JPH0385357A - Liquid methane fuel air liquefaction engine - Google Patents

Liquid methane fuel air liquefaction engine

Info

Publication number
JPH0385357A
JPH0385357A JP21857789A JP21857789A JPH0385357A JP H0385357 A JPH0385357 A JP H0385357A JP 21857789 A JP21857789 A JP 21857789A JP 21857789 A JP21857789 A JP 21857789A JP H0385357 A JPH0385357 A JP H0385357A
Authority
JP
Japan
Prior art keywords
air
liquid methane
liquid
methane
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21857789A
Other languages
Japanese (ja)
Other versions
JP2647507B2 (en
Inventor
Yoshio Yamada
良雄 山田
Yukio Koyari
小鑓 幸雄
Hiroshi Miyauma
宮馬 浩
Hiroyuki Hirakoso
平社 博之
Teruyuki Aoki
青木 照幸
Kenji Kishimoto
岸本 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Development Agency of Japan
Mitsubishi Heavy Industries Ltd
Original Assignee
National Space Development Agency of Japan
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Development Agency of Japan, Mitsubishi Heavy Industries Ltd filed Critical National Space Development Agency of Japan
Priority to JP1218577A priority Critical patent/JP2647507B2/en
Publication of JPH0385357A publication Critical patent/JPH0385357A/en
Application granted granted Critical
Publication of JP2647507B2 publication Critical patent/JP2647507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PURPOSE:To reduce the capacity of a combustion tank by compressing the air until the liquefaction temperature becomes not less than the boiling point of liquid methane, by liquefying the compressed air at the heat of vaporization of the liquid methane and combusting the liquefied air so as to generate thrust. CONSTITUTION:A liquid methane for coolant accumulated in a tank 1, whose pressure is reduced by contraction of area 2, passes through an air liquefying apparatus 3, and is discharged to the outside from an ejector 4 of a nozzle 12. A liquid methane for combustion, whose pressure is increased by a pump 5, is injected from an injector 6 to a combustion chamber 7. Air is extracted from an air extraction port 8, and after being compressed by an air compressor 10 through an air precooler 9, it is introduced into the air liquefying apparatus 3, by which the air is liquefied through the heat of evaporation of the liquid methane coolant. The pressure thereof is increased by a pump 11, and after is introduced into the air precooler 9, it is injected from the injector 6 to the combustion chamber 7. Liquid methane and air are combusted in the combustion chamber 7, and are injected from the nozzle 12, so as to obtain thrust.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はロケットブースタおよび宇宙往還機等に適用さ
れる液体メタンを燃料とする空気液化式エンジンに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air liquefaction engine using liquid methane as fuel, which is applied to rocket boosters, spacecraft, etc.

〔従来の技術〕[Conventional technology]

ロケットブースタや宇宙往還機等に用いる従来の空気液
化式エンジンは燃料に液体水素またはスラッシュ水素(
液体水素と固体水素の混合物)を用い、かつ、それら液
体水素またはスラッシュ水素を冷熱源として、吸入した
空気を液化し、液化空気と水素を燃焼させてロケットエ
ンジンを作動させるものである。
Conventional air-liquefaction engines used in rocket boosters, spacecraft, etc. use liquid hydrogen or slush hydrogen (
The rocket engine is operated by using liquid hydrogen or slush hydrogen (a mixture of liquid hydrogen and solid hydrogen) and using the liquid hydrogen or slush hydrogen as a cold heat source to liquefy the inhaled air and burn the liquefied air and hydrogen.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の空気液化式エンジンには解決すべき次の課題
があった。
The above-mentioned conventional air liquefaction engine had the following problems to be solved.

