JP2019059662A - Acid resistance cement composition - Google Patents
Acid resistance cement composition Download PDFInfo
- Publication number
- JP2019059662A JP2019059662A JP2018170222A JP2018170222A JP2019059662A JP 2019059662 A JP2019059662 A JP 2019059662A JP 2018170222 A JP2018170222 A JP 2018170222A JP 2018170222 A JP2018170222 A JP 2018170222A JP 2019059662 A JP2019059662 A JP 2019059662A
- Authority
- JP
- Japan
- Prior art keywords
- furnace slag
- blast furnace
- cement
- cumulative volume
- volume ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Lining And Supports For Tunnels (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
本発明は、酸性濃度の高い環境下での使用に適した耐酸性セメント組成物に関するものである。 The present invention relates to an acid resistant cement composition suitable for use in an environment with high acid concentration.
下水道関連施設では、硫酸などの酸とセメントの水和生成物である水酸化カルシウムおよびカルシウムシリケート水和物との中和反応が起こる。この反応により、セメントの水和生成物が分解されることでコンクリート構造物の劣化が起こる。下水道関連施設のみならず化学工場など酸性環境下にあるコンクリートは多い。 In sewerage related facilities, neutralization reaction occurs with calcium hydroxide and calcium silicate hydrate which are hydration products of acid such as sulfuric acid and cement. This reaction causes degradation of the concrete structure due to decomposition of cement hydration products. There is a lot of concrete under acid environment such as not only sewerage related facilities but also chemical factories.
特許文献1では、普通ポルトランドセメントが30〜40質量%、シリカフュームが12〜25質量%、高炉水砕スラグ粉が40〜58質量%で、これら3成分で100質量%となり、シリカフュームと高炉水砕スラグ粉との割合が、質量比で、高炉水砕スラグ粉/シリカフューム=2.0〜3.2であり、普通ポルトランドセメントとシリカフュームとの割合が、質量比で、普通ポルトランドセメント/シリカフューム=1.9〜2.5である耐酸性セメント組成物を開示している。 In Patent Document 1, 30 to 40% by mass of ordinary Portland cement, 12 to 25% by mass of silica fume, and 40 to 58% by mass of ground granulated blast furnace slag powder, these three components become 100% by mass, silica fume and ground granulated blast furnace The ratio to the slag powder is, by mass ratio, ground granulated blast furnace slag powder / silica fume = 2.0 to 3.2, and the ratio of ordinary portland cement to silica fume is, by mass ratio, ordinary portland cement / silica fume = 1 An acid resistant cement composition is disclosed which is 9 to 2.5.
特許文献2では、新規な無機バインダー系、水硬性モルタルの製造のための無機バインダー系の使用、及びこのバインダー系を含むモルタルに関する技術を開示している。潜在水硬性バインダーは、高炉スラグ、スラグ砂、粉砕高炉スラグ、電熱式燐スラグまたは鉄鋼スラグから選択されている。 Patent Document 2 discloses a novel inorganic binder system, the use of an inorganic binder system for the production of a hydraulic mortar, and techniques relating to a mortar comprising this binder system. The latent hydraulic binder is selected from blast furnace slag, slag sand, ground blast furnace slag, electrothermal phosphorus slag or steel slag.
特許文献3では、コンクリートやモルタルを保護し得る、耐食性モルタル組成物を開示している。(A)セメント、(B)高炉スラグ微粉末、(C)フライアッシュ、(D)膨張材、(E)カルシウムとアルミニウムを化学成分として含む特定の骨材、(F)増粘剤を含有し、セメント用ポリマーを実質的に含まない耐食性モルタル組成物で、(E)の骨材としてスラグ系骨材、例えば高炉スラグ骨材、電気炉酸化スラグ骨材等が挙げられている。 Patent Document 3 discloses a corrosion resistant mortar composition capable of protecting concrete and mortar. (A) cement, (B) ground granulated blast-furnace slag, (C) fly ash, (D) expansive material, (E) specific aggregate containing calcium and aluminum as a chemical component, (F) containing a thickener A corrosion-resistant mortar composition substantially containing no cement polymer, and as an aggregate of (E), a slag-based aggregate such as blast furnace slag aggregate, electric furnace oxidized slag aggregate, etc. is mentioned.
特許文献4には、耐塩害性、耐酸性の特性を有する密実な硬化体を短時間に製造できる高炉スラグ粉末を主体とした耐硫酸セメント硬化体が開示されている。高炉スラグを主体としたセメント系結合材で成形したセメント硬化体であって、粗骨材を含む内部コンクリートと、コンクリートの表層に3〜10mm未満の層厚でモルタル成分のみで形成した反応保護層とによる二層構造とし、反応保護層にセメント結合材(A)が高炉スラグ粉末(B)と石灰・石膏複合物(C)とセメントとを含み、細骨材のすべてを高炉スラグ細骨材としたモルタルとしている。 Patent Document 4 discloses a sulfuric acid resistant cement-based cured product mainly composed of blast furnace slag powder capable of producing a solid cured product having salt resistance and acid resistant properties in a short time. A cement-hardened body formed with cement-based binder mainly composed of blast furnace slag, which is an internal concrete containing coarse aggregate and a reaction protective layer formed of only a mortar component with a layer thickness of less than 3 to 10 mm on the surface layer of concrete. The cement binder (A) contains blast furnace slag powder (B), lime / gypsum composite (C) and cement in the reaction protective layer, and all of the fine aggregate is blast furnace slag fine aggregate And mortar.
非特許文献1には、結合材の一部を高炉スラグ微粉末とし、細骨材の全量を高炉スラグ細骨材とすることで、耐酸性の向上が図れたことが記述されている。 Non-Patent Document 1 describes that the acid resistance is improved by using a part of the bonding material as blast furnace slag fine powder and using the entire amount of fine aggregate as blast furnace slag fine aggregate.
非特許文献2には、モルタルの細骨材に高炉スラグ細骨材を使用することで、耐酸性の向上が図れたことが記述されている。 Non-Patent Document 2 describes that the use of blast furnace slag fine aggregate as the fine aggregate of mortar improves the acid resistance.
化学工場などは下水道関連施設より酸性濃度の高い環境である。しかし、耐酸性のセメント材料は5%硫酸で評価することが一般的であり、従来のセメント系材料では15%硫酸に対する耐久性を有しない。 Chemical factories are environments with higher acid concentration than sewerage related facilities. However, acid-resistant cement materials are generally evaluated at 5% sulfuric acid, and conventional cement-based materials do not have resistance to 15% sulfuric acid.
特許文献1では、シリカフュームが12〜25質量%と多く、シリカフュームの増量は材料コストの問題で対応が難しい。そのため、シリカフュームを減量するかまたは使用しない材料で対応することが望まれる。 In Patent Document 1, the amount of silica fume is as large as 12 to 25% by mass, and increasing the amount of silica fume is difficult to cope with due to the problem of material cost. Therefore, it is desirable to cope with materials that reduce or do not use silica fume.
また、耐酸性にはセメント割合を減少させることが有効であるが、そうすると強度不足となる恐れがある。さらに、セメントの割合の減少のみで15%硫酸などの高濃度の酸に対する耐久性の付与は困難である。 In addition, although it is effective to reduce the cement ratio for acid resistance, there is a risk that the strength will be insufficient. Furthermore, it is difficult to impart durability to high concentration acids such as 15% sulfuric acid only by decreasing the proportion of cement.
本発明は、上述のような課題の解決を図ったものであり、化学工場などにおける酸性濃度の非常に高い環境下でも硬化物の劣化を抑制することができる耐酸性セメント組成物を提供することを目的としている。 The present invention is intended to solve the problems as described above, and to provide an acid resistant cement composition capable of suppressing the deterioration of a cured product even in an environment with a high acid concentration in a chemical plant or the like. It is an object.
本発明に係る耐酸性セメント組成物は、セメントと、累積体積率50%粒径が1.0〜5.0μmの高炉スラグ微粉末および/または累積体積率50%粒径が1.0〜5.0μmのフライアッシュを用いたことを特徴とするものである。
本発明において、累積体積率50%粒径が1.0〜5.0μmの高炉スラグ微粉末と累積体積率50%粒径が1.0〜5.0μmのフライアッシュの合計は、10〜85質量%であることが望ましい。
The acid resistant cement composition according to the present invention comprises cement, ground fine particles of blast furnace slag having a 50% cumulative volume ratio of 1.0 to 5.0 μm, and / or a 50% cumulative volume ratio of 1.0 to 5 .0 .mu.m fly ash is used.
In the present invention, the total of blast furnace slag fine powder having a cumulative volume ratio of 50% particle diameter of 1.0 to 5.0 μm and fly ash having a cumulative volume ratio of 50% particle diameter of 1.0 to 5.0 μm is 10 to 85. It is desirable that it is mass%.
耐酸性セメント組成物として、セメントに、累積体積率50%粒径が1.0〜5.0μmの高炉スラグ微粉末および/または累積体積率50%粒径が1.0〜5.0μmのフライアッシュを混合することで、耐酸性が向上するが、セメント量が減るとコンクリートあるいはモルタルとしての圧縮強度が低下するため、累積体積率50%粒径が1.0〜5.0μmの高炉スラグ微粉末と累積体積率50%粒径が1.0〜5.0μmのフライアッシュの合計は、85%以下であることが望ましい。 As an acid resistant cement composition, cement is made of ground granulated blast furnace slag having a 50% cumulative volume ratio of 1.0 to 5.0 μm, and / or a 50% cumulative volume percentage of 1.0 to 5.0 μm of fly. The acid resistance is improved by mixing the ash, but the compressive strength as concrete or mortar is reduced when the cement amount is reduced, so that the blast furnace slag fines having a cumulative volume ratio of 50% particle diameter of 1.0 to 5.0 μm. It is desirable that the sum of the powder and the fly ash having a 50% cumulative volume fraction particle diameter of 1.0 to 5.0 μm be 85% or less.
また、累積体積率50%粒径が1.0〜5.0μmの高炉スラグ微粉末と累積体積率50%粒径が1.0〜5.0μmのフライアッシュの合計が10%以下の場合は、十分な耐酸性効果が得にくい。 In addition, when the total of blast furnace slag fine powder with a cumulative volume fraction of 50% particle diameter of 1.0 to 5.0 μm and fly ash of a cumulative volume percentage of 50% particle diameter of 1.0 to 5.0 μm is 10% or less , It is difficult to obtain a sufficient acid resistance effect.
累積体積率50%粒径が1.0〜5.0μmの高炉スラグ微粉末と、累積体積率50%粒径が1.0〜5.0μmのフライアッシュフライアッシュの割合(質量比)においては、概してフライアッシュの割合が多いほど耐酸性効果が大きい反面、高炉スラグ微粉末が多いほど高い強度が得られる。 In the ratio (mass ratio) of ground granulated blast furnace slag powder having a cumulative volume ratio of 50% particle diameter of 1.0 to 5.0 μm and fly ash fly ash having a cumulative volume ratio of 50% particle diameter of 1.0 to 5.0 μm Generally, the higher the proportion of fly ash, the greater the acid resistance effect, while the higher the ground granulated blast furnace slag, the higher the strength obtained.
本発明のセメント組成物におけるセメントの割合としては、15〜40質量%が好ましい。15質量%より少ないと、コンクリートまたはモルタルとしての十分な強度が得にくく、40質量%より多くなると十分な耐酸性効果が得にくい。 As a ratio of the cement in the cement composition of this invention, 15-40 mass% is preferable. If it is less than 15% by mass, it is difficult to obtain sufficient strength as concrete or mortar, and if it is more than 40% by mass, it is difficult to obtain a sufficient acid resistance effect.
本発明では、セメント組成物にさらに繊維を添加することで、耐酸性効果の向上が図れる。繊維の添加量が多いほど硫酸に対する抵抗性が大きく、繊維の添加量としては結合材に対する外割で0.15〜0.50質量%が好ましい。 In the present invention, the acid resistance effect can be improved by further adding fibers to the cement composition. The larger the amount of fiber added, the higher the resistance to sulfuric acid, and the amount of fiber added is preferably 0.15 to 0.50% by mass in terms of external ratio to the binder.
セメント組成物の細骨材として、高炉水砕スラグ砂などの高炉スラグ細骨材を用いることで、耐酸性を向上させることができる。高炉スラグ細骨材を用いた場合、珪砂の場合と比べて、質量変化や中性化深さが改善される。 The acid resistance can be improved by using a blast furnace slag fine aggregate such as blast furnace granulated slag sand as the fine aggregate of the cement composition. When blast furnace slag fine aggregate is used, mass change and carbonation depth are improved compared with the case of silica sand.
本発明の耐酸性セメント組成物は、従来の耐酸性セメント組成物と比較して、より酸性濃度の高い環境下でも硬化物の劣化を抑制することができ、下水道施設などに限らず化学工場などでも大きな耐酸性効果を発揮することができる。 The acid resistant cement composition of the present invention can suppress the deterioration of a cured product even in an environment with a higher acid concentration than conventional acid resistant cement compositions, and is not limited to sewerage facilities etc. However, a large acid resistance effect can be exhibited.
〔実験1〕
本発明の効果を確認するため、実験1ではJIS規格のフライアッシュ(フライアッシュ1)と本発明で規定するフライアッシュ(フライアッシュ2)、JIS規格の高炉スラグ微粉末(高炉スラグ微粉末1)と本発明で規定する高炉スラグ微粉末(高炉スラグ微粉末2)を用い、これらを普通セメント(普通ポルトランドセメントを使用)、細骨材(セメント協会強さ試験用標準砂)、及び供試体No.14についてはシリカヒュームと混合してモルタルの供試体を作成し、圧縮強度及び硫酸浸透を比較した。
[Experiment 1]
In order to confirm the effect of the present invention, in Experiment 1, fly ash according to JIS standard (fly ash 1), fly ash defined according to the present invention (fly ash 2), blast furnace slag fine powder according to JIS standard (blast furnace slag fine powder 1) And ground blast furnace slag fine powder (blast furnace slag fine powder 2) specified in the present invention, these are ordinary cement (normal portland cement is used), fine aggregate (standard sand for cement association strength test), and specimen No. For .14, mortar specimens were prepared by mixing with silica fume, and compressive strength and sulfuric acid penetration were compared.
(1) 供試体の組成
供試体(No.1〜No.14)の組成を表1に示す。
(1) Composition of Specimen The composition of the specimen (No. 1 to No. 14) is shown in Table 1.
表1における使用材料は以下の通りである。
普通セメント:普通ポルトランドセメント、
フライアッシュ1:JISII種のフライアッシュ、
フライアッシュ2:フライアッシュ1を粉砕したもの(累積体積率50%粒径が3.3μm)、
高炉スラグ微粉末1:高炉スラグ微粉末4000
高炉スラグ微粉末2:高炉スラグ微粉末1を粉砕したもの(累積体積率50%粒径が1.6μm)、
シリカフューム:シリカヒューム(JISA6207)
The materials used in Table 1 are as follows.
Normal cement: Normal portland cement,
Fly ash 1: JIS II fly ash,
Fly ash 2: crushed fly ash 1 (cumulative volume ratio 50% particle size 3.3 μm),
Blast furnace slag fine powder 1: Blast furnace slag fine powder 4000
Blast furnace slag fine powder 2: Granulated blast furnace slag fine powder 1 (cumulative volume ratio 50% particle diameter is 1.6 μm),
Silica fume: silica fume (JISA 6207)
(2) 供試体の作成
モルタル(水/結合材=30%、結合材:細骨材=1:1.4(質量比)、0打フロー:260±10mm、空気量4.0%以下となるように高性能AE減水剤、消泡剤で調整)をφ5×10mmの供試体に成型して、水中養生と蒸気養生にて作成した。
蒸気養生は、前養生2時間、60℃まで2時間で上昇、60℃で3時間保持、17時間かけて20℃まで下降した。
(2) Preparation of specimen Mortar (water / binder = 30%, binder: fine aggregate = 1: 1.4 (mass ratio), 0 stroke flow: 260 ± 10 mm, air amount 4.0% or less So as to become a high performance AE water reducing agent, prepared with a defoamer) into a sample of φ 5 × 10 mm, and made by curing in water and steam curing.
The steam curing increased for 2 hours to 60 ° C. for 2 hours, was maintained at 60 ° C. for 3 hours, and decreased to 20 ° C. over 17 hours.
(3) 試験方法
「下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル平成24年4月」に準拠した。ただし、硫酸は5%溶液ではなく15%溶液で浸漬した。
No.1〜No.3、No.13、No.14が比較例、No.4〜No.12が実施例である。
(3) Test method It was based on "corrosion control technology and anticorrosion technology manual for sewer concrete structure April 2012". However, sulfuric acid was immersed in a 15% solution instead of a 5% solution.
Nos. 1 to 3, No. 13 and No. 14 are comparative examples, and Nos. 4 to 12 are examples.
(4) 試験結果
試験結果を表2に示す。
表2より、比較例であるNo.1〜No.3は、本発明の実施例であるNo.4〜No.12と比較して、水中養生の材齢3日と蒸気養生の強度が小さいことが分かる。 From Table 2, No. 1 to No. 3 which are comparative examples are 3 days in age of water curing and strength of steam curing is smaller than No. 4 to No. 12 which is an example of the present invention. I understand that.
フライアッシュ(フライアッシュ1またはフライアッシュ2)と高炉スラグ微粉末(高炉スラグ微粉末1または高炉スラグ微粉末2)の割合(質量比)との関係では、概してフライアッシュの割合が多く、高炉スラグ微粉末が少ないほど、硫酸浸漬の結果が良好である反面、フライアッシュの割合が少なく、高炉スラグ微粉末が多いほど圧縮強度が高い。 In relation to the ratio (mass ratio) of fly ash (fly ash 1 or 2) and blast furnace slag fine powder (blast furnace slag fine powder 1 or blast furnace slag fine powder 2), the ratio of fly ash is generally large, blast furnace slag The smaller the fine powder, the better the result of the sulfuric acid immersion, but the smaller the proportion of fly ash, and the larger the ground granulated blast furnace slag, the higher the compressive strength.
また、フライアッシュ(フライアッシュ1またはフライアッシュ2)と高炉スラグ微粉末(高炉スラグ微粉末1または高炉スラグ微粉末2)の割合(質量比)が同じもの同士を比較した場合、すなわちNo.1とNo.4、No.7、No.10の比較と、No.2とNo.5、No.8、No.11の比較と、No.3とNo.6、No.9、No.12の比較においても、本発明の実施例の方が硫酸浸透の結果が良好であることが分かる。 Also, when the proportions (mass ratios) of fly ash (fly ash 1 or fly ash 2) and blast furnace slag fine powder (blast furnace slag fine powder 1 or blast furnace slag fine powder 2) are the same, that is, No. 1 No.4, No.7, No.10 and No.2 and No.5, No.8, No.11, No.3 and No.6, No.9, No.12 Also in the comparison of the above, it can be seen that the results of sulfuric acid permeation are better in the example of the present invention.
本発明の実施例であるNo.4〜No.12は、比較例であるNo.13とNo.14と比較して、15%硫酸浸漬による供試体の質量減少率、中性化深さ、硫酸イオン浸透深さがかなり小さく、耐酸性に優れていることが分かる。 No. 4 to No. 12, which are examples of the present invention, have a weight reduction rate, carbonation depth, and the like of the test sample by immersion in 15% sulfuric acid as compared with comparative examples No. 13 and No. 14. It can be seen that the sulfate ion penetration depth is very small and the acid resistance is excellent.
〔実験2〕
実験2では繊維を添加した場合、及びセメントの割合を変えた場合について実験を行った。繊維以外の使用材料および試験方法は実験1と同じである。ただし、蒸気養生は行っていない。
[Experiment 2]
In Experiment 2, experiments were carried out when fibers were added and when the proportion of cement was changed. Materials used and test methods other than fiber are the same as in Experiment 1. However, steam curing has not been done.
(1) 供試体の組成
供試体(No.15〜No.35)の組成を表3に示す。
(1) Composition of Specimen The composition of the specimen (No. 15 to No. 35) is shown in Table 3.
(2) 繊維の性質および繊維の組成
繊維の性質を表4に、繊維の組成を表5に示す。
なお、表4の「タフバインダー」は東レ・アムテックス株式会社の登録商標、「パルチップ」は萩原工業株式会社の登録商標である。
表5の数値は、結合材に対する割合(%)である。細骨材の内割添加。
(2) Properties of fiber and composition of fiber Table 4 shows properties of fiber and Table 5 shows composition of fiber.
"Tough binder" in Table 4 is a registered trademark of Toray Amtex Co., Ltd., and "Pal tip" is a registered trademark of Ebara Industries, Ltd.
The numerical values in Table 5 are the ratio (%) to the binder. Internal percentage addition of fine aggregate.
(3) 試験結果
試験結果を表6に示す。
(3) Test results Table 6 shows the test results.
表6より、セメントの割合が少ない場合に硫酸に対する抵抗性が大きいことが分かる。また、本発明に規定するフライアッシュを用いた場合に硫酸に対する抵抗性が大きい。 It can be seen from Table 6 that when the proportion of cement is low, the resistance to sulfuric acid is high. Moreover, when the fly ash specified in the present invention is used, the resistance to sulfuric acid is large.
繊維の添加により硫酸に対する抵抗性が大きくなった。特にナイロンの効果が大きい。また、繊維の添加量が多いほど硫酸に対する抵抗性が大きい。同一の繊維添加量のとき繊維長が異なるものの組み合わせた場合では硫酸に対する抵抗性が小さくなる傾向となる。 The addition of fibers increased the resistance to sulfuric acid. Especially the effect of nylon is large. Also, the greater the amount of fiber added, the greater the resistance to sulfuric acid. When the fiber addition amount is the same, the resistance to sulfuric acid tends to be low when the fiber lengths are different but combined.
〔実験3〕
実験3では細骨材(珪砂)を高炉水砕スラグ砂に変えた場合について実験を行った。
(1) 供試体の組成
供試体(No.14、36、37)の組成を表7に示す。No.14は、実験1で示したものと同じである。
In Experiment 3, an experiment was conducted on the case where fine aggregate (silica sand) was changed to granulated blast furnace slag sand.
(1) Composition of Specimen The composition of the specimen (No. 14, 36, 37) is shown in Table 7. No. 14 is the same as that shown in Experiment 1.
表7における使用材料は以下の通りである。
普通セメント:普通ポルトランドセメント
高炉スラグ微粉末1:高炉スラグ微粉末4000
高炉スラグ微粉末2:高炉スラグ微粉末1を粉砕したもの(累積体積率50%粒径が1.6μm)
珪砂1:日瓢礦業株式会社製 3号珪砂
珪砂2:日瓢礦業株式会社製 6号珪砂
珪砂1と珪砂2は、質量比が7対3の割合で混合した。
高炉水砕スラグ砂:JFEスチール株式会社製の水砕スラグを300μmふるいにかけた。300μmふるいの通過分と残留分を質量比で1対1の割合で混合した。
The materials used in Table 7 are as follows.
Ordinary cement: Ordinary portland cement Blast furnace slag fine powder 1: Blast furnace slag fine powder 4000
Ground granulated blast furnace slag 2: Powder ground of ground granulated blast furnace slag 1 (cumulative volume ratio 50% particle diameter 1.6 μm)
Silica sand 1: No. 3 silica sand made by Nippon Kogyo Co., Ltd. Silica sand 2: No. 6 silica sand made by Nippon Kogyo Co., Ltd. Silica sand 1 and silica sand 2 were mixed at a mass ratio of 7 to 3.
Granulated blast furnace slag sand: A 300 μm sieve was applied to a granulated slag manufactured by JFE Steel Corporation. The passing portion of the 300 μm sieve and the remaining portion were mixed at a mass ratio of 1: 1.
(2) 供試体の作成
モルタル(水/結合材=30%、結合材:細骨材=1:1.4(質量比)、15打フロー:170±10mmとなるように高性能AE減水剤で調整)をΦ5×10mmの供試体に成型して、水中養生にて作成した。
(2) Preparation of the test specimen mortar (water / binder = 30%, binder: fine aggregate = 1: 1.4 (mass ratio), 15 stroke flow: 170 ± 10 mm, high performance AE water reducing agent Prepared in Φ5 × 10 mm and prepared by curing in water.
(3) 試験方法
「下水道コンクリート構造物の腐食抑制技術及び防食技術マニュアル平成24年4月」に準拠した。硫酸は当該規格の通りの5%溶液に浸漬した。
(3) Test method It was based on "corrosion control technology and anticorrosion technology manual for sewer concrete structure April 2012". The sulfuric acid was immersed in a 5% solution as per the specification.
(4) 試験結果
試験結果を表8に示す。
(4) Test results Table 8 shows the test results.
表8より、細骨材として高炉水砕スラグ砂を用いたNo.37は、比較例であるNo.14とNo.36と比較して、水中養生の材齢3日の圧縮強度が大きいことが分かる。材齢28日のNo.37の圧縮強度は、No.36よりも小さいが、No.14よりは大きく、良好な結果であるといえる。 From Table 8, No. 37 using ground granulated blast-furnace slag sand as fine aggregate has a greater compressive strength at 3 days of aging in water, compared to No. 14 and No. 36 which are comparative examples. I understand. Although the compressive strength of No. 37 of material age 28 is smaller than No. 36, it is larger than No. 14, and it can be said that it is a favorable result.
また、細骨材として高炉水砕スラグ砂を用いたNo.37は、比較例であるNo.14とNo.36と比較して、5%硫酸浸漬による供試体の質量変化率、中性化深さが小さく、耐酸性に優れていることが分かる。 In addition, No. 37 using ground granulated blast furnace slag sand as fine aggregate, compared with No. 14 and No. 36 which are comparative examples, the mass change rate of the test sample by 5% sulfuric acid immersion, carbonation It can be seen that the depth is small and the acid resistance is excellent.
Claims (5)
The cement composition according to any one of claims 1 to 4, wherein blast furnace slag fine aggregate is used as the fine aggregate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017182055 | 2017-09-22 | ||
JP2017182055 | 2017-09-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019059662A true JP2019059662A (en) | 2019-04-18 |
JP7123481B2 JP7123481B2 (en) | 2022-08-23 |
Family
ID=66176219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018170222A Active JP7123481B2 (en) | 2017-09-22 | 2018-09-12 | Acid-resistant cement composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7123481B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021075429A (en) * | 2019-11-11 | 2021-05-20 | 住友大阪セメント株式会社 | Covering material, tubular molded body, method for producing tubular molded body, and covering method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0986978A (en) * | 1995-09-19 | 1997-03-31 | Denki Kagaku Kogyo Kk | Mixed cement composition |
JP2002336813A (en) * | 2001-05-11 | 2002-11-26 | Electric Power Dev Co Ltd | Multifunctional fly ash and method of manufacturing the same |
JP2005324996A (en) * | 2004-05-17 | 2005-11-24 | Ohbayashi Corp | Acid-resistant concrete repair material |
JP2009234818A (en) * | 2008-03-26 | 2009-10-15 | Ube Ind Ltd | Hydraulic composition and hardened body |
JP2010155734A (en) * | 2008-12-26 | 2010-07-15 | Ohbayashi Corp | Acid resistant cement composition |
JP2011088800A (en) * | 2009-10-26 | 2011-05-06 | Chugoku Electric Power Co Inc:The | Concrete member |
JP2011207669A (en) * | 2010-03-30 | 2011-10-20 | Ube Industries Ltd | Hydraulic composition and hardened body thereof |
JP2012106905A (en) * | 2010-10-29 | 2012-06-07 | Asuo Yonekura | Acid resistant cement composition, and acid resistant mortar or concrete containing the same |
JP2012513366A (en) * | 2008-12-22 | 2012-06-14 | ワッカー ケミー アクチエンゲゼルシャフト | Acid resistant hydraulic material |
JP2017132667A (en) * | 2016-01-29 | 2017-08-03 | 太平洋マテリアル株式会社 | Corrosion resistant mortar composition |
JP6185682B1 (en) * | 2017-02-08 | 2017-08-23 | 株式会社デイ・シイ | Blast furnace slag fine powder and cement composition |
-
2018
- 2018-09-12 JP JP2018170222A patent/JP7123481B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0986978A (en) * | 1995-09-19 | 1997-03-31 | Denki Kagaku Kogyo Kk | Mixed cement composition |
JP2002336813A (en) * | 2001-05-11 | 2002-11-26 | Electric Power Dev Co Ltd | Multifunctional fly ash and method of manufacturing the same |
JP2005324996A (en) * | 2004-05-17 | 2005-11-24 | Ohbayashi Corp | Acid-resistant concrete repair material |
JP2009234818A (en) * | 2008-03-26 | 2009-10-15 | Ube Ind Ltd | Hydraulic composition and hardened body |
JP2012513366A (en) * | 2008-12-22 | 2012-06-14 | ワッカー ケミー アクチエンゲゼルシャフト | Acid resistant hydraulic material |
JP2010155734A (en) * | 2008-12-26 | 2010-07-15 | Ohbayashi Corp | Acid resistant cement composition |
JP2011088800A (en) * | 2009-10-26 | 2011-05-06 | Chugoku Electric Power Co Inc:The | Concrete member |
JP2011207669A (en) * | 2010-03-30 | 2011-10-20 | Ube Industries Ltd | Hydraulic composition and hardened body thereof |
JP2012106905A (en) * | 2010-10-29 | 2012-06-07 | Asuo Yonekura | Acid resistant cement composition, and acid resistant mortar or concrete containing the same |
JP2017132667A (en) * | 2016-01-29 | 2017-08-03 | 太平洋マテリアル株式会社 | Corrosion resistant mortar composition |
JP6185682B1 (en) * | 2017-02-08 | 2017-08-23 | 株式会社デイ・シイ | Blast furnace slag fine powder and cement composition |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021075429A (en) * | 2019-11-11 | 2021-05-20 | 住友大阪セメント株式会社 | Covering material, tubular molded body, method for producing tubular molded body, and covering method |
JP7460065B2 (en) | 2019-11-11 | 2024-04-02 | 住友大阪セメント株式会社 | Coating material, tubular molded body, manufacturing method for tubular molded body, and coating method |
Also Published As
Publication number | Publication date |
---|---|
JP7123481B2 (en) | 2022-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101709240B1 (en) | Mortar composition for recovering cross section of eco-friendly cement with sulphate resistance | |
JP5688073B2 (en) | Calcium ferroaluminate compound, cement admixture and method for producing the same, cement composition | |
KR101472485B1 (en) | Geo-polymer mortar cement composition using the same construction methods | |
CN104176964A (en) | Concrete composite antiseptic | |
JP6755730B2 (en) | Method for suppressing neutralization of hardened cement and suppressing chloride ion permeation | |
JP5345821B2 (en) | Cement admixture and cement composition | |
JP5259094B6 (en) | Hydrated hardened body excellent in neutralization resistance with rebar | |
JP2019059662A (en) | Acid resistance cement composition | |
KR100627981B1 (en) | Sulfuric acid-resistant repair mortar composition for concrete | |
JP2007269562A (en) | Hydrated hardened body having reinforcing rod excellent in neutralization resistance and salt damage resistance | |
JPH10236860A (en) | Sulfuric acid resistant cement composition | |
JP5169368B2 (en) | Self-healing hydrated cured product and low-reactivity active cement material | |
KR20170044402A (en) | High sulfate resistant inorganic binders, cement paste, mortar and concrete composite with crack self-healing function | |
JPS61256952A (en) | Steel material preventive concret, mortar and cement | |
JP4222870B2 (en) | Sulfuric acid resistant cement composition and sulfuric acid resistant concrete | |
JP2009227558A (en) | Self-restorable high strength hydration hardened material | |
JP6577785B2 (en) | Hardened concrete for salt damage prevention and manufacturing method thereof | |
JP4791231B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same | |
KR102707790B1 (en) | Organic-inorganic Composite Rust-Preventive Agent and Salt-Resistant Concrete Composition using the same | |
JP2007001801A (en) | Anticorrosive composite and process for producing the same | |
JP4519480B2 (en) | Acid resistant cement composition | |
JPS61227960A (en) | Method of mending salt-injuried matter | |
JP5313624B2 (en) | Cement composition and cement concrete | |
JP4518908B2 (en) | Sulfuric acid resistant mixture | |
JP2007210850A (en) | Hydration-hardening body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210617 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220809 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220809 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7123481 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |