JPH0383840A - Carbon fiber-reinforced material and carbon fiber-reinforced inorganic cured material - Google Patents

Carbon fiber-reinforced material and carbon fiber-reinforced inorganic cured material

Info

Publication number
JPH0383840A
JPH0383840A JP22109689A JP22109689A JPH0383840A JP H0383840 A JPH0383840 A JP H0383840A JP 22109689 A JP22109689 A JP 22109689A JP 22109689 A JP22109689 A JP 22109689A JP H0383840 A JPH0383840 A JP H0383840A
Authority
JP
Japan
Prior art keywords
carbon fiber
iron
carbon
epoxy resin
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22109689A
Other languages
Japanese (ja)
Other versions
JPH0525823B2 (en
Inventor
Takashi Yamada
隆 山田
Kanji Yamada
寛次 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP22109689A priority Critical patent/JPH0383840A/en
Publication of JPH0383840A publication Critical patent/JPH0383840A/en
Publication of JPH0525823B2 publication Critical patent/JPH0525823B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To provide the subject carbon fiber-reinforced material having a low corrosion action on iron (alloy) in contact therewith by adding a metal powder having a prescribed average diameter and showing a lower surface potential than that of carbon to an epoxy resin and covering the surface of a carbon fiber with the above-mentioned resin. CONSTITUTION:To an epoxy resin (e.g. bisphenol A type epoxy resin), a metal powder (e.g. iron powder or zinc powder) having 10nm-500mum average diameter and showing a lower surface potential than that of carbon is added and required additives such as a curing agent, a surfactant and an antioxidant are further added thereto. The surface of a carbon fiber is then covered with the resultant epoxy resin to produce the objective carbon fiber-reinforced material. By blending the obtained carbon fiber-reinforced material in mortar, concrete, etc., a hardened material excellent in strength characteristics, deformation properties, elastic properties, etc., and suitable for a building material, etc., can be produced and the produced hardened material shows a low corrosion action on iron (alloy) in contact therewith.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主として土木建築に係わる分野で、床、壁、
屋根等に用いられる鉄や鉄合金のガルバニック腐食防止
性に優れた炭素繊維補強材、並びに前記炭素繊維補強材
を用いた炭素繊維強化水硬性無機質硬化体に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention is mainly used in the field of civil engineering and construction, such as floors, walls,
The present invention relates to a carbon fiber reinforcing material excellent in preventing galvanic corrosion of iron and iron alloys used for roofs, etc., and a carbon fiber reinforced hydraulic inorganic cured body using the carbon fiber reinforcing material.

(従来の技術) 炭素繊維は、その優れた機械的性質、例えば比強度、比
弾性率等や化学的安定性により、広い分野においてその
有用性が認識され大量に使用されてきている。それらの
分野においては、炭素繊維は一般に複合材料の補強材料
として使用されることが多い。また、近年ポリアクリロ
ニトリル(PAN)系炭素繊維に加えて、安価なピッチ
を原料としたピッチ系炭素繊維が開発されてきており、
安価で高性能な炭素繊維が上布される傾向にある。
(Prior Art) Due to its excellent mechanical properties such as specific strength, specific modulus of elasticity, etc. and chemical stability, carbon fiber has been recognized for its usefulness in a wide range of fields and has been used in large quantities. In these fields, carbon fibers are commonly used as reinforcing materials for composite materials. In addition to polyacrylonitrile (PAN)-based carbon fibers, pitch-based carbon fibers made from inexpensive pitch have recently been developed.
There is a trend toward using carbon fiber, which is inexpensive and has high performance, to cover the fabric.

一方、セメント系材料から製造された硬化体は圧縮強度
が強く、安価であるため主として土木建築の分野で大量
に使用されている材料であるが、引張り強度が弱く、脆
性的性質なために補強材料とあわせて使用されることが
多い。
On the other hand, hardened bodies manufactured from cement-based materials have high compressive strength and are inexpensive, so they are used in large quantities mainly in the field of civil engineering and construction. Often used in conjunction with other materials.

両者を複合化した炭素繊維で補強されたセメント系材料
の硬化体は、その繊維の優れた機械的・化学的性質のた
め、これまでのセメント系材料の硬化体では発現し得な
かった強度特性、変形特性、弾性特性、高耐久性等の性
質をもつ新建築用材料として期待され、フリーアクセス
フロア−(床材)やカーテンウオール(壁材)として使
用されてきている。
A hardened cementitious material reinforced with carbon fiber, which is a composite of both, has strength properties that could not be achieved with conventional hardened cementitious materials due to the excellent mechanical and chemical properties of the fibers. It is expected to be a new construction material with properties such as deformability, elasticity, and high durability, and has been used for raised floors and curtain walls.

しかし、これらの炭素繊維強化無機質硬化体(CFRC
)は、最も一般的な構造材料である鉄鋼等の金属材料と
接触する場合が多い。また、CFRCに靭性を付与する
目的で積極的に金属材料との複合化を行なう場合も多く
、近年その研究も盛んである。
However, these carbon fiber reinforced inorganic cured bodies (CFRC)
) often come into contact with metal materials such as steel, which is the most common structural material. Furthermore, in order to impart toughness to CFRC, composites with metal materials are often actively carried out, and research in this field has been active in recent years.