即ち、従来の空気液化式エンジンは燃料に液体水素また
はスラッシュ水素を用いる。液体水素およびスラッシュ
水素は密度が極めて小さい(それぞれ0.071gr/
amコおよび0.081gr/cm”)ため、燃料タン
クの容積が過大となり、ロケットブースタおよび宇宙往
還機の重量増加の原因となっている。
That is, conventional air-liquefied engines use liquid hydrogen or slush hydrogen as fuel. Liquid hydrogen and slush hydrogen have extremely low densities (0.071 gr/each)
amco and 0.081gr/cm"), the volume of the fuel tank becomes excessive, causing an increase in the weight of rocket boosters and spacecraft.

そこで燃料タンクの容積の減少をはかるため、燃料を密
度の比較的大きい液体メタン(密度は0.423gr/
cm”)にかえるとすると、液体水素の沸点は20に、
大気圧における空気の液化温度は79になので液体水素
の冷熱源を用いて空気を液化することは可能であるが、
液体メタンの沸点は111.5 kであるため、−船釣
には液体メタンを用いての空気液化は不可能という問題
が生じる。
Therefore, in order to reduce the volume of the fuel tank, the fuel was replaced with liquid methane, which has a relatively high density (density is 0.423gr/
cm”), the boiling point of liquid hydrogen is 20,
The liquefaction temperature of air at atmospheric pressure is 79, so it is possible to liquefy air using a liquid hydrogen cold source.
Since the boiling point of liquid methane is 111.5 k, a problem arises in that it is impossible to liquefy air using liquid methane for boat fishing.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題の解決手段として、空気液化温度を液
体メタンの沸点以上に圧縮可能な空気の圧縮機と、同圧
縮機の圧縮した空気を液体メタンの気化熱により液化す
る空気液化器と、同空気液化器によって液化された空気
を支燃剤として燃焼し推力を発生するとともに減圧され
上記空気液化器に供給されて空気液化に供せられる液体
メタンを貯える液体メタンタンクとを具備してなること
を特徴とする液体メタン燃料空気液化式エンジンを提供
しようとするものである。
The present invention provides an air compressor that can compress the air liquefaction temperature to a temperature higher than the boiling point of liquid methane, an air liquefier that liquefies the air compressed by the compressor using the heat of vaporization of the liquid methane, and and a liquid methane tank that stores liquid methane which is combusted using the air liquefied by the air liquefier as a combustion support agent to generate thrust and is depressurized and supplied to the air liquefier for air liquefaction. The present invention aims to provide a liquid methane fuel air liquefaction engine characterized by:

〔作用〕[Effect]

本発明は上記のように構成されるので次の作用を有する
Since the present invention is configured as described above, it has the following effects.

(1)液体メタンを減圧することにより、液体メタンの
沸点が低下する0例えば、圧力0.43kg/CM”a
bsにおいては沸点が102 k 、圧力0.28kg
/cs+”absにおいては沸点が98にである。
(1) By reducing the pressure of liquid methane, the boiling point of liquid methane decreases. For example, the pressure is 0.43 kg/CM"a
In bs, the boiling point is 102 k and the pressure is 0.28 kg.
/cs+"abs has a boiling point of 98.

(2)吸入空気を昇圧することにより、空気の液化温度
が上昇する0例えば、圧力10kg/cm”absにお
いて106k、圧力12.8kg/cm”absにおい
て110にである。
(2) By increasing the pressure of the intake air, the liquefaction temperature of the air increases. For example, it is 106 k at a pressure of 10 kg/cm" abs, and 110 k at a pressure of 12.8 kg/cm" abs.

(3)以上(1)(2)より液体メタンの沸点が空気液
化温度より低くなるため、液体メタンの蒸発潜熱(圧力
0.43kg/cm”absにおいて126.1kra
l/kg。
(3) From (1) and (2) above, the boiling point of liquid methane is lower than the air liquefaction temperature, so the latent heat of vaporization of liquid methane (126.1 kra
l/kg.

圧力0.28kg/cm”absにおいて127.5k
ral/kg)を用いて、空気を液化できる。
127.5k at pressure 0.28kg/cm”abs
ral/kg) can be used to liquefy air.

