JPH0384960A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0384960A
JPH0384960A JP1222048A JP22204889A JPH0384960A JP H0384960 A JPH0384960 A JP H0384960A JP 1222048 A JP1222048 A JP 1222048A JP 22204889 A JP22204889 A JP 22204889A JP H0384960 A JPH0384960 A JP H0384960A
Authority
JP
Japan
Prior art keywords
type
layer
substrate
germanium
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1222048A
Other languages
Japanese (ja)
Other versions
JP2830144B2 (en
Inventor
Toru Kimura
亨 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1222048A priority Critical patent/JP2830144B2/en
Publication of JPH0384960A publication Critical patent/JPH0384960A/en
Application granted granted Critical
Publication of JP2830144B2 publication Critical patent/JP2830144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE:To insulate discrete elements from a Ge substrate and to prevent a mutual interference effect and a latch-up phenomenon by a method wherein a semiinsulating chromium-doped gallium arsenide layer, a p-type or n-type germanium layer and a semiconductor element are formed on the germanium substrate. CONSTITUTION:A Cr-doped GaAs layer 2 and a p-type Ge layer 3 are pil one after another from the of a Ga substrate 1 by MBE. Since the Cr-doped GaAs layer 2 is semiinsulating and its lattice constant is close to that of Ge, a crystal defect due to a mismatched lattice is produced little. Then, an n-type well 6 is formed in the p-type Ge layer 3 by implanting ions. Then, gate insulating films 4a, 4b and gate electrodes 5a, 5b are formed; p-type source-drain regions 7 are formed inside the n-well 6; n-type source-drain regions 8 are formed in the p-type Ge layer 3 adjacent to it; a p-channel MIS transistor and an n-channel MIS transistor are formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a semiconductor device.

〔従来の技術〕[Conventional technology]

第2図は従来の相補型MIS)ランジスタの一例の断面
図である。Ge基板1の上にp型Ge層3をエピタキシ
ャル成長させる。このp型Ge層3にnウェル6を選択
的に形成する0次に、nウェル6内にゲート絶縁膜4a
、ゲート電極5a、p型ソース・ドレイン領域7からな
るpチャネルMISトランジスタを形成する。その隣の
p型Ge層3にゲート絶縁膜4b、ゲート電極5b、n
型ソース・ドレイン領域8からなるnチャネルM工Sト
ランジスタを形成する。Geゲート絶縁膜に付いては、
例えば、ジェー、ジェー、ローゼンバーグ(J、J、R
osenberg)らによる、アイ・イー・イー・イー
・エレクトロン・デバイス・レターズ(IEEE  E
lectronDevice  Letters)第9
巻、第12号、第639頁からに記載されているように
Si基板に0MO3)ランジスタを形成する場合のゲー
ト酸化膜のかわりにGeの窒化膜もしくは酸化窒化膜を
用いることにより、良好なMIS)ランジスタが作製で
きる。
FIG. 2 is a sectional view of an example of a conventional complementary MIS transistor. A p-type Ge layer 3 is epitaxially grown on a Ge substrate 1. An n-well 6 is selectively formed in this p-type Ge layer 3. Next, a gate insulating film 4a is formed in the n-well 6.
, a gate electrode 5a, and a p-type source/drain region 7 to form a p-channel MIS transistor. On the p-type Ge layer 3 next to it, a gate insulating film 4b, a gate electrode 5b, an n
An n-channel M/S transistor consisting of type source/drain regions 8 is formed. Regarding the Ge gate insulating film,
For example, J, J, Rosenberg (J, J, R
IEEE Electron Device Letters (IEEE E
electronDevice Letters) No. 9
As described in Vol., No. 12, pp. 639 onwards, good MIS can be achieved by using a Ge nitride film or oxynitride film instead of the gate oxide film when forming an OMO3) transistor on a Si substrate. ) A transistor can be manufactured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように、Geのみで作られた半導体基板は、Gr
ドープGaAsやFeドープInPのような半絶縁性基
板がないため、例えばLSIハンドブック、電子通信学
会編、第402頁に記載されているように、寄生サイリ
スタや寄生トランジスタによるラッチアップ現象が起こ
る。第2図で説明すると、p型ソース・ドレイン領域7
とnウェル6とp型Ge基板1とn型ソース・ドレイン
領域8とで寄生pnpnサイリスタが形成される。これ
を避けるためにはLSIハンドブックの第132頁に記
載されているようにトレンチアイソレーション等の極め
て複雑な工程を要するという欠点があった。
As mentioned above, a semiconductor substrate made only of Ge
Since there is no semi-insulating substrate such as doped GaAs or Fe-doped InP, a latch-up phenomenon occurs due to parasitic thyristors and parasitic transistors, as described in, for example, LSI Handbook, edited by the Institute of Electronics and Communication Engineers, page 402. To explain with FIG. 2, the p-type source/drain region 7
A parasitic pnpn thyristor is formed by the n-well 6, the p-type Ge substrate 1, and the n-type source/drain region 8. In order to avoid this, there is a drawback that an extremely complicated process such as trench isolation is required as described on page 132 of the LSI handbook.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置はゲルマニウム基板と該ゲルマニウ
ム基板上に形成された半絶縁性クロムドープ砒化ガリウ
ム層と、該クロムドープ砒化ガリウム層の上に形成され
たp型またはn型のゲルマニウム層と、該ゲルマニウム
層に形成された半導体素子とを含んで構成される。
A semiconductor device of the present invention includes a germanium substrate, a semi-insulating chromium-doped gallium arsenide layer formed on the germanium substrate, a p-type or n-type germanium layer formed on the chromium-doped gallium arsenide layer, and the germanium layer. and a semiconductor element formed in.

〔作用〕[Effect]

CrドープGaAsは高抵抗であることは公知である。 It is known that Cr-doped GaAs has high resistance.

GeとGaAsのへテロ接合に付いては、例えばデイ−
・ケー・ジェーダス(D、K。
Regarding the heterojunction of Ge and GaAs, for example,
・K. Jadas (D, K.

Jadus)等によるアイ・イー・イー・イー・トラン
ザクションズ・オン・エレクトロン・デバイス(IEE
E  Transactionson  Electr
on  Devices)第ED−16巻、第1号、第
102頁からに記載されているように、また用中らによ
り文献、ジャーナル・オン・クリスタル・グロース(J
 o u r−nal  of  Crystal  
Growth)第95巻、第421頁からに記述されて
いるように、分子線エピタキシャル法(MBE法)を用
いることにより、良好な結晶性を持ってエピタキシャル
成長できる。従って、Ge基板上に半絶縁性GaAsを
、更にその上にGe層を成長させ、このGe層内に素子
を作り込むことで、各々の素子はGe基板から絶縁され
、相互干渉効果やラッチアップ現象は起こらない。
IE Transactions on Electron Devices (IEE) by Jadus et al.
E Transactionson Electr
on Devices), Vol. ED-16, No. 1, p. 102, and by Yochu et al.
ou r-nal of Crystal
As described in Vol. 95, page 421 onwards, epitaxial growth with good crystallinity can be achieved by using the molecular beam epitaxial method (MBE method). Therefore, by growing semi-insulating GaAs on a Ge substrate, and then growing a Ge layer on top of it, and building elements within this Ge layer, each element is insulated from the Ge substrate, thereby preventing mutual interference effects and latch-up. The phenomenon does not occur.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図である。FIG. 1 is a sectional view of one embodiment of the present invention.

第1図に示すように、Ge基板1の上にMBEによりC
rドープGaAs層2及びp型Ge層3を順次積層する
。CrドープGaAs層2は半絶縁性であり、Geに格
子定数が近いため、格子不整合に起因する結晶欠陥の発
生が少ないので好適である0次に、p型Ge3中にイオ
ン注入によりn型ウェル6を形成する0次に、ゲート絶
縁膜4a、4b、ゲート電極5a、5bを通常の方法で
形成し、nウェル6内にp型ソース・ドレイン領域7、
その隣のp型Ge層3にn型ソース・ドレイン領域8を
形成し、p及びnチャネルMISトランジスタを形成す
る。ここで、nチャネルMISトランジスタ領域とpチ
ャネルMISトランジスタ領域との分離は、CF4ガス
を用いた反応性イオンエツチング法を用いた。この領域
は、GeとGaAsとのエツチング比が大きく取れるた
め、電子の走行領域のみをエツチングすることが可能で
ある。
As shown in FIG. 1, C was deposited on the Ge substrate 1 by MBE.
An r-doped GaAs layer 2 and a p-type Ge layer 3 are sequentially laminated. The Cr-doped GaAs layer 2 is semi-insulating and has a lattice constant close to that of Ge, so it is suitable because there are few crystal defects caused by lattice mismatch. Forming Well 6 Next, gate insulating films 4a, 4b and gate electrodes 5a, 5b are formed by a conventional method, and p-type source/drain regions 7,
An n-type source/drain region 8 is formed in the adjacent p-type Ge layer 3 to form p- and n-channel MIS transistors. Here, the n-channel MIS transistor region and the p-channel MIS transistor region were separated using a reactive ion etching method using CF4 gas. Since the etching ratio between Ge and GaAs can be large in this region, it is possible to etch only the region where electrons travel.

上記実施例では、p型Ge層3に相補型MISトランジ
スタを形成したが、バイポーラトランジスタ、ダイオー
ド、抵抗などを形成しても良い。
In the above embodiment, a complementary MIS transistor is formed in the p-type Ge layer 3, but a bipolar transistor, a diode, a resistor, etc. may also be formed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、相互干渉効果やラッチアップ現象のな
い半導体装置の作製が非常に容易となるという効果が得
られる。
According to the present invention, it is possible to obtain the effect that it is extremely easy to manufacture a semiconductor device without mutual interference effects or latch-up phenomena.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図は従来の相
補型M工Sトランジスタの一例の断面図である。 1 ・−G e基板、2−CrドープGaAs層、3・
 p型Ge層、4a、4b・・・ゲート絶縁膜、5a。 5b・・・ゲート電極、6・・・nウェル、7・・・p
型ソール・ドレイン領域、8・・・n型ソース・ドレイ
ン領域。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view of an example of a conventional complementary type M-S transistor. 1.-G e substrate, 2-Cr-doped GaAs layer, 3.
p-type Ge layer, 4a, 4b...gate insulating film, 5a. 5b...gate electrode, 6...n well, 7...p
type sole/drain region, 8...n type source/drain region.

Claims (1)

【特許請求の範囲】[Claims] ゲルマニウム基板と、該ゲルマニウム基板上に形成され
た半絶縁性クロムドープ砒化ガリウム層と、該クロムド
ープ砒化ガリウム層の上に形成されたp型またはn型の
ゲルマニウム層と、該ゲルマニウム層に形成された半導
体素子を含むことを特徴とする半導体装置。
a germanium substrate, a semi-insulating chromium-doped gallium arsenide layer formed on the germanium substrate, a p-type or n-type germanium layer formed on the chromium-doped gallium arsenide layer, and a semiconductor formed on the germanium layer. A semiconductor device characterized by including an element.
JP1222048A 1989-08-28 1989-08-28 Semiconductor device Expired - Lifetime JP2830144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1222048A JP2830144B2 (en) 1989-08-28 1989-08-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1222048A JP2830144B2 (en) 1989-08-28 1989-08-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0384960A true JPH0384960A (en) 1991-04-10
JP2830144B2 JP2830144B2 (en) 1998-12-02

Family

ID=16776282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1222048A Expired - Lifetime JP2830144B2 (en) 1989-08-28 1989-08-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2830144B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093987A (en) * 1999-07-29 2001-04-06 Stmicroelectronics Inc NEW CMOS CIRCUIT OF GaAs/Ge ON SI SUBSTRATE
WO2012169209A1 (en) * 2011-06-10 2012-12-13 住友化学株式会社 Semiconductor device, semiconductor substrate, method for producing semiconductor substrate, and method for producing semiconductor device
WO2012169214A1 (en) * 2011-06-10 2012-12-13 住友化学株式会社 Semiconductor device, semiconductor substrate, production method for semiconductor substrate, and production method for semiconductor device
WO2012169213A1 (en) * 2011-06-10 2012-12-13 住友化学株式会社 Semiconductor device, semiconductor substrate, production method for semiconductor substrate, and production method for semiconductor device
WO2012169210A1 (en) * 2011-06-10 2012-12-13 住友化学株式会社 Semiconductor device, semiconductor substrate, method for producing semiconductor substrate, and method for producing semiconductor device
WO2012169212A1 (en) * 2011-06-10 2012-12-13 住友化学株式会社 Semiconductor device, semiconductor substrate, method for producing semiconductor substrate, and method for producing semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001093987A (en) * 1999-07-29 2001-04-06 Stmicroelectronics Inc NEW CMOS CIRCUIT OF GaAs/Ge ON SI SUBSTRATE
WO2012169209A1 (en) * 2011-06-10 2012-12-13 住友化学株式会社 Semiconductor device, semiconductor substrate, method for producing semiconductor substrate, and method for producing semiconductor device
WO2012169214A1 (en) * 2011-06-10 2012-12-13 住友化学株式会社 Semiconductor device, semiconductor substrate, production method for semiconductor substrate, and production method for semiconductor device
WO2012169213A1 (en) * 2011-06-10 2012-12-13 住友化学株式会社 Semiconductor device, semiconductor substrate, production method for semiconductor substrate, and production method for semiconductor device
WO2012169210A1 (en) * 2011-06-10 2012-12-13 住友化学株式会社 Semiconductor device, semiconductor substrate, method for producing semiconductor substrate, and method for producing semiconductor device
WO2012169212A1 (en) * 2011-06-10 2012-12-13 住友化学株式会社 Semiconductor device, semiconductor substrate, method for producing semiconductor substrate, and method for producing semiconductor device
TWI550828B (en) * 2011-06-10 2016-09-21 住友化學股份有限公司 Semiconductor device, semiconductor substrate, method for making a semiconductor substrate, and method for making a semiconductor device

Also Published As

Publication number Publication date
JP2830144B2 (en) 1998-12-02

Similar Documents

Publication Publication Date Title
US5155571A (en) Complementary field effect transistors having strained superlattice structure
US5792679A (en) Method for forming silicon-germanium/Si/silicon dioxide heterostructure using germanium implant
US5879996A (en) Silicon-germanium devices for CMOS formed by ion implantation and solid phase epitaxial regrowth
Ren et al. Ga 2 O 3 (Gd 2 O 3)/InGaAs enhancement-mode n-channel MOSFETs
US5479033A (en) Complementary junction heterostructure field-effect transistor
JP3135939B2 (en) HEMT type semiconductor device
US7393735B2 (en) Structure for and method of fabricating a high-mobility field-effect transistor
US6689677B2 (en) CMOS circuit of GaAs/Ge on Si substrate
JPS61295671A (en) Complementary planar hetero structure ic and manufacture thereof
US5192698A (en) Making staggered complementary heterostructure FET
JP2527775B2 (en) Field effect transistor and method of manufacturing the same
US5367184A (en) Vertical JFET transistor with optimized bipolar operating mode and corresponding method of fabrication
US4837178A (en) Method for producing a semiconductor integrated circuit having an improved isolation structure
US10366892B2 (en) Hybrid III-V technology to support multiple supply voltages and off state currents on same chip
US4746627A (en) Method of making complementary GaAs heterojunction transistors
JPH0384960A (en) Semiconductor device
JPH10125902A (en) Gallium antimonide complementary hfet
JPS61147577A (en) Complementary semiconductor device
EP0093557B1 (en) High-speed complementary semiconductor integrated circuit
JPH0590517A (en) Semiconductor device and manufacture thereof
JPH02111073A (en) Insulated gate fet and integrated circuit device thereof
JPH05335346A (en) Semiconductor device and manufacture of the same
JP2611358B2 (en) Semiconductor device
JP2504782B2 (en) Method for manufacturing field effect transistor
JPH02266559A (en) Semiconductor device