that does not interfere with halogen introduction, stirring conditions, temperature conditions, uniform presence of catalyst, etc.
-Dihalogeno-3-phenylpropionaldehyde may be used in an amount 2 to 5 times as large. The amount of the azo compound to be present is 2,3-
50 to 500 mg is sufficient, preferably 100 to 200 mg, per mole of dihalogeno-3-phenylpropionaldehyde. If it is less than 50 mg, the yield of the target product is insufficient, and if it exceeds 500 mg, not only will the yield of the target product decrease.

【式】に代 表される不純物の量が増加し好ましくない。この
量的関係は第1図から明らかである。即ち第1図
はα,α′−アゾビスイソブチロニトリルの添加量
に対して目的物である2,3−ジクロル−3−フ
エニルプロピオン酸クロライドの収率(%)及び
不純物(
The amount of impurities represented by [Formula] increases, which is undesirable. This quantitative relationship is clear from FIG. That is, Figure 1 shows the yield (%) of the target product 2,3-dichloro-3-phenylpropionic acid chloride and the impurities (

【式】)の量をブ ロツトしたグラフであり、アゾ化合物の量が2,
3−ジハロゲノ−3−フエニルプロピオンアルデ
ヒド1モルに対して50〜500mgの範囲外では目的
物の収率が低下しかつ不純物が増加することが分
かる。 次にハロゲンを導入し徐々に反応を進行させる
のであるが、その際のハロゲン使用量は2,3−
ジハロゲノ−3−フエニルプロピオンアルデヒド
に対して当モル量か、副生ハロゲン化水素に随伴
して消費される分を考慮してやや過剰に用いれば
充分である。 又反応温度については30〜80℃が適当で好まし
くは40〜60℃である。何んとなれば30℃未満では
反応の開始が遅くなり、80℃より高温になると副
生成物が増加して収率低下を招き好ましくないか
らである。尚上記温度範囲内で反応当初は高温域
で反応を開始させ、その後低温域で反応を続ける
ことは可能で収率低下は起こらない。通常反応当
初は反応速度が遅いが、アゾ化合物のラジカルが
連鎖的に生成するにつれて速くなる。 反応時間については、反応容量、溶媒の種類、
量、触媒、温度その他の操業条件によつて一様で
はないが通常2〜6時間も反応させれば充分であ
る。 反応終了後は常法に従つて溶媒を回収し、目的
物を得る。かくして本発明によれば一般的な反応
装置でしかも経済的、安全につまり工業的に高収
率で目的物を得ることが出来る。収率の一例を挙
げれば本発明により2,3−ジハロゲノ−3−フ
エニルプロピオン酸ハライドを製造すると2,3
−ジハロゲノ−3−フエニルプロピオンアルデヒ
ドを基準にした収率は94%以上になる。尚、2,
3−ジハロゲノ−3−フエニルプロピオン酸ハラ
イドの定量は、2,3−ジハロゲノ−3−フエニ
ルプロピオン酸ハライドをメチルエステル化した
ものをガスクロマトグラフ内部標準法により定量
したものである。 以下実施例を挙げて本発明を具体的に説明す
る。 実施例 1 還流冷却器、温度計、塩素吹き込み管及び撹拌
装置を具備した四つ口フラスコに2,3−ジクロ
ル−3−フエニルプロピオンアルデヒド101.5g
(0.50モル)と四塩化炭素175g及びα,α′−アゾ
ビスイソブチロニトリル50mgを加え、塩素を徐々
に導入しながら、60℃まで昇温した。約2時間経
過後から反応が速くなり4時間経過後の塩素を全
量で42.5g(0.60モル)導入した時に反応は終了
した。 この反応液の一部を取り出し、メチルエステル
化し、ガスクロマトグラフ内部標準法により定量
した結果、メチルエステルとしての収率は94.5%
であつた。 実施例 2 実施例1と同様の装置を備えた四つ口フラスコ
に2,3−ジクロル−3−フエニルプロピオンア
ルデヒド101.5g(0.50モル)、四塩化炭素175g、
及びα,α′−アゾビスイソブチロニトリル50mgを
仕込み、塩素を徐々に導入しながら、温度を60℃
に昇温した。約2時間後、反応が急速になつた
後、45℃に下げ反応を続けた。塩素を全量で42.5
g(0.60モル)導入したとき反応が終了した。実
施例1と同様に定量した結果、メチルエステルと
しての収率は95.5%であつた。 比較例 実施例1と同様な装置を備えた四つ口フラスコ
に2,3−ジクロル−3−フエニルプロピオンア
ルデヒド101.5g(0.50モル)及び四塩化炭素175
gを仕込んだ。次いで塩素42.5gを4時間かけて
導入した。しかしながら、その反応液をガスクロ
マトグラフで定量した結果2,3−ジクロル−3
−フエニルプロピオン酸クロライドは得られなか
つた。
This is a graph blotting the amount of [Formula]), and the amount of azo compound is 2,
It can be seen that when the amount is outside the range of 50 to 500 mg per mole of 3-dihalogeno-3-phenylpropionaldehyde, the yield of the target product decreases and impurities increase. Next, halogen is introduced and the reaction proceeds gradually, but the amount of halogen used is 2,3-
It is sufficient to use it in an equimolar amount relative to dihalogeno-3-phenylpropionaldehyde, or in a slight excess in consideration of the amount consumed along with by-product hydrogen halide. The reaction temperature is suitably 30 to 80°C, preferably 40 to 60°C. This is because if the temperature is lower than 30°C, the start of the reaction will be delayed, and if the temperature is higher than 80°C, by-products will increase and the yield will decrease, which is undesirable. Note that within the above temperature range, it is possible to start the reaction at a high temperature range at the beginning of the reaction and then continue the reaction at a low temperature range without causing a decrease in yield. The reaction rate is usually slow at the beginning of the reaction, but becomes faster as the radicals of the azo compound are produced in a chain. Regarding reaction time, reaction volume, type of solvent,
Although it varies depending on the amount, catalyst, temperature and other operating conditions, it is usually sufficient to react for 2 to 6 hours. After the reaction is completed, the solvent is recovered according to a conventional method to obtain the desired product. Thus, according to the present invention, the desired product can be obtained economically and safely, that is, in industrially high yields, using a general reaction apparatus. To give an example of the yield, when 2,3-dihalogeno-3-phenylpropionic acid halide is produced according to the present invention, 2,3
The yield is 94% or more based on -dihalogeno-3-phenylpropionaldehyde. Furthermore, 2,
The quantification of 3-dihalogeno-3-phenylpropionic acid halide was determined by methyl esterification of 2,3-dihalogeno-3-phenylpropionic acid halide by gas chromatography internal standard method. The present invention will be specifically explained below with reference to Examples. Example 1 101.5 g of 2,3-dichloro-3-phenylpropionaldehyde was placed in a four-necked flask equipped with a reflux condenser, a thermometer, a chlorine injection tube, and a stirring device.
(0.50 mol), 175 g of carbon tetrachloride, and 50 mg of α,α'-azobisisobutyronitrile were added, and the temperature was raised to 60°C while gradually introducing chlorine. After about 2 hours, the reaction became faster, and the reaction was completed when 42.5 g (0.60 mol) of chlorine was introduced after 4 hours. A portion of this reaction solution was taken out, converted into methyl ester, and determined by gas chromatography internal standard method. As a result, the yield as methyl ester was 94.5%.
It was hot. Example 2 In a four-necked flask equipped with the same equipment as in Example 1, 101.5 g (0.50 mol) of 2,3-dichloro-3-phenylpropionaldehyde, 175 g of carbon tetrachloride,
and α, α′-azobisisobutyronitrile (50 mg), and while gradually introducing chlorine, the temperature was raised to 60°C.
The temperature rose to . After about 2 hours, the reaction became rapid, and then the temperature was lowered to 45°C and the reaction was continued. Total amount of chlorine is 42.5
g (0.60 mol) was introduced, the reaction was complete. As a result of quantitative determination in the same manner as in Example 1, the yield as methyl ester was 95.5%. Comparative Example In a four-neck flask equipped with the same equipment as in Example 1, 101.5 g (0.50 mol) of 2,3-dichloro-3-phenylpropionaldehyde and 175 carbon tetrachloride were added.
I prepared g. Then 42.5 g of chlorine was introduced over a period of 4 hours. However, when the reaction solution was quantitatively determined using a gas chromatograph, 2,3-dichloro-3
-Phenylpropionic acid chloride was not obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はα,α′−アゾビスイソブチロニトリル
の添加量に対して目的物の収率(%)及び不純物
の量をプロツトしたグラフである。
FIG. 1 is a graph plotting the yield (%) of the target product and the amount of impurities against the amount of α,α'-azobisisobutyronitrile added.

Claims (1)

【特許請求の範囲】 1 2,3−ジハロゲノ−3−フエニルプロピオ
ンアルデヒドをハロゲン化して2,3−ジハロゲ
ノ−3−フエニルプロピオン酸ハライドを製造す
る方法において、一般式 [式中R,R′は低級アルキル基又はシクロア
ルキル基であり、Aはシアノ基、アルコキシカル
ボニル基を示す。]で表されるアゾ化合物を、2,
3−ジハロゲノ−3−フエニルプロピオンアルデ
ヒド1モルに対して50〜500mg存在させることを
特徴とする一般式 [式中Xはハロゲン原子を示す。]で表される
2,3−ジハロゲノ−3−フエニルプロピオン酸
ハライドの製造方法。
[Scope of Claims] 1. A method for producing 2,3-dihalogeno-3-phenylpropionic acid halide by halogenating 2,3-dihalogeno-3-phenylpropionaldehyde, wherein the general formula [In the formula, R and R' are a lower alkyl group or a cycloalkyl group, and A represents a cyano group or an alkoxycarbonyl group. ], an azo compound represented by 2,
General formula characterized by the presence of 50 to 500 mg per mole of 3-dihalogeno-3-phenylpropionaldehyde [In the formula, X represents a halogen atom. ] A method for producing 2,3-dihalogeno-3-phenylpropionic acid halide.
JP57153369A 1982-09-04 1982-09-04 Preparation of 2,3-dihalogeno-3-phenylpropionic acid halide Granted JPS5944339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57153369A JPS5944339A (en) 1982-09-04 1982-09-04 Preparation of 2,3-dihalogeno-3-phenylpropionic acid halide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57153369A JPS5944339A (en) 1982-09-04 1982-09-04 Preparation of 2,3-dihalogeno-3-phenylpropionic acid halide

Publications (2)

Publication Number Publication Date
JPS5944339A JPS5944339A (en) 1984-03-12
JPH03856B2 true JPH03856B2 (en) 1991-01-09

Family

ID=15560943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57153369A Granted JPS5944339A (en) 1982-09-04 1982-09-04 Preparation of 2,3-dihalogeno-3-phenylpropionic acid halide

Country Status (1)

Country Link
JP (1) JPS5944339A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS=1975 *

Also Published As

Publication number Publication date
JPS5944339A (en) 1984-03-12

Similar Documents

Publication Publication Date Title
JP2928982B2 (en) Method for producing 4'-bromomethyl-2-cyanobiphenyl
JP2000319209A (en) Production of iodinated aromatic compound
JPH03856B2 (en)
JP3918883B2 (en) Method for producing benzoyl chlorides
EP0077853A1 (en) Novel trifluoromethyl benzal chlorides and process for the preparation thereof
KR940000060B1 (en) Process of synthesis of acylcyanamides
JP3788482B2 (en) Method for producing alkylbenzoyl chloride
JP3783733B2 (en) Method for producing alkylbenzoyl chloride
JP3882855B2 (en) Method for producing alkylbenzoyl chloride
JPH0827054A (en) Bromination of aromatic compound
JP2002167342A (en) Method of producing adamantanediols
JP2859791B2 (en) Method for producing 4-bromomethylbiphenyl compound
JP2556357B2 (en) Method for producing 3,5-di-tert-butyl-2,6-dichlorotoluene
JPH0686414B2 (en) Method for producing acyl cyanide in anhydrous solvent
JPH0656739A (en) Production of 2,3-dihalogeno-3-phenylpropionic halide
JP3164284B2 (en) Method for producing 2-chloro-4-trifluoromethylbenzal chloride
US3963751A (en) Chlorination of butadiene sulfone to 3,3,4,4-tetrachlorotetrahydrothiophene-1,1-dioxide
JPH05125017A (en) Production of chloromethyl pivalate
JPH05988A (en) Production of trifluoroanisole compounds
JPH05132446A (en) Preparation of beta-halogeno-tert-alkylcarboxy- lic acid chlorides
JP2001089422A (en) Production of 2-chloro-4-nitroalkylbenzene
JPS6330292B2 (en)
JPS6314693B2 (en)
JPS60116660A (en) Manufacture of alpha-ketonitrile
JPS63211242A (en) Production of carbinol derivative