ところで、一般にセメント系材料硬化体中は、pH−1
2,5程度の緩衝溶液系とみなすことができるため、こ
のようなアルカリ性環境のもとでは鉄鋼を含む多くの金
属にとって、熱力学的に安定な不動態を形成する最も良
好な防食環境下にある。しかし、炭素繊維には導電性が
あり、電位が貴金属並の責な材料であるため、鉄鋼や鉄
合金等の電位の卑な金属との間にガルバニック電池を形
成し、鉄鋼や鉄合金等の腐食速度を増大させる傾向があ
る。
By the way, in general, the pH of the hardened cement material is -1
Since it can be regarded as a buffer solution system of about 2.5 degrees, it is the best anti-corrosion environment for many metals, including steel, to form a thermodynamically stable passive state in such an alkaline environment. be. However, carbon fiber has conductivity and is a material with a potential comparable to precious metals, so it forms a galvanic cell with metals with a lower potential such as steel and iron alloys. Tends to increase corrosion rate.

従来、この問題を解決する手段としては、普通鋼や亜鉛
メツキ鋼材の代わりにステンレス鋼製の鉄筋を用いる方
法や、鉄や鉄合金と炭素繊維強化セメント系材料との間
に100Ω以上の高分子または無機材よりなる電気絶縁
層を形成させる方法(特開昭80−188448号公報
、特開昭81−2B1553号公報、特開昭81−22
7038号公報)等が知られている。
Previous methods to solve this problem include using stainless steel reinforcing bars instead of ordinary steel or galvanized steel, and using polymers with a resistance of 100Ω or more between iron or iron alloys and carbon fiber reinforced cement materials. Or a method of forming an electrically insulating layer made of an inorganic material (JP-A-80-188448, JP-A-81-2B1553, JP-A-81-22)
No. 7038) and the like are known.

これらの方法では、普通鋼の代わりに高価なステンレス
鋼を使用したり、鉄や鉄合金との間に電気絶縁層を形成
させる必要があるため、炭素繊維強化セメント系材料の
使用範囲、取扱方法及び加工方法等が限定される。また
、炭素繊維と鉄や鉄合金との間に電気絶縁層を形成させ
るため、鉄や鉄合金に塗装した場合にも、塗膜には常に
欠陥部が存在しており、その部分では素地が直接環境中
にさらされることになる。このような場合には、小アノ
ード(鉄鋼材料等)/大カソード(炭素繊維)という最
悪の面積比となり、その結果、腐食速度はきらに増大す
ることとなる。
These methods require the use of expensive stainless steel instead of ordinary steel or the formation of an electrically insulating layer between iron and iron alloys, so the scope of use and handling methods for carbon fiber-reinforced cementitious materials are limited. and processing methods etc. are limited. In addition, since an electrically insulating layer is formed between carbon fiber and iron or iron alloy, even when painting iron or iron alloy, there are always defects in the coating, and in those areas the base material is damaged. It will be exposed directly to the environment. In such a case, the worst area ratio of small anode (steel material, etc.)/large cathode (carbon fiber) will result, and as a result, the corrosion rate will increase dramatically.

(発明が解決しようとする課題) 本発明は、ガルバニック腐食の直接の原因である炭素繊
維の表面電位を制御することによって、鉄鋼や鉄合金の
腐食という上述の問題点を解決せんとするものである。
(Problems to be Solved by the Invention) The present invention attempts to solve the above-mentioned problem of corrosion of steel and iron alloys by controlling the surface potential of carbon fibers, which is the direct cause of galvanic corrosion. be.

また、このように表面電位を制御した炭素繊維を水硬性
無機質硬化体の補強材として用いることにより、ガルバ
ニック腐食を生じさせにくい水硬性無機質硬化体を提供
するものである。
Further, by using carbon fibers whose surface potential is controlled in this manner as a reinforcing material for a hydraulic inorganic cured body, a hydraulic inorganic cured body that is less likely to cause galvanic corrosion is provided.

(課題を解決するための手段および作用)本発明の炭素
繊維補強材は、炭素繊維に表面処理を施すことにより炭
素繊維の表面電位を卑な電位にしたものである。すなわ
ち、平均径10na+〜500−の炭素よりも卑な電位
を有する金属粉末を添加したエポキシ樹脂で炭素繊維の
表面を被覆してなる炭素繊維補強材である。
(Means and Effects for Solving the Problems) The carbon fiber reinforcing material of the present invention is one in which the surface potential of the carbon fibers is reduced to a base potential by subjecting the carbon fibers to a surface treatment. That is, it is a carbon fiber reinforcing material in which the surface of carbon fibers is coated with an epoxy resin to which metal powder having an average diameter of 10 na+ to 500 na and having a potential lower than that of carbon is added.

さらには前記表面処理を施した炭素繊維補強材を、水硬
性無機質硬化体中に含有させた耐ガルバニック腐食性の
優れた炭素繊維強化水硬性無機質硬化体である。
Furthermore, it is a carbon fiber reinforced hydraulic inorganic cured body having excellent galvanic corrosion resistance, in which the surface-treated carbon fiber reinforcing material is contained in the hydraulic inorganic cured body.

一般に、過電圧(η)と電流(i)の間には経験的にT
af’el線η−ma−bj7ogiノ関係が成立する
ため、電位差を縮めることにより腐食速度を決定する因
子である腐食電流が指数的に減少していく。通常p)1
−12.5の環境下では、炭素繊維の電位は約0.2V
、鉄鋼の電位は約−〇、5v程であり、電位差は約0.
7v程ある。
Generally, empirically, there is a difference of T between overvoltage (η) and current (i).
Since the relationship of af'el line η-ma-bj7ogi is established, the corrosion current, which is a factor that determines the corrosion rate, decreases exponentially by reducing the potential difference. Usually p)1
-12.5, the potential of carbon fiber is approximately 0.2V
The potential of steel is about -0.5V, and the potential difference is about 0.
There is about 7v.

そこで、鉄鋼や鉄合金のガルバニック腐食の直接の原因
である炭素繊維を、卑な電位にする表面処理を施すと、
ガルバニック電池形成時の腐食電流が大幅に減少し、併
用する鉄鋼や鉄合金の腐食速度が減少する。これにより
、ガルバニック腐食防止性に優れた炭素繊維補強材、及
びその補強材を用いた炭素繊維強化水硬性無機質硬化体
とすることができる。
Therefore, if carbon fiber, which is the direct cause of galvanic corrosion of steel and iron alloys, is subjected to surface treatment to lower the electrical potential,
The corrosion current during galvanic cell formation is significantly reduced, and the corrosion rate of steel and iron alloys used together is reduced. Thereby, a carbon fiber reinforcing material with excellent galvanic corrosion prevention properties and a carbon fiber reinforced hydraulic inorganic cured body using the reinforcing material can be obtained.

本発明における炭素繊維の表面電位を卑にする表面処理
法は、炭素繊維表面に犠牲アノードとなりえる金属粉末
を含有したエポキシ樹脂を被覆する表面処理法である。
The surface treatment method of making the surface potential of the carbon fiber less noble in the present invention is a surface treatment method of coating the surface of the carbon fiber with an epoxy resin containing a metal powder that can serve as a sacrificial anode.

さらに、炭素繊維として表面の酸化処理により表面酸素
原子量を増加させたものを用いると、鉄鋼材料などの防
食に効果的な炭素繊維補強材となる。
Furthermore, if a carbon fiber whose surface oxygen atomic content is increased by surface oxidation treatment is used, it becomes a carbon fiber reinforcing material that is effective in preventing corrosion of steel materials and the like.

本発明の表面処理法においては、エポキシ樹脂中に分散
させた金属粉末が犠牲アノードとなり、炭素繊維と接触
する鉄や鉄合金の腐食を抑制するものである。そのため
、炭素繊維に被覆するエポキシ樹脂中の金属粉末は、標
準電位が炭素よりも卑な金属粉末であり、且つ、鉄の電
位と同程度もしくは鉄よりも卑な電位の金属が望ましい
。それらの金属粉末としては、Fe、 Cr、 Mg、
  Be。
In the surface treatment method of the present invention, metal powder dispersed in an epoxy resin serves as a sacrificial anode to suppress corrosion of iron or iron alloys that come into contact with carbon fibers. Therefore, the metal powder in the epoxy resin that coats the carbon fibers is preferably a metal powder whose standard potential is more base than that of carbon, and whose potential is about the same as that of iron or which is more base than iron. These metal powders include Fe, Cr, Mg,
Be.

Aρ、Zn、Cdの少なくとも一種を含有しているもの
が挙げられる。
Examples include those containing at least one of Aρ, Zn, and Cd.

本発明の使用に適するものとしては、鉄粉、ステンレス
粉、カドミウム粉、亜鉛粉、マグネシウム合金粉、ベリ
リウム粉、アルミフレーク等がある。
Examples of materials suitable for use in the present invention include iron powder, stainless steel powder, cadmium powder, zinc powder, magnesium alloy powder, beryllium powder, and aluminum flakes.

金属粉末の形状こしては、球状、フレーク状もしくは繊
維状のいずれのものでもよく、平均径は10nm〜50
0−の範囲であり、好ましくは10nm〜100mの範
囲である。ここでの平均径とは金属粉末断面の最大径の
平均である。
The shape of the metal powder may be spherical, flaky or fibrous, with an average diameter of 10 nm to 50 nm.
It is in the range of 0-, preferably in the range of 10 nm to 100 m. The average diameter here is the average of the maximum diameters of the cross sections of the metal powder.

平均径がLon11未満のものは、不安定であり粉塵爆
発等の問題で取扱いが困難である。また、平均径500
−超のものは樹脂中での分散性が悪くなるため好ましく
ない。金属粉末の配合量は、作業性の面からはエポキシ
樹脂中に1〜10wt%程度が良いが、特に限定される
ものではない。
Those with an average diameter of less than Lon11 are unstable and difficult to handle due to problems such as dust explosion. Also, the average diameter is 500
- is not preferable because the dispersibility in the resin becomes poor. The amount of metal powder to be blended in the epoxy resin is preferably about 1 to 10 wt% from the viewpoint of workability, but is not particularly limited.

用いられるエポキシ樹脂には、ビスフェノールA型、ビ
スフェノールF型、ビスフェノールAD型、ノボラック
型等があり、ウレタン、タール、フェノール、キシレン
、クマロン、ケトン等で変性したものでもよい。
Epoxy resins that can be used include bisphenol A type, bisphenol F type, bisphenol AD type, novolac type, etc., and those modified with urethane, tar, phenol, xylene, coumaron, ketone, etc. may also be used.

硬化剤としては、アミン系、ポリアミノアミド系、酸お
よび酸無水物系等の公知のものが使用できる。エポキシ
樹脂の硬化時には、各種硬化促進剤を添加する場合もあ
る。また、金属粉末の分散時に、分散性を向上させるた
め、必要に応じて界面活性剤、カップリング剤、酸化防
止剤等を小量加えてもよい。
As the curing agent, known curing agents such as amine type, polyaminoamide type, acid and acid anhydride type can be used. When curing the epoxy resin, various curing accelerators may be added. Further, when dispersing the metal powder, a small amount of a surfactant, a coupling agent, an antioxidant, etc. may be added as necessary to improve dispersibility.

また、使用する炭素繊維を、その表面における酸素原子
/炭素原子比(O/C)が0.1以上になるように表面
酸化処理した場合、表面酸化前の炭素繊維に比べて飽和
水酸化カルシウム中での表面電位が約0.LV程卑にな
るため、炭素繊維を表面酸化処理した後、前記樹脂でさ
らに表面処理すると炭素繊維の表面電位はより卑な方向
へ向かい、最も効果的なガルバニック腐食防止用炭素繊
維補強材になる。
In addition, when the carbon fibers used are subjected to surface oxidation treatment so that the oxygen atom/carbon atomic ratio (O/C) on the surface becomes 0.1 or more, compared to carbon fibers before surface oxidation, saturated calcium hydroxide The surface potential inside is about 0. Since LV becomes less noble, if the carbon fiber is surface oxidized and then further surface treated with the resin, the surface potential of the carbon fiber will become more noble, making it the most effective carbon fiber reinforcing material for galvanic corrosion prevention. .

表面酸化処理の方法としては、通常の空気酸化、電解酸
化、プラズマ酸化処理方法等がある。本発明における表
面酸化条件は、E S CA (ElectronSp
ectroscopy for Chemlcal A
nalysis)による表面分析において、酸素原子/
炭素原子比(O/C)を0.1以上、好ましくは0.2
以上にすることが望ましい。酸素原子/炭素原子比(O
/C)は、ESCAスペクトル中の01sとC1sのピ
ークより酸素原子数と炭素原子数を算出したその比を取
ったものである。
Examples of surface oxidation treatment methods include ordinary air oxidation, electrolytic oxidation, and plasma oxidation treatment methods. The surface oxidation conditions in the present invention are E S CA (ElectronSp
electronoscopy for chemical A
In the surface analysis by
Carbon atomic ratio (O/C) is 0.1 or more, preferably 0.2
It is desirable to do more than that. Oxygen atom/carbon atom ratio (O
/C) is the ratio of the number of oxygen atoms and the number of carbon atoms calculated from the 01s and C1s peaks in the ESCA spectrum.

このようにして表面処理した炭素繊維の表面電位は卑な
方向に向かい、鉄鋼や鉄合金乙の電位差が縮まり、カッ
プリング時の腐食電位、腐食電流が下がるため腐食速度
が減少する。
The surface potential of the carbon fibers surface-treated in this manner becomes less noble, the potential difference between the steel and the iron alloy decreases, and the corrosion potential and corrosion current during coupling decrease, resulting in a decrease in the corrosion rate.

本発明に係わる炭素繊維には、ポリアクリルニトリル(
PAN)繊維を原料としたPAN系炭素炭素繊維びター
ル・ピッチを原料としたピッチ系炭素繊維があり、種々
のタイプの市販製品が人手可能である。かかる炭素繊維
は、形態には限定がなく、製品を使用する最終目的、そ
の他の点を考慮して、連続繊維またはその織物、ネット
状物、あるいはチ1ソプドストランド、フェルト、短繊
維の状態で使用する。
The carbon fibers used in the present invention include polyacrylonitrile (
There are pitch-based carbon fibers made from tar pitch, and various types of commercially available products can be produced by hand. The form of such carbon fibers is not limited, and may be in the form of continuous fibers, woven fabrics, nets, strands, felt, short fibers, etc., depending on the final purpose of the product and other factors. Use with.

本発明における金属粉末を添加したエポキシ樹脂で炭素
繊維を被覆する方法は、これら全ての炭素繊維に適用可
能であり、その原料、形状等に限定されるものではない
。炭素繊維にサイジング処理が施されたものについては
、そのまま用いてもさしつかえないが、表面酸化処理す
る前にはサイジング剤を除去する方が望ましい。
The method of coating carbon fibers with an epoxy resin containing metal powder according to the present invention is applicable to all of these carbon fibers, and is not limited to the raw materials, shapes, etc. of the carbon fibers. Carbon fibers that have been subjected to sizing treatment may be used as is, but it is preferable to remove the sizing agent before surface oxidation treatment.

一方、鉄や鉄合金に対して安定な環境を形成するモルタ
ル、コンクリートまたはケイ酸カルシウム系材料等の水
硬性無機質材料を、前記の表面処理を施した炭素繊維を
短繊維、チョップ、連続繊維、メツシュ状等の状態で補
強材として用いることにより、通常の炭素繊維で強化し
た水硬性無機質硬化体に比べ、鉄鋼材料との複合化を容
易にした炭素繊維強化水硬性無機質硬化体を提供するこ
とができる。
On the other hand, hydraulic inorganic materials such as mortar, concrete, or calcium silicate materials, which form a stable environment for iron and iron alloys, can be used as short fibers, chopped fibers, continuous fibers, or carbon fibers that have undergone the above surface treatment. To provide a carbon fiber-reinforced hydraulic inorganic hardened body that can be easily composited with steel materials by being used as a reinforcing material in a mesh-like state, compared to a hydraulic inorganic hardened body reinforced with ordinary carbon fibers. I can do it.

この炭素繊維強化水硬性無機質硬化体は、鉄や鉄合金を
補強材として使用して、炭素繊維と鉄や鉄合金とが接触
した場合、本発明の炭素繊維と鉄筋との電位差が小さい
ため、ガルバニック腐食電流が小さくなり、鉄や鉄合金
の腐食速度は減少する。そのため、通常の炭素繊維を用
いた炭素繊維強化水硬性無機質硬化体に比べ、鉄や鉄合
金の腐食速度は大幅に減少する結果となり、建築材料と
しての耐久性、信頼性が向上する。
This carbon fiber-reinforced hydraulic inorganic hardened body uses iron or an iron alloy as a reinforcing material, and when the carbon fibers and the iron or iron alloy come into contact, the potential difference between the carbon fibers of the present invention and the reinforcing bars is small. The galvanic corrosion current becomes smaller and the corrosion rate of iron and iron alloys decreases. Therefore, compared to carbon fiber-reinforced hydraulic inorganic cured bodies using ordinary carbon fibers, the corrosion rate of iron and iron alloys is significantly reduced, resulting in improved durability and reliability as a building material.

(実 施 例) 実施例 1 PAN系の炭素繊維束(繊径ニア、5m、12,000
フイラメント、O/C比−0,0862、英ハイツル・
ゲラフィル社製)を、飽和水酸化カルシウム水溶液中で
の表面標準電位が、約−〇、71Vの鉄粉(福田金属社
製)を添加したエポキシ樹脂(主材:エビコート828
、硬化剤:5E−11s油化シ工ル社製)で集束し、8
0℃で硬化させた。
(Example) Example 1 PAN-based carbon fiber bundle (near diameter, 5 m, 12,000
Filament, O/C ratio -0,0862, Heitzl, UK
(manufactured by Gelafil Co., Ltd.) and an epoxy resin (main material: Ebicoat 828) to which iron powder (manufactured by Fukuda Metals Co., Ltd.) whose surface standard potential in a saturated calcium hydroxide aqueous solution is approximately -0, 71V is added.
, curing agent: 5E-11s (manufactured by Yuka Shikuru Co., Ltd.), and 8
Cured at 0°C.

硬化後、硬化体中の炭素繊維の体積%は、約51vof
I%となった。用いた鉄粉の平均粒子径及びエポキシ樹
脂に対する鉄粉の添加量は表1に示す通りである。
After curing, the volume percent of carbon fiber in the cured product is approximately 51 vof
It became I%. The average particle diameter of the iron powder used and the amount of iron powder added to the epoxy resin are shown in Table 1.

処理後炭素繊維束の電位を、照合電極として銀−塩化銀
電極(Ag /AgCf!/sat、Ki)を用いて、
セメント系材料硬化体中と類似の環境を形成する飽和水
酸化カルシウム水溶液中(pH−12,5)で通常のエ
レクトロメーターを用いて測定した結果を1表に示した
The potential of the treated carbon fiber bundle was determined using a silver-silver chloride electrode (Ag/AgCf!/sat, Ki) as a reference electrode.
Table 1 shows the results of measurements using a conventional electrometer in a saturated aqueous calcium hydroxide solution (pH-12.5), which forms an environment similar to that in a hardened cement material.

なお、表1で使用した電位は、銀−塩化銀電極の平衡電
位を0.197Vとして標準水素電極を基準とした値で
示した。また、使用した炭素繊維束の表面電位は0.1
47(V 5 NHE)であった。
Note that the potentials used in Table 1 are values based on a standard hydrogen electrode, with the equilibrium potential of the silver-silver chloride electrode being 0.197V. In addition, the surface potential of the carbon fiber bundle used was 0.1
47 (V 5 NHE).

表    1 鉄粉粒子径鉄粉添加量表面電位 c a >    (vt%)   (V vs NH
E)83.9    4.78    −0.0082
3.1    4.78    −0.02347.4
    4.76    0.01733.9    
146    0.077実施例 2 実施例1に用いたのと同じPAN系炭素繊維束をプラズ
マ酸化処理した後、この炭素繊維束(繊糸ニア、5m、
12.000フイラメント、O/C比■0゜121)を
、平均粒子系が約33.9−の鉄粉(福田金属社製)を
添加したエポキシ樹脂(主材:エビコート828、硬化
剤:5E−11、油化シェル社製)で集束し、80℃で
硬化させた。
Table 1 Iron powder particle size Iron powder addition amount Surface potential ca > (vt%) (V vs NH
E) 83.9 4.78 -0.0082
3.1 4.78 -0.02347.4
4.76 0.01733.9
146 0.077 Example 2 The same PAN-based carbon fiber bundle as used in Example 1 was subjected to plasma oxidation treatment, and then this carbon fiber bundle (fiber near, 5 m,
Epoxy resin (main material: Ebicoat 828, curing agent: 5E) containing 12.000 filament, O/C ratio ■0°121) and iron powder (manufactured by Fukuda Metals Co., Ltd.) with an average particle system of about 33.9. -11, manufactured by Yuka Shell Co., Ltd.) and hardened at 80°C.

飽和水酸化カルシウム水溶液中での表面標準電位が約−
〇、71Vの鉄粉の添加量は、エポキシ樹脂に対して4
.76vt%とした。この炭素繊維束の電位を、照合電
極として銀−塩化銀電極(Ag/AgCII/sat、
KCl)を用イテ、飽和7kl(IJルシウム水溶液中
で通常のエレクトロメーターを用いて測定した結果を表
2に示した。
The surface standard potential in a saturated calcium hydroxide aqueous solution is approximately -
〇, The amount of 71V iron powder added is 4 to epoxy resin.
.. It was set to 76vt%. The potential of this carbon fiber bundle was measured using a silver-silver chloride electrode (Ag/AgCII/sat,
Table 2 shows the results of measurements using a conventional electrometer in a saturated 7 kl (IJ) lucium aqueous solution.

実施例 3 実施例1に用いたのと同じPAN系炭素繊維束(繊糸ニ
ア、5m、12.000フイラメント、O/C比−0,
0882)を平均粒子系が約3.0−のアルミニウム粉
(高純度化学研究所製)を添加したエポキシ樹脂(主材
:エビコート828、硬化剤:5E−11、油化シェル
社製)で集束し、80℃で硬化させた。飽和水酸化カル
シウム水溶液中での表面電位が約−o、savのアルミ
ニウム粉の添加量は、エポキシ樹脂に対して4.76w
t%とした。
Example 3 The same PAN-based carbon fiber bundle as used in Example 1 (near yarn, 5 m, 12,000 filaments, O/C ratio -0,
0882) with an epoxy resin (main material: Ebicoat 828, curing agent: 5E-11, manufactured by Yuka Shell Co., Ltd.) to which aluminum powder (manufactured by Kojundo Kagaku Kenkyujo) with an average particle size of approximately 3.0- is added. and cured at 80°C. The amount of aluminum powder added with a surface potential of approximately -o, sav in a saturated calcium hydroxide aqueous solution is 4.76 w with respect to the epoxy resin.
It was set as t%.

この炭素繊維束の電位を、照合電極として、銀−塩化銀
電極(Ag/A g C1! /sat、K C12)
を用いて、飽和水酸化カルシウム水溶液中で通常のエレ
クトロメーターを用いて測定した結果を表2に示した。
Using the potential of this carbon fiber bundle as a reference electrode, a silver-silver chloride electrode (Ag/A g C1!/sat, K C12)
Table 2 shows the results of measurement using a conventional electrometer in a saturated calcium hydroxide aqueous solution.

比較例 1 実施例1に用いたのと同じPAN系炭素繊維束(繊糸ニ
ア、!os、12,000フイラメント、O/C比−0
,0862)をエポキシ樹脂(主材:エビコート828
、硬化剤:5E−11,油化シェル社製)で集束し、8
0℃で硬化させた。
Comparative Example 1 The same PAN-based carbon fiber bundle as used in Example 1 (fiber near, !os, 12,000 filaments, O/C ratio -0)
, 0862) with epoxy resin (main material: Ebicoat 828
, curing agent: 5E-11, manufactured by Yuka Shell Co., Ltd.), and 8
Cured at 0°C.

この炭素繊維束の電位を、照合電極として、銀−塩化銀
電極(Ag / A g CN /sat、K CN 
)を用いて、飽和水酸化カルシウム水溶液中で通常のエ
レクトロメーターを用いて測定し、その結果を表2に示
した。
Using the potential of this carbon fiber bundle as a reference electrode, a silver-silver chloride electrode (Ag/AgCN/sat, KCN
) was measured in a saturated aqueous calcium hydroxide solution using an ordinary electrometer, and the results are shown in Table 2.

比較例 2 ピッチ系炭素繊維(O/C比−0,0344、新日本製
鐵■製)の電位を、照合電極として銀−塩化銀電極(A
g/A g CII/sat、K Cfl )を用いて
、飽和水酸化カルシウム水溶液中で通常のエレクトロメ
ーターを用いて測定した結果を表2に示した。
Comparative Example 2 The potential of pitch-based carbon fiber (O/C ratio -0,0344, manufactured by Nippon Steel Corporation) was measured using a silver-silver chloride electrode (A) as a reference electrode.
Table 2 shows the results of measurements using an ordinary electrometer in a saturated calcium hydroxide aqueous solution using the following formula: g/A g CII/sat, K Cfl ).

表    2 表面電位(Vys 実施例 2      −0.103 実施例 3      −0.153 比較例 1       0.147 比較例 2       0.177 NHE) 実施例 4 実施例1に用いたのと同じPAN系炭素繊維束を実施例
1と同様な方法で、平均粒子系が83.9mの鉄粉を用
いエポキシ樹脂に対する添加量が4.76wt%さなる
ように表面処理し、モルタル中(普通ポルトランドセメ
ント、8号硅砂使用)に体積比(Vf)で2%になるよ
うに分散した。炭素繊維束の平均繊維長は約4kmとし
た。
Table 2 Surface potential (Vys Example 2 -0.103 Example 3 -0.153 Comparative example 1 0.147 Comparative example 2 0.177 NHE) Example 4 Same PAN-based carbon fiber as used in Example 1 The bundle was surface-treated in the same manner as in Example 1 using iron powder with an average particle size of 83.9 m so that the amount added to the epoxy resin was 4.76 wt%. (using silica sand) at a volume ratio (Vf) of 2%. The average fiber length of the carbon fiber bundle was approximately 4 km.

モルタルの水/セメント比を0.5としたモルタル中に
鉄筋(5mmφ)を炭素繊維と接触するように埋め込み
、1週間の湿空養生後、6ケ月問屋外暴露し、その間2
4時間毎に人工海水を噴霧した。
Reinforcing bars (5 mmφ) were embedded in mortar with a water/cement ratio of 0.5 so as to be in contact with carbon fibers, and after curing in humid air for one week, they were exposed outdoors for six months, during which time
Artificial seawater was sprayed every 4 hours.

6ケ月間の暴露後モルタルを粉砕し鉄筋の発錆面積を調
べた。その結果を表3に示した。
After 6 months of exposure, the mortar was crushed and the rusted area of the reinforcing bars was examined. The results are shown in Table 3.

比較例 3 比較例2で用いたのと同じピッチ系炭素繊維をモルタル
中(普通ポルトランドセメント、8号硅砂使用)にVf
で2%になるように分散した。炭素繊維の残存繊維長は
約311!Iであった。
Comparative Example 3 The same pitch-based carbon fiber used in Comparative Example 2 was mixed with Vf in mortar (using ordinary Portland cement and No. 8 silica sand).
It was distributed so that it was 2%. The remaining fiber length of carbon fiber is approximately 311! It was I.

モルタルの水/セメント比を0.5としたモルタル中に
鉄筋(5nusφ)を炭素繊維と接触するように埋め込
み、1週間の湿空養生後、6ケ月問屋外暴露し、その間
24時間毎に人工海水を噴霧した。
Reinforcing bars (5 nusφ) were embedded in mortar with a water/cement ratio of 0.5 so as to be in contact with carbon fibers, and after curing in humid air for 1 week, they were exposed outdoors for 6 months, during which time artificial heating was performed every 24 hours. Sprayed with seawater.

6ケ月間の暴露後モルタルを粉砕し鉄筋の発錆状況を調
べた。その結果を表3に示した。
After 6 months of exposure, the mortar was crushed and the rusting status of the reinforcing bars was examined. The results are shown in Table 3.

比較例 4 実施例1に用いたのと同じPAN系炭素繊維束を比較例
1と同様な方法でエポキシ樹脂で表面処理し、モルタル
中(普通ポルトランドセメント、8号硅砂使用)に体積
比(Vf)で2%になるように分散した。炭素繊維束の
平均繊維長は約40mmとした。
Comparative Example 4 The same PAN-based carbon fiber bundle used in Example 1 was surface-treated with epoxy resin in the same manner as in Comparative Example 1, and the volume ratio (Vf ) was distributed to 2%. The average fiber length of the carbon fiber bundle was approximately 40 mm.

モルタルの水/セメント比を0.5としたモルタル中に
鉄筋(5vaIlφ)を炭素繊維と接触するように埋め
込み、1週間の湿空養生後、6ケ月問屋外暴露し、その
間24時間毎に人工海水を噴霧した。
Reinforcing bars (5vaIlφ) were embedded in mortar with a water/cement ratio of 0.5 so as to be in contact with the carbon fibers, and after curing in humid air for one week, they were exposed outdoors for six months, during which time artificial Sprayed with seawater.

6ケ月間の暴露後モルタルを粉砕し鉄筋の発錆面積を調
べた。その結果を表3に示した。
After 6 months of exposure, the mortar was crushed and the rusted area of the reinforcing bars was examined. The results are shown in Table 3.

表    3 鉄筋の発錆面積(%) 実施例 40.1 比較例 36.8 比較例 4i、9 以上、これらの実施例により、炭素繊維に表面処理を施
すことにより炭素繊維の表面電位が卑な方向になり、そ
の結果鉄筋との電位差が減少し腐食速度が減少すること
がわかった。
Table 3 Rust area of reinforcing steel (%) Example 40.1 Comparative example 36.8 Comparative example 4i, 9 As described above, by applying surface treatment to carbon fiber, the surface potential of carbon fiber becomes less noble. It was found that as a result, the potential difference with the reinforcing steel was reduced and the corrosion rate was reduced.

(発明の効果) 本発明によれば、鉄および鉄合金との間にガルバニック
腐食の生じにくい炭素繊維補強材および炭素繊維強化水
硬性無機質材料を得ることが可能となった。そのため、
通常の炭素繊維を用いた炭素繊維強化水硬性無機質材料
に比べ、接触する鉄や鉄合金の腐食速度は大幅に減少す
る結果となり、建築材料としての耐久性、信頼性が向上
した。
(Effects of the Invention) According to the present invention, it has become possible to obtain a carbon fiber reinforcing material and a carbon fiber reinforced hydraulic inorganic material that are unlikely to cause galvanic corrosion between them and iron and iron alloys. Therefore,
Compared to carbon fiber-reinforced hydraulic inorganic materials using ordinary carbon fibers, the corrosion rate of iron and iron alloys that come into contact with this material is significantly reduced, resulting in improved durability and reliability as a building material.

代 理 人teenager Reason Man

Claims (1)

【特許請求の範囲】 1、炭素よりも卑な表面電位を示す平均径10nm〜5
00μmの金属粉末を添加したエポキシ樹脂で、炭素繊
維の表面を被覆してなる炭素繊維補強材。 2、炭素繊維が、その表面における酸素原子/炭素原子
比(O/C)が0.1以上である請求項1記載の炭素繊
維補強材。 3、モルタル、コンクリートまたはケイ酸カルシウム系
材料中に請求項1または2記載の炭素繊維補強材を含有
させたことを特徴とする炭素繊維強化水硬性無機質硬化
体。
[Claims] 1. An average diameter of 10 nm to 5, which exhibits a surface potential less noble than carbon.
A carbon fiber reinforcing material made by coating the surface of carbon fiber with epoxy resin containing 00 μm metal powder. 2. The carbon fiber reinforcing material according to claim 1, wherein the carbon fiber has an oxygen atom/carbon atomic ratio (O/C) on the surface of the carbon fiber of 0.1 or more. 3. A carbon fiber-reinforced hydraulic inorganic hardened body, characterized in that the carbon fiber reinforcing material according to claim 1 or 2 is contained in mortar, concrete, or a calcium silicate-based material.
JP22109689A 1989-08-28 1989-08-28 Carbon fiber-reinforced material and carbon fiber-reinforced inorganic cured material Granted JPH0383840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22109689A JPH0383840A (en) 1989-08-28 1989-08-28 Carbon fiber-reinforced material and carbon fiber-reinforced inorganic cured material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22109689A JPH0383840A (en) 1989-08-28 1989-08-28 Carbon fiber-reinforced material and carbon fiber-reinforced inorganic cured material

Publications (2)

Publication Number Publication Date
JPH0383840A true JPH0383840A (en) 1991-04-09
JPH0525823B2 JPH0525823B2 (en) 1993-04-14

Family

ID=16761427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22109689A Granted JPH0383840A (en) 1989-08-28 1989-08-28 Carbon fiber-reinforced material and carbon fiber-reinforced inorganic cured material

Country Status (1)

Country Link
JP (1) JPH0383840A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223991A (en) * 2011-04-20 2012-11-15 Taisei Plas Co Ltd Adhesive article between aluminum alloy and cfrp material excellent in weatherability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223991A (en) * 2011-04-20 2012-11-15 Taisei Plas Co Ltd Adhesive article between aluminum alloy and cfrp material excellent in weatherability

Also Published As

Publication number Publication date
JPH0525823B2 (en) 1993-04-14

Similar Documents

Publication Publication Date Title
Xue et al. In-situ bonding technology and excellent anticorrosion activity of graphene oxide/hydroxyapatite nanocomposite pigment
JP3197689B2 (en) Cathodic protection system, coating therefor and coating composition therefor
Khodaei et al. SiC nanoparticles incorporation in electroless NiP-Graphene oxide nanocomposite coatings
KR101891243B1 (en) Mortar composite for repairing cross-section of concrete structures and method of repairing concrete structures by using the same
Suleiman et al. Surface characterisation, corrosion and mechanical properties of polyester-polyester/snail shell powder coatings of steel pipeline for naval applications
CN108440018A (en) The method and gained surfacecti proteon type concrete of concrete surface protection
Nazeer et al. Aramid-zirconia nanocomposite coating with excellent corrosion protection of stainless steel in saline media
CN101240442B (en) Metal nano composite galvanized coating electroplate liquid formulation
JPH0383840A (en) Carbon fiber-reinforced material and carbon fiber-reinforced inorganic cured material
Huang et al. Study on structure and performance of surface‐metallized carbon fibers reinforced rigid polyurethane composites
Yakubu et al. Improved corrosion resistance, mechanical and wear behaviors of particulate composite coating of steel pipeline for marine environment
CN109401610A (en) The wear-resistant antibacterial coating of plate
JP3973039B2 (en) Composite plated product and method for producing the same
JP5443888B2 (en) Cathodic protection method for concrete structures by galvanic anode method
KR102133009B1 (en) A Method for Improving Durability of Structures Including Newly Built, Repair, and Reinforcement
CN1113927A (en) Aqueous anti-corrosion treating agent and its preparing and using method
Kumar et al. A study on the corrosion inhibition properties of nano MWCNTs on TMT steel rebar developed using electroless nickel phosphorous (Ni–P) coating
JP2019059662A (en) Acid resistance cement composition
JP2876514B2 (en) Carbon fiber reinforced concrete
JP2007302970A (en) Steel material with film having excellent corrosion resistance and corrosion fatigue resistance, and its production method
JP2905690B2 (en) Carbon fiber reinforced concrete
CN1528955A (en) Nano carbon tube composite electroplating zinc film preparing method
Obayi et al. IY Suleiman, VS Aigbodion
JP2003160880A (en) Member made of pc steel with blackened anti-corrosive coating thereon, and prestressed concrete structure using the same
EP0059023A1 (en) Process for improving the corrosion resistance of a ferrous metal body