(4)この結果、液体メタンを用いて空気液化が可能と
なり、水素より高密度のメタンの燃料化が果たされ、従
来に比し迩かに小さい燃料タンクで目的を達する空気液
化式エンジンを得られる。
(4) As a result, it has become possible to liquefy air using liquid methane, and methane, which has a higher density than hydrogen, can be used as a fuel, making it possible to create an air-liquefied engine that achieves its purpose with a much smaller fuel tank than before. can get.

〔実施例〕〔Example〕

本発明の第1実施例を第1図により説明する。 A first embodiment of the present invention will be described with reference to FIG.

第1図において、タンク1には、液体メタンが大気圧(
1,033kg/cs”abs) 、沸点温度(111
,5k )状態で蓄えられている。冷媒用の液体メタン
は絞り2を通って減圧し、空気液化器3を通ってロケッ
トエンジンのノズル12に設置されているエゼクタ4に
よって外部へ放出される。燃焼用の液体メタンはポンプ
5によって増圧され、噴射器6に導かれ燃焼室7に噴射
される。空気は空気取入口8から入り、空気予冷器9を
通って空気圧縮機10で圧縮され、空気液化器3に入る
In Figure 1, liquid methane is in tank 1 at atmospheric pressure (
1,033kg/cs”abs), boiling point temperature (111
, 5k) state. Liquid methane for refrigerant is depressurized through a throttle 2, passes through an air liquefier 3, and is discharged to the outside by an ejector 4 installed in a nozzle 12 of a rocket engine. Liquid methane for combustion is pressurized by a pump 5, guided to an injector 6, and injected into a combustion chamber 7. Air enters through air intake 8, passes through air precooler 9, is compressed by air compressor 10, and enters air liquefier 3.

空気液化器3において、冷媒の液体メタンの蒸発熱によ
って空気は液化される。液化された液化空気はポンプ1
1が増圧され、空気予冷器9に入り、その後、噴射器6
に導かれ、燃焼室7へ噴射される。j2!焼室7におい
て、液体メタンと空気が燃焼し、ノズル12より噴出し
て推力を発生する。
In the air liquefier 3, air is liquefied by the heat of evaporation of liquid methane as a refrigerant. The liquefied air is pumped to pump 1.
1 is increased in pressure and enters the air precooler 9, then the injector 6
and is injected into the combustion chamber 7. j2! In the combustion chamber 7, liquid methane and air are combusted and ejected from the nozzle 12 to generate thrust.

次に本発明の第2実施例を第2図により説明する。第2
図は第1図のエンジンにタンク13〜スプレーヘツド1
5の液体酸素系統を付加し、エンジンの単位空気流量当
りの推力の向上を図ったものである。付加された液体酸
素系統の作用について説明すると、タンク13内の液体
酸素はポンプ14で約15kg/cm”absに増圧さ
れ、スプレーヘ−)ド15より空気液化器3へ噴霧され
、空気流に混入する。この混入により、液体酸素の冷熱
源と空気中の酸素濃度上昇のため空気の液化が促進され
ると共に、液体酸素の混入による酸化剤量の増加により
、エンジン推力が増加する。その他の槽底、作用につい
ては第1実施例と同様である。
Next, a second embodiment of the present invention will be described with reference to FIG. Second
The figure shows the engine in Figure 1 with tank 13 to spray head 1.
5 liquid oxygen system was added to improve the thrust per unit air flow rate of the engine. To explain the operation of the added liquid oxygen system, the liquid oxygen in the tank 13 is increased in pressure to about 15 kg/cm" abs by the pump 14, and is sprayed from the spray head 15 to the air liquefier 3, and is added to the air flow. This mixture promotes the liquefaction of the air due to the cold heat source of liquid oxygen and the increase in the oxygen concentration in the air, and the engine thrust increases due to the increase in the amount of oxidizer due to the mixture of liquid oxygen.Others The tank bottom and operation are the same as in the first embodiment.

次に本発明の第3実施例を第3図により説明する。第3
図と第2図との違いは第2図のエゼクタ−4が第3図で
は小ノズル4′にかわった点である。
Next, a third embodiment of the present invention will be described with reference to FIG. Third
The difference between this figure and FIG. 2 is that the ejector 4 in FIG. 2 is replaced by a small nozzle 4' in FIG.

この変更によりノズル12のサクション効果が利かなく
なるため、空気液化器3の熱交換器内のメタンの沸点は
111.5 k以上(大気圧1.033ata以上にお
ける沸点)となるので、空気の液化温度をこれ以上にす
る必要がある。そこで空気圧縮itoの能力を向上し、
出口圧力を約20kg/as”absとする。
Due to this change, the suction effect of the nozzle 12 becomes ineffective, and the boiling point of methane in the heat exchanger of the air liquefier 3 becomes 111.5 k or more (the boiling point at atmospheric pressure 1.033 ata or more), so the liquefaction of air becomes impossible. The temperature needs to be higher than this. Therefore, we improved the ability of air compressor ITO,
The outlet pressure is approximately 20 kg/as"abs.

また、液体酸素ポンプ14の吐出圧も約25kg/cm
”absとする。
Also, the discharge pressure of the liquid oxygen pump 14 is approximately 25 kg/cm.
``Abs.

本実施例によれば、空気圧縮機10、ポンプ14の能力
増加が必要な半面、エゼクタ−4の除去により、システ
ムが簡素化されるという利点を有する。
According to this embodiment, although it is necessary to increase the capacity of the air compressor 10 and the pump 14, there is an advantage that the system is simplified by removing the ejector 4.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されるので次の効果を有する
Since the present invention is configured as described above, it has the following effects.

即ち、従来の液体水素またはスラッシュ水素(液体水素
と固体水素の混合物)を燃料とする空気液化式エンジン
の欠点である過大な燃料タンクの容積を減少させ得る効
果を有する。
That is, it has the effect of reducing the excessive volume of the fuel tank, which is a drawback of conventional air-liquefaction engines that use liquid hydrogen or slush hydrogen (a mixture of liquid hydrogen and solid hydrogen) as fuel.

これによって、ロケットブースタおよび宇宙往還機の機
体重量の低減が図られ、性能向上が可能となる。
This reduces the weight of the rocket booster and the spacecraft, making it possible to improve performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の、第2図は同じく第2実
施例の、第3図は同じく第3実施例の各液体メタン燃料
空気液化式エンジンの模式的縦断面図である。 1・・・タンク(液体メタン用)、 2・・・絞り、3
・・・空気液化器、   4・・・エゼクタ、5・・・
ポンプ、      6・・・噴射器、7・・・燃焼室
、     8・・・空気取入口、9・・・空気予冷器
、   10・・・空気圧l1iIl!、11・・・ポ
ンプ、     12・・・ノズル、13・・・タンク (液体酸素用)、 14・・・ポンプ、 15・・・スプレーヘッド、 4′・・・小ノズル。
FIG. 1 is a schematic vertical sectional view of a liquid methane fuel air liquefaction engine according to a first embodiment of the present invention, FIG. 2 is a second embodiment, and FIG. 3 is a third embodiment of the present invention. . 1... Tank (for liquid methane), 2... Throttle, 3
...Air liquefier, 4...Ejector, 5...
Pump, 6... Injector, 7... Combustion chamber, 8... Air intake, 9... Air precooler, 10... Air pressure l1iIl! , 11... Pump, 12... Nozzle, 13... Tank (for liquid oxygen), 14... Pump, 15... Spray head, 4'... Small nozzle.

Claims (1)

【特許請求の範囲】[Claims] 空気液化温度を液体メタンの沸点以上に圧縮可能な空気
の圧縮機と、同圧縮機の圧縮した空気を液体メタンの気
化熱により液化する空気液化器と、同空気液化器によっ
て液化された空気を支燃剤として燃焼し推力を発生する
とともに減圧され上記空気液化器に供給されて空気液化
に供せられる液体メタンを貯える液体メタンタンクとを
具備してなることを特徴とする液体メタン燃料空気液化
式エンジン。
An air compressor that can compress the air to a temperature higher than the boiling point of liquid methane, an air liquefier that liquefies the air compressed by the compressor using the heat of vaporization of liquid methane, and an air liquefier that liquefies the air by the air liquefier. A liquid methane fuel air liquefaction type characterized by comprising a liquid methane tank for storing liquid methane which is burned as a combustion support agent to generate thrust and is depressurized and supplied to the air liquefier for air liquefaction. engine.
JP1218577A 1989-08-28 1989-08-28 Liquid methane fuel air liquefied engine Expired - Fee Related JP2647507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218577A JP2647507B2 (en) 1989-08-28 1989-08-28 Liquid methane fuel air liquefied engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218577A JP2647507B2 (en) 1989-08-28 1989-08-28 Liquid methane fuel air liquefied engine

Publications (2)

Publication Number Publication Date
JPH0385357A true JPH0385357A (en) 1991-04-10
JP2647507B2 JP2647507B2 (en) 1997-08-27

Family

ID=16722130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218577A Expired - Fee Related JP2647507B2 (en) 1989-08-28 1989-08-28 Liquid methane fuel air liquefied engine

Country Status (1)

Country Link
JP (1) JP2647507B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110067673B (en) * 2019-04-24 2020-10-27 北京航空航天大学 Parallel precooling stamping combined propulsion system and propulsion method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242433A (en) * 1974-06-13 1977-04-02 Honey Kasei Kk Coating of metal surface
JPS62237068A (en) * 1986-04-07 1987-10-17 Mitsubishi Heavy Ind Ltd Air liquefaction cycle rocket engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242433A (en) * 1974-06-13 1977-04-02 Honey Kasei Kk Coating of metal surface
JPS62237068A (en) * 1986-04-07 1987-10-17 Mitsubishi Heavy Ind Ltd Air liquefaction cycle rocket engine

Also Published As

Publication number Publication date
JP2647507B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US5718194A (en) In-cylinder water injection engine
EP1709315B1 (en) A method and a system for control of a device for compression
US3369361A (en) Gas turbine power plant with sub-atmospheric spray-cooled turbine discharge into exhaust compressor
KR960702884A (en) A LARGE SUPERCHARGED INTERNAL COMBUSTION ENGINE AND A METHOD OF OPERATING A COOLER FOR COOLING THE INTAKE AIR OF SUCH AN ENGINE
JPS63302169A (en) Gas supply device for gas fired diesel engine
CA2307103A1 (en) High pressure fuel supply system for natural gas vehicles
KR840000732A (en) Method for using liquid evaporative gas from deep cooling liquid as fuel of gas / oil-combustion combined diesel engine and system for using this method
SE8502838L (en) DEVICE WITH AN OIL-FREE ROTATION COMPRESSOR
US4261169A (en) Method for converting thermal energy into mechanical energy and a machine for carrying out said method
US5129599A (en) Hybrid liquid-vapor propellant feed system for aerospace vehicles
JPH0278760A (en) Rocket engine
FR2787560A1 (en) PROCESS FOR CRYOGENIC SEPARATION OF AIR GASES
GB2333149A (en) A method of returning boil off gas from stored cryogenic liquified gas to its liquid phase
JPH0385357A (en) Liquid methane fuel air liquefaction engine
CA2026668C (en) Recirculatory system
US6834493B2 (en) System for reducing pump cavitation
US2877966A (en) Common oxygen supply for engine and cabin of high altitude aircraft
JPS62237068A (en) Air liquefaction cycle rocket engine
JPS5569731A (en) Purge system for gas fuel system
JPS6093132A (en) Gas turbine cycle
JPH01309899A (en) Engine
JPH0486360A (en) Air liquefying cycle engine
JPS62139958A (en) Method and device for feeding boil off gas
JPS6220297U (en)
RU2055004C1 (en) System for maneuvering of airship in vertical plane

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees