JP2007302970A - Steel material with film having excellent corrosion resistance and corrosion fatigue resistance, and its production method - Google Patents

Steel material with film having excellent corrosion resistance and corrosion fatigue resistance, and its production method Download PDF

Info

Publication number
JP2007302970A
JP2007302970A JP2006134115A JP2006134115A JP2007302970A JP 2007302970 A JP2007302970 A JP 2007302970A JP 2006134115 A JP2006134115 A JP 2006134115A JP 2006134115 A JP2006134115 A JP 2006134115A JP 2007302970 A JP2007302970 A JP 2007302970A
Authority
JP
Japan
Prior art keywords
feooh
steel material
corrosion
film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006134115A
Other languages
Japanese (ja)
Other versions
JP5201806B2 (en
Inventor
Takeshi Suzuki
健 鈴木
Yoshiki Ono
芳樹 小野
Kazuya Iumi
和也 井海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2006134115A priority Critical patent/JP5201806B2/en
Publication of JP2007302970A publication Critical patent/JP2007302970A/en
Application granted granted Critical
Publication of JP5201806B2 publication Critical patent/JP5201806B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a steel material with a film which which has a stable and dense rust layer in an atmospheric corrosive environment, is free from deterioration in hydrogen embrittlement and material strength, is easily and inexpensively produced and is excellent in corrosion resistance and corrosion fatigue resistance. <P>SOLUTION: In the steel material with a film having excellent corrosion resistance and corrosion fatigue resistance, the surface is coated with a film mainly composed of FeOOH, and the region from the outermost surface to 100 μm in a depth direction is provided with a layer in which, according to infrared spectroscopy, provided that the absorption peak intensity near 920 cm<SP>-1</SP>corresponding to α-FeOOH is defined as A, the absorption peak intensity near 840 cm<SP>-1</SP>corresponding to β-FeOOH is defined as B, and the absorption peak intensity near 740 cm<SP>-1</SP>corresponding to γ-FeOOH is defined as C, the α-FeOOH ratio defined by [äA/(A+B+C)}×100%] is ≥10%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、大気腐食環境中で高い防食性を持つ皮膜、具体的には安定且つ緻密なさび層を表面に有する耐食性と耐腐食疲労性に優れた皮膜付き鋼材及びその製造方法に関する。   The present invention relates to a film having high corrosion resistance in an atmospheric corrosive environment, specifically to a steel material with a film having a stable and dense rust layer on the surface and excellent corrosion resistance and corrosion fatigue resistance, and a method for producing the same.

周知の如く、大気腐食環境中で使用される鋼材は、腐食減肉あるいは腐食ピット形成による静的強度特性や疲労強度特性の低下、及びさび発生による外観の悪化を防止するため、材料組成を調整するか、表面処理等により防食性の高い反応生成物を表面に形成することで耐食性を向上させることが多い。   As is well known, steel materials used in atmospheric corrosive environments have their material compositions adjusted to prevent deterioration of static and fatigue strength properties due to corrosion thinning or formation of corrosion pits, and deterioration of appearance due to rusting. Alternatively, the corrosion resistance is often improved by forming a reaction product having a high corrosion resistance on the surface by surface treatment or the like.

ところで、材料組成の調整として、CuやNi,Cr、P等を微量添加し、母材の腐食により緻密で防食性の高いα−FeOOHを含むさび層を母材表面に形成させ、その後の腐食進行を抑制する機能を持たせた耐候性鋼が、橋梁材や建材に便用されている。しかし、工業地帯や田園地域などの比較的腐食がマイルドな環境では、通常上記防食性さびが形成するまでに5〜10年を要するため、それまでの期間は発生したさびが、いわゆる流れさびとして外観を悪化させる問題が生じていた。一般に、α-FeOOHは腐食の初期に生成するγ−FeOOH(Clを含む環境中ではγ−FeOOH及びβ−FeOOH)等が長い年月を経て相変態することにより形成する。従って、γ-FeOOH、β-FeOOHのうち少なくとも一方が表面に形成している期間の母材は耐食性が劣り、α-FeOOHが形成するまでに腐食が進んでしまう。その結果、深く鋭い腐食ピットが形成されるので、静的および疲労強度が低下する問題があった。   By the way, as a material composition adjustment, a small amount of Cu, Ni, Cr, P or the like is added, and a rust layer containing α-FeOOH having high corrosion resistance is formed on the base material surface by corrosion of the base material. Weatherproof steel with a function to suppress the progress is used for bridge materials and building materials. However, in a relatively mild environment such as an industrial zone or a rural area, it usually takes 5 to 10 years for the corrosion-resistant rust to form. There was a problem of deteriorating the appearance. In general, α-FeOOH is formed by phase transformation of γ-FeOOH (γ-FeOOH and β-FeOOH in a Cl-containing environment) generated at the initial stage of corrosion after a long period of time. Therefore, the base material in a period in which at least one of γ-FeOOH and β-FeOOH is formed on the surface is inferior in corrosion resistance, and corrosion progresses before α-FeOOH is formed. As a result, since deep and sharp corrosion pits are formed, there is a problem that static and fatigue strengths are lowered.

さらに言えば、橋梁材や建材のように静置状態で使用される場合は、長い年月をかければα−FeOOHが形成しやすくなるし、逆にそのような使用環境であるために長時間かけてα-FeOOHを形成することでも腐食による破壊には至らずに済んでいた。つまり、α-FeOOH形成までのインターバルが許されていた。しかし、駆動系機構部品等のように常に繰返し応力変動が負荷される場合には、発生したさびがα-FeOOHに変態する前に応力変動によって脱落し、再び腐食進行性のあるβ-FeOOHやγ-FeOOHの形成を繰返し、母材の減肉により破壊を早めるという問題を生じていた。   Furthermore, when used in a stationary state such as a bridge material or a building material, α-FeOOH is likely to be formed over a long period of time. Even when α-FeOOH was formed over time, destruction due to corrosion did not occur. That is, an interval until α-FeOOH formation was allowed. However, when repeated stress fluctuations are applied, such as in drive train mechanism parts, the generated rust falls off due to stress fluctuations before transforming into α-FeOOH, and again β-FeOOH, which has corrosion progress, There was a problem that the formation of γ-FeOOH was repeated and the destruction was accelerated by thinning the base material.

また、従来の耐候性鋼などにおいては、α-FeOOHが形成したときのさび層の構成は、最表面側にβ-FeOOH及びγ−FeOOH、母材側にα-FeOOHを夫々主体とし、α-FeOOHを多く含むさび層は最表面から深さ方向で100μm以上に形成される(三沢俊平ら,「鉄と鋼」,Vol.79.No.1(1992)p.69)ことが知られている。このような母材側にα-FeOOHが形成される特徴を持つ耐候性鋼は、飛来塩分量の多い海浜や冬季に融雪剤を散布する寒冷地等の環境では、長い年月を経過してα-FeOOHが形成されるまでに腐食が著しく速く進行するか、α−FeOOHが形成する間もなく腐食が進行し、母材の減肉により荷重を支えられなくなる等、便用が困難であった。これまでに、上記添加元素を増量した鋼材も提案されてきたが、耐食性向上効果に比べ原料コストや製造コストが著しく高くなるという問題があった。つまり、α-FeOOHを含むさび層が長時間を要して形成される従来の鋼材(耐候性鋼)では、十分な耐食性及び耐腐食労性を得ることはできず、早期にα−FeOOHを形成できる方法や、すでにα−Fe00Hを保持した鋼材が望まれていた。   Further, in the conventional weathering steel and the like, the structure of the rust layer when α-FeOOH is formed is mainly composed of β-FeOOH and γ-FeOOH on the outermost surface side, α-FeOOH on the base material side, and α -It is known that a rust layer containing a large amount of FeOOH is formed to a depth of 100 μm or more from the outermost surface (Shunhei Misawa, “Iron and Steel”, Vol. 79. No. 1 (1992) p. 69). ing. The weather-resistant steel with the characteristic that α-FeOOH is formed on the base metal side has been used for a long time in environments such as beaches with a large amount of incoming salt and cold regions where snow melting agents are sprayed in winter. Corrosion proceeds remarkably fast before α-FeOOH is formed, or corrosion progresses shortly before α-FeOOH is formed, and the load cannot be supported due to thinning of the base material, making it difficult to use for convenience. Up to now, steel materials with an increased amount of the above-mentioned additive elements have been proposed, but there has been a problem that raw material costs and manufacturing costs are remarkably higher than the effect of improving corrosion resistance. That is, the conventional steel material (weather-resistant steel) in which the rust layer containing α-FeOOH is formed over a long period of time cannot obtain sufficient corrosion resistance and corrosion resistance work. A method that can be formed and a steel material that already holds α-Fe00H have been desired.

一方、防食表面処理としては、鋼材に対して腐食犠牲層を設けて母材の腐食を遅らせる、いわゆる犠牲防食を目的として亜鉛皮膜を付与する方法がある。しかし、例えば亜鉛皮膜を電気めっき法で形成する場合は、ピンホールやめっきむらを防止するための施工条件の管理や、陰極の被処理鋼材表面で発生する水素が鋼中に侵入することに起因する水素脆化を防止するための処理が別途必要になるなど、製造工程の複雑化やコスト高が問題となっていた。また、亜鉛を含有するりん酸系皮膜処理(りん酸亜鉛化成処理)では、比較的容易に施工が可能であるが、めっき膜に比べると皮膜の耐食性が不十分であった。さらに、Znの犠牲防食作用とAlの自己修復作用を合わせ持つとされる表面処理鋼材として、Zn−Al−Si系溶融合金めっき鋼(商品名:ガルバニウム鋼、日鉄鋼板(株)製)が知られている。しかし、めっき浴の温度が400℃以上であるため、浴浸漬時に鋼材が加熱されることによる機械的強度の低下が問題となる場合には用いることができなかった。また、製造コストが高くなる問題があった。   On the other hand, as the anticorrosive surface treatment, there is a method of providing a zinc coating for the purpose of so-called sacrificial anticorrosion, in which a corrosion sacrificial layer is provided on the steel material to delay the corrosion of the base material. However, for example, when forming a zinc film by electroplating, it is caused by the management of construction conditions to prevent pinholes and uneven plating, and the hydrogen generated on the surface of the steel to be treated of the cathode penetrates into the steel. The manufacturing process is complicated and the cost is high, for example, a separate process for preventing hydrogen embrittlement is required. Moreover, in the phosphoric acid type film | membrane process (zinc phosphate chemical conversion process) containing zinc, although construction is possible comparatively easily, compared with the plating film, the corrosion resistance of the film | membrane was inadequate. Furthermore, as a surface-treated steel material that has both a sacrificial anticorrosive action of Zn and a self-repairing action of Al, Zn-Al-Si-based molten alloy plated steel (trade name: galvanium steel, manufactured by Nippon Steel Sheet Co., Ltd.) Are known. However, since the temperature of the plating bath is 400 ° C. or higher, the plating bath cannot be used when the mechanical strength is lowered due to heating of the steel material during bath immersion. In addition, there is a problem that the manufacturing cost becomes high.

従来、本提案の鋼材に関連する公報としては、例えば以下に示す特許文献1〜3が知られている。
特許文献1では、硫酸クロム及び/又は硫酸銅を含む有機樹脂塗料で表面を被覆することにより、溶出した鉄イオンをα−FeOOHに変換させ、耐候性を向上させる表面処理鋼材が開示されている。しかし、特許文献1では、硫酸イオンがβ-FeOOHを安定化させることから、形成されたさびの保護性や安定性が不明確である他、処理内容が複雑であり、且つ処理コストが高い問題があった。
Conventionally, as publications related to the proposed steel material, for example, Patent Documents 1 to 3 shown below are known.
Patent Document 1 discloses a surface-treated steel material that improves the weather resistance by converting eluted iron ions to α-FeOOH by coating the surface with an organic resin paint containing chromium sulfate and / or copper sulfate. . However, in Patent Document 1, since sulfate ions stabilize β-FeOOH, the protection and stability of the formed rust are unclear, and the processing content is complicated and the processing cost is high. was there.

特許文献2には、鋼材を大気暴露し表面にさびを形成させた後、アルカリ性水溶液を塗布し、α-FeOOHに変換させるといったさび安定化処理鋼材及びさび安定化処理方法について開示されている。しかし、特許文献2では、α-FeOOHの生成量は少なく、本発明のようにα−FeOOH比率が10%以上である層を得ることはできなかった。従って、例えば飛来塩分量の多い海浜など腐食が促進されやすい環境では、必ずしも防食が得られない場合があった。また、大気暴露に30日以上を費やすため処理に時間がかかることや、暴露中に生じた腐食ピットにより静的強度特性や疲労強度特性が低下する問題があった。   Patent Document 2 discloses a rust stabilization treatment steel material and a rust stabilization treatment method in which a steel material is exposed to the atmosphere to form rust on the surface, and then an aqueous alkaline solution is applied to convert the steel material into α-FeOOH. However, in Patent Document 2, the amount of α-FeOOH produced is small, and a layer having an α-FeOOH ratio of 10% or more cannot be obtained as in the present invention. Therefore, for example, in an environment where corrosion is likely to be accelerated such as a beach with a large amount of incoming salt, corrosion prevention may not always be obtained. In addition, since it takes 30 days or more for exposure to the atmosphere, there are problems that processing takes time, and static strength characteristics and fatigue strength characteristics deteriorate due to corrosion pits generated during the exposure.

特許文献3には、亜鉛系めっき鋼板に化成処理皮腹を形成し、その上にりん酸アルミニウムを含む有機皮膜を形成した耐食性に有機被覆鋼板について開示されている。しかし、特許文献3では、りん酸アルミ=ウムを含む有機皮膜を形成する以前に化成処理を施す必要がある等、処理の内容が複雑であり、且つ処理コストが高い間魍があった。
特許第2666673号公報 特許第2827669号公報 特許第3381647号公報
Patent Document 3 discloses an organic coated steel sheet having corrosion resistance in which a chemical conversion treatment belly is formed on a zinc-based plated steel sheet and an organic film containing aluminum phosphate is formed thereon. However, in Patent Document 3, the content of the treatment is complicated and the treatment cost is high, for example, it is necessary to perform a chemical conversion treatment before forming an organic film containing aluminum phosphate.
Japanese Patent No. 2666673 Japanese Patent No. 2827669 Japanese Patent No. 3381647

本発明は上述した課題を解決するためなされたもので、大気腐食環境中で安定且つ緻密なさび層を有し、水素脆化や材料強度の低下がなく、しかも低コストで製造が容易な耐食性と耐腐食疲労性に優れた皮膜付き鋼材及びその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and has a stable and dense rust layer in an atmospheric corrosion environment, without hydrogen embrittlement and a decrease in material strength, and at low cost and easy to manufacture. An object of the present invention is to provide a coated steel material excellent in corrosion fatigue resistance and a method for producing the same.

上述した課題を解決するための本発明の特徴は、以下の通りである。
(1).表面が主にFeOOHからなる皮膜で覆われており、最表面から深さ方向に100μmまでの領域において、赤外分光法でα-FeOOHに対応する920cm−1付近の吸収ピーク強度をA、β-FeOOHに対応する840cm−1付近の吸収ピーク強度をB、γ−FeOOHに対応する740cm−1付近の吸収ピーク強度をCとした場合、「{A/(A+B+C)}×100%」で定義するα-FeOOH比率が10%以上である層を有することを特徴とする耐食性と耐腐食疲労性に優れた皮膜付き鋼材。
The features of the present invention for solving the above-described problems are as follows.
(1). The surface is covered with a film mainly composed of FeOOH, and in the region from the outermost surface to 100 μm in the depth direction, the absorption peak intensity around 920 cm −1 corresponding to α-FeOOH is represented by A, β in the infrared spectroscopy. When the absorption peak intensity near 840 cm −1 corresponding to —FeOOH is B and the absorption peak intensity near 740 cm −1 corresponding to γ-FeOOH is C, the definition is “{A / (A + B + C)} × 100%”. A coated steel material excellent in corrosion resistance and corrosion fatigue resistance, characterized by having a layer having an α-FeOOH ratio of 10% or more.

(2).前記α-FeOOH比率が10%以上である層の厚さが、20〜100μmであることを特徴とする(1)に記載の耐食性と耐腐食疲労性に優れた皮膜付き鋼材。
(3).Cu,Ni,Cr,Moの1種以上を合計で1.7〜3.0wt%を含有することを特徴とする(1)または(2)に記載の耐食性と耐腐食疲労性に優れた皮膜付き鋼材。
(2). The coated steel material having excellent corrosion resistance and corrosion fatigue resistance according to (1), wherein the thickness of the layer having the α-FeOOH ratio of 10% or more is 20 to 100 μm.
(3) Corrosion resistance and corrosion fatigue resistance as set forth in (1) or (2), characterized in that one or more of Cu, Ni, Cr and Mo are contained in a total amount of 1.7 to 3.0 wt%. Steel with excellent coating.

(4).A1,P,O及びHからなる厚さ1〜5μmのアモルファス構造を有する膜で表面を覆った鋼材に、塩水噴霧処理を雰囲気温度30〜40℃、塩水濃度3〜5wt%NaCl、噴霧量50〜200mL/min/mm、噴霧時間5〜30分の各範囲の条件で行った後、温度25〜85℃、相対湿度30〜95%の雰囲気に10〜24時間保持するサイクルを、1〜10回繰り返すことを特徴とする耐食性と耐腐食疲労性に優れた皮膜付き鋼材の製造方法。 (4). A steel material whose surface is covered with a film having an amorphous structure of A1, P, O, and H and having a thickness of 1 to 5 μm is subjected to a salt spray treatment at an ambient temperature of 30 to 40 ° C. and a salt water concentration of 3 to 5 wt% NaCl. , A spraying amount of 50 to 200 mL / min / mm 2 , a cycle in which the spraying time is 5 to 30 minutes and then maintained in an atmosphere of a temperature of 25 to 85 ° C. and a relative humidity of 30 to 95% for 10 to 24 hours. Is repeated 1 to 10 times, a method for producing a coated steel material excellent in corrosion resistance and corrosion fatigue resistance.

(5).鋼材をAlイオン及びPOイオンを含む40〜50℃の水溶液に30秒以上接触させることにより、鋼材の表面をA1,P,O及びHからなる厚さ1〜5μmの皮膜で覆うことを特徴とする(4)に記載の耐食性と耐腐食疲労性に優れた皮膜付き鋼材の製造方法。
(6).鋼材をAlイオン及びPOイオンを含む30℃の水溶液に180秒以上接触させることにより、鋼材の表面をAl,P,O及びHからなる厚さ1〜5μmの皮膜で覆うことを特徴とする(4)に記載の耐食性と耐腐食疲労性に優れた皮膜付き鋼材の製造方法。
(Five). The surface of the steel material is covered with a film having a thickness of 1 to 5 μm composed of A1, P, O, and H by bringing the steel material into contact with an aqueous solution containing 40 to 50 ° C. containing Al ions and PO 4 ions for 30 seconds or more. The method for producing a coated steel material having excellent corrosion resistance and corrosion fatigue resistance as described in (4).
(6). The surface of the steel material is covered with a film having a thickness of 1 to 5 μm made of Al, P, O, and H by bringing the steel material into contact with an aqueous solution containing Al ions and PO 4 ions for 180 seconds or longer. (4) The method for producing a coated steel material having excellent corrosion resistance and corrosion fatigue resistance.

(7). 鋼材をAlイオン及びPOイオンを含む室温の水溶液に接触させた後、300℃以下の大気中で加熱して、鋼材の表面をAl,P,O及びHからなる厚さ1〜5μmの皮膜で覆うことを特徴とする(4)に記載の耐食性と耐腐食疲労性に優れた皮膜付き鋼材の製造方法。 (7). After contacting the steel material with a room temperature aqueous solution containing Al ions and PO 4 ions, the steel material is heated in an atmosphere of 300 ° C. or less to make the surface of the steel material a thickness of Al, P, O and H 1 The method for producing a coated steel material having excellent corrosion resistance and corrosion fatigue resistance according to (4), characterized by covering with a film of ˜5 μm.

本発明によれば、大気腐食環境中で安定且つ緻密なさび層を有し、水素脆化や材料強度の低下がなく、しかも低コストで製造が容易な耐食性と耐腐食疲労性に優れた皮膜付き鋼材及びその製造方法が得られる。   According to the present invention, a film having a stable and dense rust layer in an atmospheric corrosive environment, without hydrogen embrittlement or a decrease in material strength, and having excellent corrosion resistance and corrosion fatigue resistance that is easy to manufacture at low cost. The attached steel material and the manufacturing method thereof are obtained.

以下、本発明について更に詳しく説明する。
本発明者らは、鋼材の腐食挙動や腐食疲労メカニズム、化成処理法について鋭意研究を重ねた結果、従来技術にはない耐食性と耐腐食疲労性に極れた鋼材およびその製造方法を発明するに至った。以下、本発明について詳細に説明する。
Hereinafter, the present invention will be described in more detail.
As a result of earnest research on the corrosion behavior, corrosion fatigue mechanism, and chemical conversion treatment method of steel materials, the present inventors have invented a steel material that has excellent corrosion resistance and corrosion fatigue resistance, and a method for producing the same, which is not found in the prior art. It came. Hereinafter, the present invention will be described in detail.

本発明に係る鋼材は、表面が主にFeOOHからなる皮膜で覆われており、最表面から深さ方向に100μmまでの領域において、顕微IR(赤外分光法)でα−FeOOHに対応する920cm−1付近の吸収ピーク強度をA、β−FeOOHに対応する840cm−1付近の吸収ピーク強度をB、γ−FeOOHに対応する740cm−1付近の吸収ピーク強度をCとした場合、「{A/(A+B+C)}×100%」で定義するα-FeOOH比率が10%以上である層を有する構成のものである。 The steel material according to the present invention has a surface mainly covered with a film made of FeOOH, and corresponds to α-FeOOH by microscopic IR (infrared spectroscopy) in a region from the outermost surface to 100 μm in the depth direction. Assuming that the absorption peak intensity near −1 is A, the absorption peak intensity near 840 cm −1 corresponding to β-FeOOH is B, and the absorption peak intensity near 740 cm −1 corresponding to γ-FeOOH is C, “{A / (A + B + C)} × 100% ”is a structure having a layer having an α-FeOOH ratio of 10% or more.

Cl成分や水分を含む大気腐食環下で形成するさび成分には、α−FeOOH,β-FeOOH,γ−FeOOH,FeなどのFeの酸化物および水酸化物があるが、α−FeOOHは微細粒から成り繊密であるため、腐食の原因となるC1,O,H等の元素が外部環境から侵入することを抑制する環境遮断機能を有する。即ち、α−FeOOHを含有するさびが表面に形成された鋼材は、その後の腐食が抑制され、耐食性が向上する。その代表例として、耐侯性鋼が挙げられる。しかし、耐候性鋼の場合、前述のようにα-FeOOHが形成するまでにかなりの時間を要し、その間に腐食が進行し、深く鈍い腐食ピットを生じるため、疲労強度が著しく低下する。 The rust component formed under the atmospheric corrosion ring containing Cl component and moisture includes Fe oxides and hydroxides such as α-FeOOH, β-FeOOH, γ-FeOOH, Fe 3 O 4. Since FeOOH consists of fine particles and is dense, it has an environment blocking function that suppresses the entry of elements such as C1, O, and H that cause corrosion from the outside environment. That is, the steel material on which rust containing α-FeOOH is formed on the surface is prevented from subsequent corrosion and has improved corrosion resistance. A typical example is weather resistant steel. However, in the case of weathering steel, as described above, a considerable time is required until α-FeOOH is formed, and during that time, corrosion proceeds and deeply dull corrosion pits are generated, so that the fatigue strength is significantly reduced.

本発明に係る鋼材は、最表面から深さ方向に100μmまでの領域に、α-FeOOH比率が10%以上である層を有する構成を特徴とする。また、その形成過程の特徴は、β−FeOOH,γ−FeOOH等が早期にα−FeOOHに相変態することである。腐食は表面から進行し、初期の腐食で表面に形成されたβ-FeOOH、γ-FeOOHが早期にα-FeOOHへ相変態する過程をたどるため、最表面(環境)側はα-FeOOHを多く含有する層で覆われた形態を呈する。そして、α-FeOOH比率が10%以上になると、その後の腐食が実質的に抑制され耐食性が向上する。また、この層が最表面から深さ方向に100μmまでの領域に形成されることで、大きな腐食減肉を伴わない。従って、α-FeOOHが早期に最表面側を覆う形態で形成するため、その後の鋼材の腐食は抑えられ、腐食ピットの形状は比較的浅く且つ平滑となるため、静的および疲労強度の低下は非常に小さい。   The steel material according to the present invention is characterized by having a layer having an α-FeOOH ratio of 10% or more in a region from the outermost surface to 100 μm in the depth direction. Further, the feature of the formation process is that β-FeOOH, γ-FeOOH and the like are phase-transformed to α-FeOOH at an early stage. Corrosion proceeds from the surface and follows the process of early transformation of β-FeOOH and γ-FeOOH formed on the surface to α-FeOOH in the initial corrosion, so the outermost surface (environment) side is rich in α-FeOOH. It takes the form covered with the containing layer. When the α-FeOOH ratio is 10% or more, the subsequent corrosion is substantially suppressed and the corrosion resistance is improved. Further, since this layer is formed in a region from the outermost surface to 100 μm in the depth direction, no significant corrosion thinning is involved. Therefore, since α-FeOOH is formed in a form that covers the outermost surface side at an early stage, the subsequent corrosion of the steel material is suppressed, and the shape of the corrosion pits is relatively shallow and smooth. Very small.

また、本発明に係るα-FeOOH比率が10%以上である層の厚さは、20〜100μmが望ましい。ここで、厚さが20μm未満では、環境遮断機能が劣るため、十分な耐食性が得られない。また、厚さが100μmを超える場合、母材の厚さが減少する、つまり母材減肉が大きくなることにより、静的強度や疲労強度が低下するため好ましくない。   Moreover, as for the thickness of the layer whose (alpha) -FeOOH ratio which concerns on this invention is 10% or more, 20-100 micrometers is desirable. Here, if the thickness is less than 20 μm, the environmental barrier function is inferior, so that sufficient corrosion resistance cannot be obtained. On the other hand, when the thickness exceeds 100 μm, the thickness of the base material is reduced, that is, the base material thinning is increased, so that the static strength and the fatigue strength are lowered.

更に、本発明に係る鋼材は、Cu,Ni,Cr,Moの1種以上を合計で1.7〜3.0wt%を含有することが望ましい。例えば、鋼材中に均一に含まれるCuは、鋼材の主成分であるFeより電気化学的に貴であるため、安定したカソードとして鋼材の均一溶解を促進し、β-FeOOH,γ-FeOOHがα-FeOOHに相変態する速度を増加させる。Cuと同様な作用を有する添加元素として,Ni,Cr,Moがある。前記Cu,Ni,Cr,Moは1種以上であればよく、その合計は1.7〜3.0wt%が望ましい。ここで、1.7wt%未満では効果が小さく不十分であり、3.0wt%を超えても効果は増加せず、逆に材料コストが増加するため好ましくない。   Furthermore, the steel material according to the present invention desirably contains a total of 1.7 to 3.0 wt% of one or more of Cu, Ni, Cr, and Mo. For example, Cu uniformly contained in the steel material is electrochemically noble than Fe, which is the main component of the steel material, and therefore promotes uniform dissolution of the steel material as a stable cathode, and β-FeOOH and γ-FeOOH are α -Increase the rate of phase transformation to FeOOH. As additive elements having the same action as Cu, there are Ni, Cr, and Mo. The Cu, Ni, Cr, and Mo may be one or more, and the total is preferably 1.7 to 3.0 wt%. Here, if it is less than 1.7 wt%, the effect is small and insufficient, and if it exceeds 3.0 wt%, the effect does not increase, and conversely the material cost increases, which is not preferable.

次に、本発明に係るα-FeOOH比率が10%以上である層の形成方法について説明する。
本発明に係る皮膜は、Al,P,O及びHからなる厚さ1〜5μmのアモルファス構造を有する膜で裏面を覆った鋼材に、塩水噴霧処理を雰囲気温度30〜40℃、塩水濃度3〜5wt%NaCl、噴霧量50〜200mL/min/mm、噴霧時間5〜30分の各範囲の条件で行った後、温度25〜35℃、相対湿度30〜95%の雰囲気に10〜24時間保持するサイクルを、1〜10回繰り返すことにより得ることができる。
Next, a method for forming a layer having an α-FeOOH ratio of 10% or more according to the present invention will be described.
The film according to the present invention is a steel material whose back surface is covered with a film having an amorphous structure with a thickness of 1 to 5 μm made of Al, P, O, and H. A salt spray treatment is performed at an ambient temperature of 30 to 40 ° C. and a salt water concentration of 3 to 3. 5 wt% NaCl, spray amount 50-200 mL / min / mm 2 , spraying time 5-30 minutes after each condition, temperature 25-35 ° C., relative humidity 30-95% atmosphere 10-24 hours The holding cycle can be obtained by repeating 1 to 10 times.

Al−P−O−H系膜に均一に分布しているPは、上記サイクルで鋼材の均一溶解と、O,Hの存在下でそれに続くβ-FeOOH,γ-FeOOHの均一生成をもたらし、更にα-FeOOHへの相変態を助長する作用を持つため、結果的に均一なα-FeOOH皮膜の形成を促進する。これらのPの作用は、PがO,Hを伴いHPO イオンを形成しやすい特徴を持つ。このHPO イオンはFe3+イオンとの錯形成能力が高く、Fe2+イオンの酸化速度を増大させる作用を持つ(三沢俊平ら,「防食技術」,Vol.23,17−27(1974))ことに起因すると考えられる。
Alは、Al−P−O−H系膜がアモルファス構造をとるために必要であると考えられる。この膜がアモルファス構造であることは、極微細粒の凝集体の形態を有しているα−FeOOHの核形成の土壌となり、α−FeOOHの形成を促進するものと考えられる。
P that is uniformly distributed in the Al—P—O—H-based film results in uniform dissolution of the steel material in the above cycle and subsequent uniform formation of β-FeOOH and γ-FeOOH in the presence of O and H, Furthermore, since it has an effect of promoting the phase transformation to α-FeOOH, the formation of a uniform α-FeOOH film is promoted as a result. These actions of P are characterized in that P easily forms H 2 PO 4 ions with O and H. This H 2 PO 4 ion has a high complexing ability with Fe 3+ ions, and has an action of increasing the oxidation rate of Fe 2+ ions (Shunhei Misawa, “Anticorrosion Technology”, Vol. 23, 17-27 (1974). )).
Al is considered necessary for the Al—P—O—H-based film to have an amorphous structure. It is considered that the fact that this film has an amorphous structure serves as a soil for nucleation of α-FeOOH having a form of an aggregate of ultrafine particles and promotes the formation of α-FeOOH.

次に、鋼材の表面に、アモルファス構造を有する厚さ1〜5μmのAl−P−O−H系膜を形成する方法を説明する。
Al−P−O−H系膜は、鋼材をAlイオン及びPOイオンを含む40〜50℃の水溶液に30秒以上、または30℃の同水溶液に180秒以上接触させるか、室温の同水溶液と接触させた後、300℃以下で加熱することにより作製することができる。
Next, a method of forming an Al—P—O—H-based film having an amorphous structure and having a thickness of 1 to 5 μm on the surface of the steel material will be described.
The Al—P—O—H-based film is obtained by bringing a steel material into contact with an aqueous solution containing 40 to 50 ° C. containing Al ions and PO 4 ions for 30 seconds or more, or with the same aqueous solution at 30 ° C. for 180 seconds or the same aqueous solution at room temperature. After making it contact with, it can produce by heating at 300 degrees C or less.

上記水溶液は、まず、りん酸アルミニウム(AlPO)を水に加えるが、AlPOは水に難溶であるため、更にりん酸(HPO)を加えてこれらを溶解して得られる。AlPOの重量濃度は1〜10%の範囲が良い。ここで、重量濃度が10%を超えた場合、溶解するために添加するHPOの濃度が増加し、鋼材に対する酸侵食を招く恐れがある。また、重量濃度が1%未満では、AlPOの補給が頻発するため施工性が低下する。また、溶媒に用いる水は、工業用水や水道水、蒸留水等を用いることができる。但し、水中に腐食を促進する恐れがあるClが含まれる場合は、極力これを除くことが好ましい。水溶液を鋼材に接触させるには、浸漬やエアスプレー、刷け塗り等のいずれの方法によっても良い。 The aqueous solution is obtained by first adding aluminum phosphate (AlPO 4 ) to water. Since AlPO 4 is hardly soluble in water, it is obtained by further adding phosphoric acid (H 3 PO 4 ) to dissolve them. The weight concentration of AlPO 4 is preferably in the range of 1 to 10%. Here, when the weight concentration exceeds 10%, the concentration of H 3 PO 4 added for dissolution increases, which may cause acid erosion to the steel material. On the other hand, when the weight concentration is less than 1%, AlPO 4 is frequently replenished, so that workability is lowered. Moreover, the water used for a solvent can use industrial water, tap water, distilled water, etc. However, when Cl which may accelerate corrosion is contained in water, it is preferable to remove this as much as possible. In order to bring the aqueous solution into contact with the steel material, any method such as dipping, air spraying or brush coating may be used.

皮膜の形成メカニズムは十分解明されていないが、次のように考えられる。
本処理液中では、アルミニウムの第一りん酸塩(Al(HPO)とHPO、AlPOは下記式(1)のような平衡状態にある。鋼材を処理液に接触させると、下記式(2)に示すようにHPOはFeに作用して、その表面付近の溶液((1)式)ではHPO濃度が減少する。このため、平衡式(1)は右へ反応が進み、難溶性のAlPOが鋼材表面に沈着し、Al−P−O系皮膜を形成すると考えられる。
A1(HP0(可溶)⇔2HPO(液体)+AlPO(難溶)…(1)
Fe+2HPO→Fe(HPO+H↑ …(2)
即ち、Al−P−O系皮膜の形成は、HPOの鋼材腐食作用が契機となり、Al(HPOの分解による難溶AlPOの生成沈着作用に基づくと考えられる。従って、このような皮膜形成の促進には、(2)式の反応速度を増加させるため、水溶液の温度を高くした方が良い。
The formation mechanism of the film has not been fully elucidated, but is considered as follows.
In this treatment solution, aluminum primary phosphate (Al (H 2 PO 4 ) 3 ), H 3 PO 4 , and AlPO 4 are in an equilibrium state represented by the following formula (1). Contacting the steel in the processing solution, the H 3 PO 4 as shown in the following formula (2) by acting on Fe, the solution ((1)) in H 3 PO 4 concentration in the vicinity of its surface is reduced. For this reason, it is considered that the reaction proceeds to the right in the equilibrium formula (1), and hardly soluble AlPO 4 is deposited on the surface of the steel material to form an Al—PO film.
A1 (H 2 P0 4 ) 3 (soluble) ⇔ 2H 3 PO 4 (liquid) + AlPO 4 (slightly soluble) (1)
Fe + 2H 3 PO 4 → Fe (H 2 PO 4 ) 2 + H 2 ↑ (2)
That is, it is considered that the formation of the Al—P—O-based film is based on the formation and deposition of hardly soluble AlPO 4 due to the decomposition of Al (H 2 PO 4 ) 3 , triggered by the steel material corrosive action of H 3 PO 4 . Therefore, in order to promote the formation of such a film, it is better to raise the temperature of the aqueous solution in order to increase the reaction rate of the formula (2).

水溶液の温度が各々30℃、40〜50℃の場合、鋼材への接触時間は夫々180秒以上、30秒以上必要であり、これ以下では反応速度が遅く、Al−P−O系皮膜を形成することが困難である。水溶液の上限温度は、温麗管理が高温ほど困難で且つ維持コストも高くなるため、300℃以下が望ましい。また、水溶液の温度が室温の場合は、接触のみでは皮膜形成が難しいため、接触後に300℃以下の大気中で加熱し、水分を蒸発することによっても上記皮膜を得ることができる。加熱温度が300℃を超える場合は、水分の蒸発速度が速すぎて、皮膜の緻密度が下がり、皮膜強度が低下するため、好ましくない。また、鋼材の静的強度および疲労強度が低下する懸念があるため好ましくない。   When the temperature of the aqueous solution is 30 ° C. and 40 to 50 ° C., respectively, the contact time with the steel material requires 180 seconds or more and 30 seconds or more, respectively. Below this, the reaction rate is slow, and an Al—PO film is formed. Difficult to do. The upper limit temperature of the aqueous solution is preferably 300 ° C. or lower because the higher the temperature, the more difficult the maintenance and the higher the maintenance cost. In addition, when the temperature of the aqueous solution is room temperature, it is difficult to form a film only by contact. Therefore, the film can also be obtained by heating in an atmosphere of 300 ° C. or less after contact to evaporate water. When the heating temperature exceeds 300 ° C., the evaporation rate of moisture is too high, the film density decreases, and the film strength decreases, which is not preferable. Moreover, since there exists a possibility that the static strength and fatigue strength of steel materials may fall, it is not preferable.

このように形成したAl−P−O−H系膜の厚さは、1〜5μmが望ましく、1μm未満では上記のPやアモルファス構造の作用が小さく、本発明に係るα−FeOOH率が10%以上の皮膜を得ることができない。また、厚さが5μmを超えても、これらの作用はほとんど増加せず、逆に同膜形成にコストがかかり望ましくない。   The thickness of the Al—P—O—H film thus formed is preferably 1 to 5 μm, and if it is less than 1 μm, the effect of the P or amorphous structure is small, and the α-FeOOH ratio according to the present invention is 10%. The above film cannot be obtained. Further, even if the thickness exceeds 5 μm, these effects hardly increase, and conversely, the formation of the film is costly and undesirable.

上記の水溶液は、安価なりん酸アルミニウムやりん酸、蒸留水を用いて容易に作製でき、且つ処理も簡単であるため、低コストでAl−P−O−H系皮膜の形成が可能である。また、本水溶液は弱酸であるため、鋼材から発生する水素量は極微量であり、水素脆化の心配がない。さらに、全ての処理を300℃以下で行うため、材料強度の低下もほとんどない。   The above-mentioned aqueous solution can be easily produced using inexpensive aluminum phosphate, phosphoric acid, or distilled water, and can be easily processed, so that an Al—P—O—H film can be formed at low cost. . Moreover, since this aqueous solution is a weak acid, the amount of hydrogen generated from the steel material is extremely small, and there is no fear of hydrogen embrittlement. Furthermore, since all processes are performed at 300 ° C. or lower, there is almost no decrease in material strength.

次に、Al−P−O−H系膜で表面を覆った鋼材から、α−FeOOHを早期に形成する方法について説明する。
塩水噴霧処理は、Al−P−O−H系膜で表面を覆った鋼材にCl,O,Hを付与し、鋼材の溶出を促すために行うものである.処理条件としては、温度30〜40℃、塩水濃度3〜5wt%NaC1、噴霧量50〜200mmL/min/mm、処理時間5〜30分の各範囲が望ましい。温度は、30℃未満では溶出速度が小さいため、40℃を超えても溶出速度は大きく変わらず、逆に温度管理や温度維持にコストが高いため、ともに好ましくない。塩水濃度は、3wt%未満ではCl,O,Hの供給量が少なく溶出速度が小さいため、また5wt%を超えた場合は溶出速度はほとんど増加しないため、ともに好ましくない。噴霧量は、50mL/min/mm未満ではCl,O,Hの供給量が少なく溶出速度が小さいため、また200mL/min/mmを超えた場合は溶出速度はほとんど増加せず逆に噴霧液のコストが増加するため、ともに好ましくない。処理時間は、5分未満ではCl,O,Hの供給量が少なく溶出速度が小さいため、また30分を越えた場合は溶出速度はほとんど増加せず、逆に噴霧液のコストが増加するため、ともに好ましくない。
Next, a method for early forming α-FeOOH from a steel material whose surface is covered with an Al—P—O—H film will be described.
The salt spray treatment is performed to impart Cl, O, H to a steel material whose surface is covered with an Al—P—O—H film to promote the elution of the steel material. The treatment conditions are preferably 30 to 40 ° C., a salt water concentration of 3 to 5 wt% NaC1, a spray amount of 50 to 200 mmL / min / mm 2 , and a treatment time of 5 to 30 minutes. If the temperature is less than 30 ° C., the elution rate is small, and even if it exceeds 40 ° C., the elution rate does not change greatly. When the salt water concentration is less than 3 wt%, the supply amount of Cl, O, H is small and the elution rate is small, and when the salt water concentration exceeds 5 wt%, the elution rate hardly increases. When the spraying amount is less than 50 mL / min / mm 2 , the supply amount of Cl, O, H is small and the elution rate is small, and when it exceeds 200 mL / min / mm 2 , the elution rate hardly increases and the spraying is reversed. Since the cost of a liquid increases, both are not preferable. If the treatment time is less than 5 minutes, the supply amount of Cl, O, H is small and the elution rate is small, and if it exceeds 30 minutes, the elution rate hardly increases and the cost of the spray solution increases. Both are not preferable.

しかし、塩水噴霧処理のみでは,Clの累積供給量が増え過ぎ、β−FeOOHが安定化するため、α−FeOOHの早期形成が困難である。そこで、塩水噴霧処理の後、Cl成分を含まず酸素と湿気が共存する安定した環境に暴露し、鋼材表面にO,Hを供給することで、α-FeOOHの早期形成が可能になる。   However, only the salt spray treatment increases the cumulative supply amount of Cl and stabilizes β-FeOOH, so that early formation of α-FeOOH is difficult. Therefore, after the salt spray treatment, exposure to a stable environment containing no Cl component and oxygen and moisture coexisting, and supplying O and H to the steel material surface enables early formation of α-FeOOH.

この塩水噴霧後の処理条件としては、温度25〜35℃、相対湿度30〜95%の雰囲気に10〜24時間保持することが望ましい。ここで、温度が25℃未満ではα−FeOOHの形成速度が小さいため、また35℃を超えた場合はα-FeOOHの形成速度は大きく変わらず、逆に温度管理や温度維持にコストが高いため、ともに好ましくない。相対湿度が30%未満ではO,Hの供給速度が小さく非効率であるため、また95%を越えた環境では、維持および管理が困難であり、高コストになるため好ましくない。処理時間が10時間未満では、α−FeOOHの形成量が少ないため、24時間を越えてもα−FeOOHの形成量が大きく増加しないため、ともに好ましくない。   As processing conditions after spraying this salt water, it is desirable to hold | maintain for 10 to 24 hours in the atmosphere of temperature 25-35 degreeC, and relative humidity 30-95%. Here, when the temperature is less than 25 ° C., the formation rate of α-FeOOH is small, and when it exceeds 35 ° C., the formation rate of α-FeOOH does not change greatly, and conversely, the cost for temperature management and temperature maintenance is high. Both are not preferable. If the relative humidity is less than 30%, the supply rate of O and H is small and inefficient, and if the relative humidity exceeds 95%, maintenance and management are difficult and the cost becomes high, which is not preferable. If the treatment time is less than 10 hours, the formation amount of α-FeOOH is small, and even if it exceeds 24 hours, the formation amount of α-FeOOH does not increase greatly.

また、上記の塩水噴霧等の処理を繰り返すことにより、α-FeOOHの形成をさらに加速することができる。繰り返す回数は、1〜10回の範囲が良く、10回を超えてもα−FeOOHの形成量が大きく増加しないため好ましくない。上記塩水噴霧処理および恒温恒湿処理は、ともに安価に入手できる市販の装置を用いることができ、低コストで本発明に係る皮膜が形成できる。   Moreover, formation of α-FeOOH can be further accelerated by repeating the treatment such as salt spray. The number of repetitions is preferably in the range of 1 to 10 times, and exceeding 10 times is not preferable because the amount of α-FeOOH formed does not increase greatly. Both the salt spray treatment and the constant temperature and humidity treatment can use commercially available apparatuses that can be obtained at low cost, and the coating according to the present invention can be formed at low cost.

(実施例)
以下に実施例を示すが、本発明は特に本実施例に限定されるものではない。
直径φ4mm、長さ20〜80mmのばね用鋼材(鋼種1:0.4C−1.4Si−0.8Mn−0.7Cr−Fe、鋼種2:0.4C−1.8Si−0.2Mn−1.0Cr−0.5Ni−0.08Ti−0.18V−Fe、鋼種3:0.4C−2.5Si−0.7Mn−0.8Cr−1.8Ni−0.2V−0.4Mo−Fe(wt%))に対し、下記表1〜表6に示す条件でAl−P−O−H系皮膜を形成後、同表1〜6記載の条件で塩水噴霧等の処理を行なったものを供試材とし、耐食性評価および腐食疲労耐久性評価を行った。また、供試材については、Al−P−O−H系膜の厚さと、α−FeOOH比率及びα−FeOOH比率が10%以上である膜の厚さを評価した。ここでは、5wt%−AlPO水溶液を用いてAl−P−O−H系膜を形成した。また、形成されたAl−P−O−H系皮膜は、X線回折の結果、アモルファス構造であった。
(Example)
Examples are shown below, but the present invention is not particularly limited to these Examples.
Steel for springs having a diameter of 4 mm and a length of 20 to 80 mm (steel type 1: 0.4C-1.4Si-0.8Mn-0.7Cr-Fe, steel type 2: 0.4C-1.8Si-0.2Mn-1 0.0Cr-0.5Ni-0.08Ti-0.18V-Fe, Steel type 3: 0.4C-2.5Si-0.7Mn-0.8Cr-1.8Ni-0.2V-0.4Mo-Fe ( wt%)) after forming an Al—P—O—H-based film under the conditions shown in Tables 1 to 6 below, followed by treatment such as salt spraying under the conditions described in Tables 1 to 6 provided. As a test material, corrosion resistance evaluation and corrosion fatigue durability evaluation were performed. Moreover, about the test material, the thickness of the Al-P-O-H type | system | group film | membrane and the film thickness whose (alpha) -FeOOH ratio and (alpha) -FeOOH ratio are 10% or more were evaluated. Here, an Al—P—O—H-based film was formed using a 5 wt% -AlPO 4 aqueous solution. The formed Al—P—O—H-based film had an amorphous structure as a result of X-ray diffraction.

Al−P−O系膜の厚さは、鋼材を樹脂に埋め込んだ後、鏡面になるまで研磨し、その断面を光学顕微鏡または電子顕微鏡を用いて観察することで評価した。

Figure 2007302970
The thickness of the Al—P—O-based film was evaluated by embedding a steel material in a resin, polishing it to a mirror surface, and observing the cross section using an optical microscope or an electron microscope.
Figure 2007302970

Figure 2007302970
Figure 2007302970

Figure 2007302970
Figure 2007302970

Figure 2007302970
Figure 2007302970

Figure 2007302970
Figure 2007302970

Figure 2007302970
Figure 2007302970

α−FeOOH比率は、試料を樹脂に埋め込み、顕微FT−IR(フーリエ変換赤外分光法)を用い、得られた分光スペクトルから、α−FeOOHに対応する920cm−1付近の吸収ピーク強度をA、β−FeOOHに対応する840cm−1付近の吸収ピーク強度をB、γ−FeOOHに対応する740cm−1付近の吸収ピーク強度をCとした場合での「{A/(A+B+C)}×100%」として求めた。また、α-FeOOH比率が10%以上である層の厚さも同じ方法を用いて求めた。本顕微FT−IR分析では、これらα−FeOOH,β−FeOOHおよびγ−FeOOH以外に、Feの水酸化物や酸化物は検出されなかった。 The α-FeOOH ratio is obtained by embedding a sample in a resin and using microscopic FT-IR (Fourier transform infrared spectroscopy). From the obtained spectrum, the absorption peak intensity around 920 cm −1 corresponding to α-FeOOH is expressed as A , the absorption peak intensity at around 840 cm -1 corresponding to the β-FeOOH B, γ-FeOOH corresponding to 740 cm -1 an absorption peak intensity in the vicinity of the case where the C "{a / (a + B + C)} × 100% " The thickness of the layer having an α-FeOOH ratio of 10% or more was also determined using the same method. In this microscopic FT-IR analysis, in addition to α-FeOOH, β-FeOOH, and γ-FeOOH, no hydroxide or oxide of Fe was detected.

耐食性評価試験は、供試材を恒温恒温槽(26℃,95%RH)内に500時間放置して行った。評価は、500時間放置後の供試材を樹脂に埋め込み、光学顕微鏡と画像処理等により横断面積を測定した。試験前の横断面積をD、試験後の横断面積をEとした場合、「{(D−E)/D}×100%」を断面減少率と定義し、基準とする鋼材の断面積減少率をXとし、断面積減少率がXの60%未満を「最良」(耐食性が非常に優れる水準)、60%以上90%未満を「良」(耐食性が優れる水準)、90%以上を「不良」(耐食性が劣る水準)とした。   In the corrosion resistance evaluation test, the test material was left in a thermostatic chamber (26 ° C., 95% RH) for 500 hours. The evaluation was performed by embedding the test material after standing for 500 hours in a resin and measuring the cross-sectional area by an optical microscope and image processing. When the cross-sectional area before the test is D and the cross-sectional area after the test is E, “{(D−E) / D} × 100%” is defined as the cross-sectional reduction rate, and the cross-sectional area reduction rate of the steel material as a reference X is X, and the cross-sectional area reduction rate is less than 60% of X is “best” (level of excellent corrosion resistance), 60% to less than 90% is “good” (level of excellent corrosion resistance), and 90% or more is “bad” "(Corrosion resistance is inferior level).

耐腐食疲労性試験は、雰囲気温度35℃、塩水濃度5wt%NaC1、噴霧量180mL/min(分)/mmの塩水噴霧下に0.5時間放置した供試材を、大気中においてせん断応カτ=735±441MPaの条件で3000回加振し(0.5時間)、次いで恒温恒湿槽(26℃,95℃RH)に23時間放置する工程を、供試材が破断するまで繰り返した。評価は、基準とする鋼材の耐久回数Yとし、耐久回数がYの120%以上を「最良」(耐腐食疲労性が非常に優れる水準)、110%以上120%未満を「良」(耐腐食疲労性が優れる水準)、110%未満を「不良」(耐腐食疲労性が劣る水準)とした。 The corrosion fatigue resistance test was carried out by subjecting a specimen left for 0.5 hours under salt spray at an atmospheric temperature of 35 ° C., a salt water concentration of 5 wt% NaC1, and a spray amount of 180 mL / min (min) / mm 2 to shear stress in the atmosphere. The process of oscillating 3000 times under the condition of τ = 735 ± 441 MPa (0.5 hours) and then letting it stand in a constant temperature and humidity chamber (26 ° C., 95 ° C. RH) for 23 hours is repeated until the specimen is broken. It was. The evaluation is based on the standard steel durability number Y, where the durability number is 120% or more of Y is “best” (level of excellent corrosion fatigue resistance), and 110% or more and less than 120% is “good” (corrosion resistance) The level of excellent fatigue properties) and less than 110% were defined as “bad” (the level of poor corrosion fatigue resistance).

比較例1の鋼材は、化学成分が0.4C−1.4Si−0.8Mn−0.7Cr−Fe(鋼種1、Cu,Ni,Cr,Moの合計が0.7wt%)のばね用鋼材で、無処理のものであり、以下実施例1〜15,18〜37及び比較例2〜10,13〜20の耐食性および耐腐食疲労性評価の基準とした。なお、無処理材、処理材とも母材の力学特性は同等である。   The steel material of Comparative Example 1 has a chemical composition of 0.4C-1.4Si-0.8Mn-0.7Cr-Fe (steel type 1, Cu, Ni, Cr, Mo total 0.7 wt%). Therefore, it was used as a standard for evaluation of corrosion resistance and corrosion fatigue resistance of Examples 1 to 15, 18 to 37 and Comparative Examples 2 to 10 and 13 to 20. Note that the mechanical properties of the base material are the same for both the untreated material and the treated material.

実施例1〜5及び比較例2,3の鋼材は、水溶液の温度を50℃とし、接触時間を10〜360秒の範囲で変化させ(接触後の加熱無)、Al−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量200mL/min/mm、噴霧時間30minの各条件で行った後、温度30℃、相対湿度95%の舞囲気に24時間保持するサイクルを10回繰返し作製したものである。接触時間が120〜360秒の範囲である実施例1〜3では、Al−P−O−H系膜の厚さが3〜5μm、最表面から深さ方法に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは60〜100μmであり、耐食性と耐腐食疲労性はともに「最良」(非常に優れる水準)である。また、接触時間が夫々60秒,30秒である実施例4,実施例5では、Al−P−O−H系膜の厚さが1〜2μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在し、その層の厚さは20〜30μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。しかし、接触時間が夫々20秒,10秒である比較例2,比較例3では、Al−P−O−H系膜の厚さが1μm未満、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。 In the steel materials of Examples 1 to 5 and Comparative Examples 2 and 3, the temperature of the aqueous solution was set to 50 ° C., and the contact time was changed in the range of 10 to 360 seconds (no heating after contact), Al—P—O—H. The steel material on which the system film was formed was sprayed with salt water under conditions of a temperature of 35 ° C., a salt water concentration of 5 wt%, a spray amount of 200 mL / min / mm 2 , and a spray time of 30 min, and then a temperature of 30 ° C. and a relative humidity of 95%. A cycle in which the atmosphere is kept for 24 hours is repeatedly produced 10 times. In Examples 1 to 3 in which the contact time is in the range of 120 to 360 seconds, the thickness of the Al—P—O—H film is 3 to 5 μm, and α-FeOOH is in the region from the outermost surface to the depth method of 100 μm. There is a layer having a ratio of 10% or more, the thickness of the layer is 60 to 100 μm, and both the corrosion resistance and the corrosion fatigue resistance are “best” (very excellent level). Further, in Examples 4 and 5 in which the contact times are 60 seconds and 30 seconds, respectively, the Al—P—O—H-based film has a thickness of 1 to 2 μm and a region from the outermost surface to 100 μm in the depth direction. There is a layer having an α-FeOOH ratio of 10% or more, the thickness of the layer is 20 to 30 μm, and both corrosion resistance and corrosion fatigue resistance are “good” (excellent level). However, in Comparative Example 2 and Comparative Example 3 in which the contact times are 20 seconds and 10 seconds, respectively, the thickness of the Al—P—O—H film is less than 1 μm and the region from the outermost surface to 100 μm in the depth direction. There is no layer having an α-FeOOH ratio of 10% or more, and the corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

実施例6〜9及び比較例4,5の鋼材は、水溶液の温度を40℃とし、接触時間を10〜180秒の範囲で変化させ(接触後の加熱無)、Al−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量200mL/min/mm、噴霧時間30minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し作製したものである。接触時間が夫々180秒、120秒である実施例6、実施例7では、Al−P−O−H系膜の厚さが3〜5μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは50〜70μmであり、耐食性と耐腐食疲労性はともに「最良」(非常に極れる水準)である。また、接触時間が夫々60秒,30秒である実施例8,実施例9では、Al−O−P−H系膜の厚さが1〜2μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは20〜30μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。しかし、接触時間が夫々20秒,10秒である比較例4,比較例5では、Al−P−O−H系膜の厚さが1μm未満、最表面から深さ方法に100μmまでの領域にα−FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。 In the steel materials of Examples 6 to 9 and Comparative Examples 4 and 5, the temperature of the aqueous solution was set to 40 ° C., and the contact time was changed in the range of 10 to 180 seconds (no heating after contact), Al—P—O—H. The steel material on which the system film was formed was sprayed with salt water under conditions of a temperature of 35 ° C., a salt water concentration of 5 wt%, a spray amount of 200 mL / min / mm 2 , and a spray time of 30 min, and then a temperature of 30 ° C. and a relative humidity of 95%. A cycle in which the atmosphere is kept for 24 hours is repeatedly produced 10 times. In Example 6 and Example 7 in which the contact times are 180 seconds and 120 seconds, respectively, the thickness of the Al—P—O—H-based film is 3 to 5 μm, and α in the region from the outermost surface to 100 μm in the depth direction. There is a layer having a FeOOH ratio of 10% or more, the thickness of the layer is 50 to 70 μm, and both the corrosion resistance and the corrosion fatigue resistance are “best” (very high level). In Examples 8 and 9 where the contact times are 60 seconds and 30 seconds, respectively, the Al—O—P—H film thickness is 1 to 2 μm, and the region from the outermost surface to 100 μm in the depth direction. There is a layer having an α-FeOOH ratio of 10% or more, the thickness of the layer is 20 to 30 μm, and both corrosion resistance and corrosion fatigue resistance are “good” (excellent level). However, in Comparative Example 4 and Comparative Example 5 in which the contact times are 20 seconds and 10 seconds, respectively, the thickness of the Al—P—O—H-based film is less than 1 μm, and the region from the outermost surface to the depth method is 100 μm. There is no layer having an α-FeOOH ratio of 10% or more, and the corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

実施例10,11及び比較例6の鋼材は、水溶液の温度を30℃とし、接触時間を120〜360秒の範囲で変化させ(接触後の加熱無)、Al−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量200mL/min/mm、噴霧時間30minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し作製したものである。接触時間が夫々360秒,180秒である実施例10,実施例11では、Al−P−O−H系膜の厚さが1〜2μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは20μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。しかし、接触時間が120秒である比較例6では、Al−P−O−H系膜の厚さが1μm未満、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。 In the steel materials of Examples 10 and 11 and Comparative Example 6, the temperature of the aqueous solution was set to 30 ° C., and the contact time was changed in the range of 120 to 360 seconds (no heating after contact), and an Al—P—O—H film After the salt water spray was performed on the steel material having a temperature of 35 ° C., a salt water concentration of 5 wt%, a spray amount of 200 mL / min / mm 2 , and a spray time of 30 min, an atmosphere of 30 ° C. and 95% relative humidity was obtained. A cycle for 24 hours was repeatedly produced 10 times. In Example 10 and Example 11 in which the contact time is 360 seconds and 180 seconds, respectively, the thickness of the Al—P—O—H-based film is 1 to 2 μm, and α is in the region from the outermost surface to 100 μm in the depth direction. A layer having a FeOOH ratio of 10% or more exists, the thickness of the layer is 20 μm, and both corrosion resistance and corrosion fatigue resistance are “good” (excellent level). However, in Comparative Example 6 in which the contact time is 120 seconds, the α-FeOOH ratio is 10% or more in the region where the thickness of the Al—P—O—H-based film is less than 1 μm and from the outermost surface to 100 μm in the depth direction. There is no layer, and the corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

比較例7〜9の鋼材は、水溶液の温度を室温とし、接触時間を5〜900秒の範囲で変化させ(接触後の加熱無)、Al−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量200mL/min/mm、噴霧時間30minの条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し作製したものである。接触時間が5〜900秒である比較例7〜9の全てにおいて、Al−P−O−H系膜の厚さが1μm未満、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。 In the steel materials of Comparative Examples 7 to 9, the temperature of the aqueous solution was set to room temperature, the contact time was changed in the range of 5 to 900 seconds (no heating after contact), and the steel material on which the Al—P—O—H film was formed was formed. On the other hand, a cycle in which salt spray is performed under conditions of a temperature of 35 ° C., a salt water concentration of 5 wt%, a spray amount of 200 mL / min / mm 2 , and a spray time of 30 min, and then maintained in an atmosphere of a temperature of 30 ° C. and a relative humidity of 95% for 24 hours. It was produced repeatedly 10 times. In all of Comparative Examples 7 to 9 in which the contact time is 5 to 900 seconds, the α-FeOOH ratio is in a region where the thickness of the Al—P—O—H film is less than 1 μm and from the outermost surface to 100 μm in the depth direction. No 10% or more layer exists, and the corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

比較例10及び実施例12,13の鋼材は、水溶液の温度を室温、接触時間を5秒とし、接触後の加熱温度を200〜400℃の範囲で変化させ、Al−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量200mL/mim/mm、噴霧時間30minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し作製したものである。接触後の加熱温度が400℃である比較例10では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在せず、耐食性は「良」(優れる水準)であるが、耐腐食疲労性は「不良」(劣る水準)である。接触後の加熱温度が夫々300℃,200℃である実施例12,実施例13では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在し、その層の厚さは50〜80μmであり、耐食性と耐腐食疲労性はいずれも「良」(優れる水準)である。 In the steel materials of Comparative Example 10 and Examples 12 and 13, the temperature of the aqueous solution was room temperature, the contact time was 5 seconds, the heating temperature after contact was changed in the range of 200 to 400 ° C., and the Al—P—O—H system was used. The steel material on which the film was formed was sprayed with salt water under conditions of a temperature of 35 ° C., a salt water concentration of 5 wt%, a spray amount of 200 mL / mim / mm 2 , and a spray time of 30 min, and then an atmosphere at a temperature of 30 ° C. and a relative humidity of 95%. The cycle for 24 hours is repeatedly produced 10 times. In Comparative Example 10 where the heating temperature after contact is 400 ° C., the thickness of the Al—P—O—H film is 3 μm, and the α-FeOOH ratio is 10% or more in the region from the outermost surface to 100 μm in the depth direction. The corrosion resistance is "good" (excellent level), but the corrosion fatigue resistance is "poor" (inferior level). In Examples 12 and 13 where the heating temperatures after contact are 300 ° C. and 200 ° C., respectively, the thickness of the Al—P—O—H film is 3 μm, and the region from the outermost surface to 100 μm in the depth direction is used. There is a layer having an α-FeOOH ratio of 10% or more, the thickness of the layer is 50 to 80 μm, and the corrosion resistance and corrosion fatigue resistance are both “good” (excellent level).

実施例14,15の鋼材は、水溶液の温度を室温とし、接触時間を夫々3秒,1秒の範囲で変化させ(接触後の加熱温度200℃)、Al−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度85℃、塩水濃度5wt%、噴霧量200mL/min/min、噴霧時間30minの各条件で行い、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し作製したものである。接触時間が夫々3秒,1秒である実施例14,実施例15では、Al−P−O−H系膜の厚さが2〜3μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは10〜30μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。 In the steel materials of Examples 14 and 15, the temperature of the aqueous solution was set to room temperature, the contact time was changed in the range of 3 seconds and 1 second, respectively (heating temperature after contact 200 ° C.), and the Al—P—O—H-based film was formed. The formed steel material is sprayed with salt water under conditions of a temperature of 85 ° C., a salt water concentration of 5 wt%, a spray amount of 200 mL / min / min 2 , and a spray time of 30 min, and kept in an atmosphere of a temperature of 30 ° C. and a relative humidity of 95% for 24 hours. The cycle is repeated 10 times. In Examples 14 and 15 in which the contact times are 3 seconds and 1 second, respectively, the thickness of the Al—P—O—H-based film is 2 to 3 μm, and α in the region from the outermost surface to 100 μm in the depth direction. A layer having a FeOOH ratio of 10% or more exists, the thickness of the layer is 10 to 30 μm, and both corrosion resistance and corrosion fatigue resistance are “good” (excellent level).

比較例11の鋼材は、化学成分が0.4C−1.8Si−0.2Mn−1.0Cr−0.5Ni−0.08Ti−0.18V−Fe(鋼種2、Cu,Ni,Cr,Moの合計が1.7wt%)のばね用鋼材で、無処理のものであり、実施例16の耐食性および耐腐食疲労性評価の基準とした。   The steel material of Comparative Example 11 has a chemical composition of 0.4C-1.8Si-0.2Mn-1.0Cr-0.5Ni-0.08Ti-0.18V-Fe (steel type 2, Cu, Ni, Cr, Mo And a non-processed spring steel material, which was used as a standard for evaluating the corrosion resistance and corrosion fatigue resistance of Example 16.

実施例16の鋼材は、鋼種2に水溶液の温度を50℃、接触時間30秒(接触後の加熱無)でAl−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量200mL/min/mm、噴霧時間3minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し作製したものである。鋼種2の実施例16では、Al−P−O−H系膜の厚さが1μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは50μmであり、耐食性と耐腐食疲労性はともに「最良」(非常に優れる水準)である。 In the steel material of Example 16, the temperature of the aqueous solution was 50 ° C. in the steel type 2 and the steel material was formed with an Al—P—O—H film at a contact time of 30 seconds (no heating after contact). ° C., brine concentration 5 wt%, spray volume 200mL / min / mm 2, after each condition spraying time 3min, temperature 30 ° C., which cycle to hold 24 hours to an atmosphere of 95% relative humidity was repeated produced 10 times It is. In Example 16 of steel type 2, there is a layer having an α-FeOOH ratio of 10% or more in a region where the thickness of the Al—P—O—H film is 1 μm and the depth from the outermost surface to 100 μm. The thickness of the layer is 50 μm, and the corrosion resistance and corrosion fatigue resistance are both “best” (very good level).

比較例12の鋼材は、化学成分が.0.4C−2.5Si−0.7Mn−0.8Cr−1.8Ni−0.2V−0.4Mo−Fe(鋼種3、Cu,Ni,Cr,Moの合計が3.0wt%)のばね用鋼材で、無処理のものであり、実施例17の耐食性および耐腐食疲労性評価の基準とした。   The steel of Comparative Example 12 has a chemical composition of. Spring of 0.4C-2.5Si-0.7Mn-0.8Cr-1.8Ni-0.2V-0.4Mo-Fe (steel grade 3, Cu, Ni, Cr, Mo total is 3.0 wt%) This was a non-treated steel material, and was used as a standard for evaluating the corrosion resistance and corrosion fatigue resistance of Example 17.

実施例17の鋼材は、鋼種3に水溶液の温度を50℃、接触時間30秒(接触後の加熱無)でAl−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量200mL/min/mm、噴霧時間30minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し作製したものである。鋼種3の実施例17では、Al−P−O−H系膜の厚さが1μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは60μmであり、耐食性と耐腐食疲労性はともに「最良」(非常に優れる水準)である。 In the steel material of Example 17, the temperature of the aqueous solution was 50 ° C. on the steel type 3 and the steel material was formed with an Al—P—O—H film at a contact time of 30 seconds (no heating after contact). A cycle in which the temperature was maintained at 30 ° C. and the relative humidity was 95% for 24 hours was repeated 10 times after being performed under the conditions of ° C., salt water concentration 5 wt%, spray amount 200 mL / min / mm 2 and spray time 30 min. It is. In Example 17 of steel type 3, there is a layer with an α-FeOOH ratio of 10% or more in a region where the thickness of the Al—P—O—H film is 1 μm and the depth from the outermost surface to 100 μm. The thickness of the layer is 60 μm, and both the corrosion resistance and the corrosion fatigue resistance are “best” (very excellent level).

実施例18〜20及び比較例13の鋼材は、水溶液の温度を50℃、接触時間を180秒(接触後の加熱無)としてAl−P−O−H系膜を形成した鋼材に対し、塩水噴霧を25〜45℃、塩水濃度5wt%、噴霧量200mL/min/mm、噴霧時間30minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し作製したものである。塩水噴霧の温度が45℃である実施例18では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは120μmであり、耐食性が「最良」(非常に優れる水準)で、耐腐食疲労性は「良」(優れる水準〉である。 The steel materials of Examples 18 to 20 and Comparative Example 13 are salt water with respect to a steel material having an Al—P—O—H film formed with an aqueous solution temperature of 50 ° C. and a contact time of 180 seconds (no heating after contact). Spraying was performed under conditions of 25 to 45 ° C., a salt water concentration of 5 wt%, a spray amount of 200 mL / min / mm 2 , and a spraying time of 30 min, and then a cycle of maintaining in an atmosphere of a temperature of 30 ° C. and a relative humidity of 95% for 24 hours. It was produced repeatedly. In Example 18 in which the temperature of the salt spray is 45 ° C., a layer in which the thickness of the Al—P—O—H film is 3 μm and the α-FeOOH ratio is 10% or more in the region from the outermost surface to the depth direction of 100 μm. The layer thickness is 120 μm, the corrosion resistance is “best” (very good level), and the corrosion fatigue resistance is “good” (excellent level).

塩水噴霧の温度が40℃である実施例19では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは90μmであり、耐食性と耐腐食疲労性はともに「最良」(非常に優れる水準)である。また、塩水噴霧の温度が30℃である実施例20では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在し、その層の厚さは40μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。しかし、塩水噴霧の温度が25℃である比較例13では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方法に100μmまでの領域にα-FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。   In Example 19 in which the temperature of the salt spray is 40 ° C., the thickness of the Al—P—O—H film is 3 μm, and the α-FeOOH ratio is 10% or more in the region from the outermost surface to 100 μm in the depth direction. There is a layer, the thickness of the layer is 90 μm, and the corrosion resistance and corrosion fatigue resistance are both “best” (very good level). In Example 20 in which the temperature of the salt spray is 30 ° C., the thickness of the Al—P—O—H film is 3 μm, and the α-FeOOH ratio is 10% in the region from the outermost surface to 100 μm in the depth direction. The above layers exist, the thickness of the layer is 40 μm, and both the corrosion resistance and the corrosion fatigue resistance are “good” (excellent level). However, in Comparative Example 13 in which the temperature of the salt spray is 25 ° C., the thickness of the Al—P—O—H film is 3 μm, and the α-FeOOH ratio is 10% in the region from the outermost surface to the depth method of 100 μm. The above layers do not exist, and the corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

実施例21,22及び比較例14の鋼材は、水溶液の温度を50℃、接触時間を180秒(接触後の加熱無)としてAl−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度85℃、塩水濃度を1〜7wt%、噴霧量200mL/min/mm、噴霧時間30minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し作製したものである。塩水噴霧の塩水濃度が7wt%である実施例21では、A1−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在し、その層の厚さは90μmであり、耐食性と耐腐食疲労性はともに「最良」(非常に優れる水準)である。また、塩水噴霧の塩水濃度が3wt%である実施例22では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在し、その層の厚さは30μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。しかし、塩水噴霧の塩水濃度が1wt%である比較例14では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。 The steel materials of Examples 21 and 22 and Comparative Example 14 are salt water with respect to steel materials in which the temperature of the aqueous solution is 50 ° C. and the contact time is 180 seconds (no heating after contact) and an Al—P—O—H film is formed. A cycle in which spraying is performed under conditions of a temperature of 85 ° C., a salt water concentration of 1 to 7 wt%, a spray amount of 200 mL / min / mm 2 , and a spray time of 30 min, and then maintained in an atmosphere of a temperature of 30 ° C. and a relative humidity of 95% for 24 hours. Was repeated 10 times. In Example 21 in which the salt water concentration of the salt spray is 7 wt%, the thickness of the A1-P—O—H film is 3 μm, and the α-FeOOH ratio is 10% or more in the region from the outermost surface to 100 μm in the depth direction. The thickness of the layer is 90 μm, and both the corrosion resistance and the corrosion fatigue resistance are “best” (very excellent level). In Example 22 where the salt water concentration of the salt spray is 3 wt%, the thickness of the Al—P—O—H film is 3 μm, and the α-FeOOH ratio is 10 in the region from the outermost surface to 100 μm in the depth direction. % Of the layer exists, the thickness of the layer is 30 μm, and the corrosion resistance and corrosion fatigue resistance are both “good” (excellent level). However, in Comparative Example 14 in which the salt water concentration of the salt spray is 1 wt%, the thickness of the Al—P—O—H film is 3 μm, and the α-FeOOH ratio is 10 in the region from the outermost surface to 100 μm in the depth direction. % Or more layers do not exist, and the corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

実施例23〜25及び比較例15の鋼材は、水溶液の温度を50℃、接触時間を180秒(接触後の加熱無)としてAl−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量を30〜250mL/min/mm、噴霧時間を30minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し作製したものである。塩水噴霧の噴霧量が100〜250mL/min/mmである実施例23および実施例24では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは70〜100μmであり、耐食性と耐腐食疲労性はともに「最良」(非常に優れる水準)である。また、塩水噴霧の噴霧量が50mL/min/mmである実施例25では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在し、その層の厚さは30μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。しかし、塩水噴霧の噴霧量が30mL/min/mmである比較例15では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方法に100μmまでの領域にα−FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。 The steel materials of Examples 23 to 25 and Comparative Example 15 are salt water with respect to the steel materials in which the temperature of the aqueous solution is 50 ° C. and the contact time is 180 seconds (no heating after contact) to form an Al—P—O—H film. Spraying is performed under the conditions of a temperature of 35 ° C., a salt water concentration of 5 wt%, a spray amount of 30 to 250 mL / min / mm 2 , and a spraying time of 30 min, and then kept in an atmosphere of a temperature of 30 ° C. and a relative humidity of 95% for 24 hours. The cycle was repeatedly produced 10 times. In Example 23 and Example 24 in which the spray amount of the salt spray is 100 to 250 mL / min / mm 2 , the thickness of the Al—P—O—H-based film is 3 μm, and from the outermost surface to 100 μm in the depth direction. There is a layer having an α-FeOOH ratio of 10% or more in the region, the thickness of the layer is 70 to 100 μm, and both the corrosion resistance and the corrosion fatigue resistance are “best” (very excellent level). Further, in Example 25 in which the spray amount of the salt spray is 50 mL / min / mm 2 , the thickness of the Al—P—O—H film is 3 μm, and α − in the region from the outermost surface to 100 μm in the depth direction. A layer having an FeOOH ratio of 10% or more exists, the thickness of the layer is 30 μm, and both corrosion resistance and corrosion fatigue resistance are “good” (excellent level). However, in Comparative Example 15 in which the spray amount of the salt spray is 30 mL / min / mm 2 , the thickness of the Al—P—O—H-based film is 3 μm, and α− in the region from the outermost surface to the depth method of 100 μm. There is no layer having a FeOOH ratio of 10% or more, and both the corrosion resistance and the corrosion fatigue resistance are “bad” (inferior level).

実施例26,27及び比較例16の鋼材は、水溶液の温度を50℃、接触時間を180秒(接触後の加熱無)としてAl−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量200mL/min/mm、噴霧時間を1〜60minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間放置するサイクルを10回繰返し作製したものである。塩水噴霧の噴霧時間が60minである実施例26では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在し、その層の厚さは90μmであり、耐食性と耐腐食疲労性はともに「最良」(非常に優れる水準)である。また、塩水噴霧の噴霧時間が5minである実施例27では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FOOH比率が10%以上の層が存在し、その層の厚さは30μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。しかし、塩水噴霧の噴霧時間が1minである比較例16では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。 The steel materials of Examples 26 and 27 and Comparative Example 16 are salt water with respect to a steel material in which an Al—P—O—H film was formed with an aqueous solution temperature of 50 ° C. and a contact time of 180 seconds (no heating after contact). A cycle in which spraying is carried out under conditions of a temperature of 35 ° C., a salt water concentration of 5 wt%, a spray amount of 200 mL / min / mm 2 and a spray time of 1 to 60 min, and then left in an atmosphere of a temperature of 30 ° C. and a relative humidity of 95% for 24 hours. Was repeated 10 times. In Example 26 in which the spray time of the salt spray is 60 min, the thickness of the Al—P—O—H film is 3 μm, and the α-FeOOH ratio is 10% or more in the region from the outermost surface to 100 μm in the depth direction. There is a layer, the thickness of the layer is 90 μm, and the corrosion resistance and corrosion fatigue resistance are both “best” (very good level). Further, in Example 27 in which the spray time of the salt spray is 5 min, the thickness of the Al—P—O—H film is 3 μm, and the α-FOOH ratio is 10% in the region from the outermost surface to 100 μm in the depth direction. The above layers exist, the thickness of the layer is 30 μm, and both the corrosion resistance and the corrosion fatigue resistance are “good” (excellent level). However, in Comparative Example 16 in which the spray time of the salt water spray is 1 min, the Al—P—O—H film thickness is 3 μm, and the α-FeOOH ratio is 10% in the region from the outermost surface to 100 μm in the depth direction. The above layers do not exist, and the corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

実施例28〜30及び比較例17の鋼材は、水溶液の温度を50℃、接触時間を180秒(接触後の加熱無)としてAl−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃,塩水濃度5wt%,噴霧量200mL/min/mm、噴霧時間30minの各条件で行った後、温度を20℃〜40℃、相対湿度95%の雰囲気に24時間保持するサイクルを10回繰返し製作したものである。塩水噴霧後の保持温度が40℃である実施例28では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは110μmであり、耐食性が「最良」(非常に優れる水準)で、耐腐食疲労性は「良」(優れる水準)である。塩水噴霧後の保持温度が35℃である実施例29では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは90μmであり、耐食性と耐腐食疲労性はともに「最良」(非常に優れる水準)である。 The steel materials of Examples 28 to 30 and Comparative Example 17 are salt water with respect to the steel materials in which the temperature of the aqueous solution is 50 ° C. and the contact time is 180 seconds (no heating after contact) to form an Al—P—O—H film. Spraying is performed under conditions of a temperature of 35 ° C., a salt water concentration of 5 wt%, a spray amount of 200 mL / min / mm 2 , and a spraying time of 30 min, and then the temperature is maintained in an atmosphere of 20 ° C. to 40 ° C. and a relative humidity of 95% for 24 hours. The cycle was manufactured 10 times. In Example 28 where the retention temperature after spraying with salt water is 40 ° C., the thickness of the Al—P—O—H film is 3 μm, and the α-FeOOH ratio is 10% in the region from the outermost surface to 100 μm in the depth direction. The above layers are present, the thickness of the layer is 110 μm, the corrosion resistance is “best” (very excellent level), and the corrosion fatigue resistance is “good” (excellent level). In Example 29 where the holding temperature after spraying with salt water is 35 ° C., the thickness of the Al—P—O—H film is 3 μm, and the α-FeOOH ratio is 10% in the region from the outermost surface to 100 μm in the depth direction. The above layers exist, the thickness of the layer is 90 μm, and both the corrosion resistance and the corrosion fatigue resistance are “best” (very excellent level).

また、塩水噴霧後の保持温度が25℃である実施例30では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは50μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。しかし、塩水噴霧後の保持温度が20℃である比較例17では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。   In Example 30 where the holding temperature after spraying with salt water is 25 ° C., the Al—P—O—H film thickness is 3 μm, and the α-FeOOH ratio is in the region from the outermost surface to 100 μm in the depth direction. There is a layer of 10% or more, the thickness of the layer is 50 μm, and both corrosion resistance and corrosion fatigue resistance are “good” (excellent level). However, in Comparative Example 17 in which the holding temperature after spraying with salt water is 20 ° C., the Al—P—O—H film thickness is 3 μm, and the α-FeOOH ratio is in the region from the outermost surface to 100 μm in the depth direction. There is no layer of 10% or more, and the corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

実施例31,32及び比較例18の鋼材は、水溶液の温度を50℃、接触時間を180秒(接触後の加熱無)としてAl−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量200mL/min/mmが、噴霧時間30minの各条件で行った後、温度30℃、相対湿度を10%〜60%の舞囲気に24時間保持するサイクルを10回繰返し作製したものである。塩水噴霧後の相対湿度が夫々60%,30%である実施例31,実施例32では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは20〜40μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。しかし、塩水噴霧後の相対湿度が10%である比較例18では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。 In the steel materials of Examples 31 and 32 and Comparative Example 18, the temperature of the aqueous solution was 50 ° C., the contact time was 180 seconds (no heating after contact), and the steel material on which the Al—P—O—H film was formed was salt water. After spraying at a temperature of 35 ° C., a salt water concentration of 5 wt%, and a spray amount of 200 mL / min / mm 2 under each condition of a spray time of 30 min, the temperature is 30 ° C. and the relative humidity is 10% to 60% in an ambient atmosphere for 24 hours. The holding cycle was repeatedly produced 10 times. In Example 31 and Example 32 in which the relative humidity after spraying with salt water is 60% and 30%, respectively, the Al—P—O—H film thickness is 3 μm, and the region from the outermost surface to 100 μm in the depth direction. There is a layer having an α-FeOOH ratio of 10% or more, the thickness of the layer is 20 to 40 μm, and both the corrosion resistance and the corrosion fatigue resistance are “good” (excellent level). However, in Comparative Example 18 where the relative humidity after spraying with salt water is 10%, the thickness of the Al—P—O—H film is 3 μm, and the α-FOOH ratio is in the region from the outermost surface to 100 μm in the depth direction. There is no layer of 10% or more, and the corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

実施例33,34及び比較例19の鋼材は、水溶液の温度を50℃、接触時間を180秒(接触後の加熱無)としてAl−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温虞35℃、塩水濃度5wt%、噴霧量200mL/min/mm、噴霧時間30minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に5〜48時間保持するサイクルレを10回繰返し作製したものである。保持時間が48hである実施例33では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在し、その層の厚さは130μmであり、耐食性が「最良」(非常に優れる水準)で、耐腐食疲労性は「良」(優れる水準)である。また、保持時間が10hである実施例34では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方法に100μmまでの領域にα-FeOOH比率が10%以上の層が存在し、その層の厚さは40μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。しかし、保持時間が5hである比較例19では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。 The steel materials of Examples 33 and 34 and Comparative Example 19 are salt water with respect to a steel material having an Al—P—O—H film formed with an aqueous solution temperature of 50 ° C. and a contact time of 180 seconds (no heating after contact). A cycle in which spraying is carried out under conditions of 35 ° C., salt water concentration 5 wt%, spray amount 200 mL / min / mm 2 and spray time 30 min, and then kept in an atmosphere of 30 ° C. and 95% relative humidity for 5 to 48 hours. This was produced 10 times repeatedly. In Example 33 where the retention time is 48 h, a layer with an Al-P-O-H film thickness of 3 μm and a α-FeOOH ratio of 10% or more exists in a region from the outermost surface to 100 μm in the depth direction. The thickness of the layer is 130 μm, the corrosion resistance is “best” (very excellent level), and the corrosion fatigue resistance is “good” (excellent level). Further, in Example 34 in which the holding time is 10 h, a layer in which the thickness of the Al—P—O—H film is 3 μm and the α-FeOOH ratio is 10% or more in the region from the outermost surface to the depth method of 100 μm. The thickness of the layer is 40 μm, and both corrosion resistance and corrosion fatigue resistance are “good” (excellent level). However, in Comparative Example 19 in which the holding time is 5 h, a layer in which the thickness of the Al—P—O—H film is 3 μm and the α-FeOOH ratio is 10% or more in the region from the outermost surface to 100 μm in the depth direction. The corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

実施例35〜37及び比較例20の鋼材は、水溶液の温度を50℃、接触時間を180秒(接触後の加熱無)としてAl−P−O−H系膜を形成した鋼材に対し、塩水噴霧を温度35℃、塩水濃度5wt%、噴霧量200mL/min/mm、噴霧時閲30minの各条件で行った後、温度30℃、相対湿度95%の雰囲気に24時間保持するサイクルを0〜15回の範囲で変化させて作製したものである。サイクル数が15回である実施例35では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα−FeOOH比率が10%以上の層が存在し、その層の厚さは150μmであり、耐食性が「最良」(非常に優れる水準)で、耐腐食疲労性は「良」(優れる水準)である。また、サイクル数が夫々5回,1回である実施例36,実施例37では、Al−P−O−H系膜の厚さが3μm、最表面から深さ方向に100μmまでの傾城にα-FeOOH比率が10%以上の層が存在し、その層の厚さは20〜50μmであり、耐食性と耐腐食疲労性はともに「良」(優れる水準)である。
しかし、サイクル数が0回である比較例20では、Al−P−O−H糸膜の厚さが3μm、最表面から深さ方向に100μmまでの領域にα-FeOOH比率が10%以上の層が存在せず、耐食性と耐腐食疲労性はいずれも「不良」(劣る水準)である。
The steel materials of Examples 35 to 37 and Comparative Example 20 are salt water with respect to a steel material having an Al—P—O—H film formed with an aqueous solution temperature of 50 ° C. and a contact time of 180 seconds (no heating after contact). Spraying was performed under the conditions of a temperature of 35 ° C., a salt water concentration of 5 wt%, a spray amount of 200 mL / min / mm 2 , and a spraying time of 30 min, and then a cycle of maintaining in an atmosphere of a temperature of 30 ° C. and a relative humidity of 95% for 24 hours is 0. It was produced by changing the range of ~ 15 times. In Example 35 in which the number of cycles was 15, a layer with an Al-P-O-H film thickness of 3 μm and an α-FeOOH ratio of 10% or more in the region from the outermost surface to 100 μm in the depth direction. The layer thickness is 150 μm, the corrosion resistance is “best” (very good level), and the corrosion fatigue resistance is “good” (excellent level). In Examples 36 and 37, in which the number of cycles is 5 and 1, respectively, the thickness of the Al—P—O—H-based film is 3 μm, and the inclination is up to 100 μm from the outermost surface to the depth direction. There is a layer having a -FeOOH ratio of 10% or more, the thickness of the layer is 20 to 50 μm, and both corrosion resistance and corrosion fatigue resistance are “good” (excellent level).
However, in Comparative Example 20 in which the number of cycles is 0, the thickness of the Al—P—O—H yarn film is 3 μm, and the α-FeOOH ratio is 10% or more in the region from the outermost surface to 100 μm in the depth direction. There is no layer, and the corrosion resistance and corrosion fatigue resistance are both “bad” (inferior level).

なお、この発明は、上記実施例そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。具体的には、上記実施例ではばね鋼について述べたが、これらの実施内容はボルトや各種鉄系構造物等にも使用できる。また、上記実施例に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。例えば、実施例に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施例に亘る構成要素を適宜組み合せてもよい。   In addition, this invention is not limited to the said Example as it is, It can implement by modifying a component in the range which does not deviate from the summary in an implementation stage. Specifically, although the spring steel has been described in the above embodiments, the contents of these implementations can also be used for bolts and various iron-based structures. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, the constituent elements in different embodiments may be appropriately combined.

Claims (7)

表面が主にFeOOHからなる皮膜で覆われており、最表面から深さ方向に100μmまでの領域において、赤外分光法でα-FeOOHに対応する920cm−1付近の吸収ピーク強度をA、β-FeOOHに対応する840cm−1付近の吸収ピーク強度をB、γ−FeOOHに対応する740cm−1付近の吸収ピーク強度をCとした場合、「{A/(A+B+C)}×100%」で定義するα-FeOOH比率が10%以上である層を有することを特徴とする耐食性と耐腐食疲労性に優れた皮膜付き鋼材。 The surface is covered with a film mainly composed of FeOOH, and in the region from the outermost surface to 100 μm in the depth direction, the absorption peak intensity around 920 cm −1 corresponding to α-FeOOH is represented by A, β in the infrared spectroscopy. When the absorption peak intensity near 840 cm −1 corresponding to —FeOOH is B and the absorption peak intensity near 740 cm −1 corresponding to γ-FeOOH is C, the definition is “{A / (A + B + C)} × 100%”. A coated steel material excellent in corrosion resistance and corrosion fatigue resistance, characterized by having a layer having an α-FeOOH ratio of 10% or more. 前記α-FeOOH比率が10%以上である層の厚さが、20〜100μmであることを特徴とする請求項1に記載の耐食性と耐腐食疲労性に優れた皮膜付き鋼材。 2. The coated steel material having excellent corrosion resistance and corrosion fatigue resistance according to claim 1, wherein the thickness of the layer having the α-FeOOH ratio of 10% or more is 20 to 100 μm. Cu,Ni,Cr,Moの1種以上を合計で1.7〜3.0wt%を含有することを特徴とする請求項1または請求項2に記載の耐食性と耐腐食疲労性に優れた皮膜付き鋼材。 The film excellent in corrosion resistance and corrosion fatigue resistance according to claim 1 or 2, characterized by containing a total of 1.7 to 3.0 wt% of at least one of Cu, Ni, Cr, and Mo. With steel. A1,P,O及びHからなる厚さ1〜5μmのアモルファス構造を有する膜で表面を覆った鋼材に、塩水噴霧処理を雰囲気温度30〜40℃、塩水濃度3〜5wt%NaCl、噴霧量50〜200mL/min/mm、噴霧時間5〜30分の各範囲の条件で行った後、温度25〜35℃、相対湿度30〜95%の雰囲気に10〜24時間保持するサイクルを、1〜10回繰り返すことを特徴とする耐食性と耐腐食疲労性に優れた皮膜付き鋼材の製造方法。 A steel material whose surface is covered with a film having an amorphous structure having a thickness of 1 to 5 μm made of A1, P, O and H is subjected to a salt spray treatment at an ambient temperature of 30 to 40 ° C., a salt water concentration of 3 to 5 wt% NaCl, and a spray amount of 50. A cycle that is maintained in an atmosphere at a temperature of 25 to 35 ° C. and a relative humidity of 30 to 95% for 10 to 24 hours after being performed under conditions of ˜200 mL / min / mm 2 and a spraying time of 5 to 30 minutes, A method for producing a coated steel material excellent in corrosion resistance and corrosion fatigue resistance, characterized by repeating 10 times. 鋼材をAlイオン及びPOイオンを含む40〜50℃の水溶液に30秒以上接触させることにより、鋼材の表面をA1,P,O及びHからなる厚さ1〜5μmの皮膜で覆うことを特徴とする請求項4に記載の耐食性と耐腐食疲労性に優れた皮膜付き鋼材の製造方法。 The surface of the steel material is covered with a film having a thickness of 1 to 5 μm composed of A1, P, O, and H by bringing the steel material into contact with an aqueous solution containing 40 to 50 ° C. containing Al ions and PO 4 ions for 30 seconds or more. The method for producing a coated steel material having excellent corrosion resistance and corrosion fatigue resistance according to claim 4. 鋼材をAlイオン及びPOイオンを含む30℃の水溶液に180秒以上接触させることにより、鋼材の表面をAl,P,O及びHからなる厚さ1〜5μmの皮膜で覆うことを特徴とする請求項4に記載の耐食性と耐腐食疲労性に優れた皮膜付き鋼材の製造方法。 The surface of the steel material is covered with a film having a thickness of 1 to 5 μm made of Al, P, O, and H by bringing the steel material into contact with an aqueous solution containing Al ions and PO 4 ions for 180 seconds or longer. The method for producing a coated steel material having excellent corrosion resistance and corrosion fatigue resistance according to claim 4. 鋼材をAlイオン及びPOイオンを含む室温の水溶液に接触させた後、300℃以下の大気中で加熱して、鋼材の表面をAl,P,O及びHからなる厚さ1〜5μmの皮膜で覆うことを特徴とする請求項4に記載の耐食性と耐腐食疲労性に優れた皮膜付き鋼材の製造方法。 After contacting the steel material with a room temperature aqueous solution containing Al ions and PO 4 ions, the steel material is heated in an atmosphere of 300 ° C. or less to coat the surface of the steel material with a thickness of 1 to 5 μm made of Al, P, O and H. The method for producing a coated steel material having excellent corrosion resistance and corrosion fatigue resistance according to claim 4.
JP2006134115A 2006-05-12 2006-05-12 Coated steel with excellent corrosion resistance and corrosion fatigue resistance Expired - Fee Related JP5201806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134115A JP5201806B2 (en) 2006-05-12 2006-05-12 Coated steel with excellent corrosion resistance and corrosion fatigue resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134115A JP5201806B2 (en) 2006-05-12 2006-05-12 Coated steel with excellent corrosion resistance and corrosion fatigue resistance

Publications (2)

Publication Number Publication Date
JP2007302970A true JP2007302970A (en) 2007-11-22
JP5201806B2 JP5201806B2 (en) 2013-06-05

Family

ID=38837146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134115A Expired - Fee Related JP5201806B2 (en) 2006-05-12 2006-05-12 Coated steel with excellent corrosion resistance and corrosion fatigue resistance

Country Status (1)

Country Link
JP (1) JP5201806B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117145A (en) * 2010-11-10 2012-06-21 Nippon Sharyo Seizo Kaisha Ltd Method for forming rust layer on weather resistance steel at early stage
CN104060273A (en) * 2014-06-12 2014-09-24 江苏金陵特种涂料有限公司 Long-acting corrosion-resistance paint for steel structure and preparation method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241982A (en) * 1993-02-22 1994-09-02 Sumitomo Metal Ind Ltd Method for evaluating stabilization of rust of weather resistant steel material
JPH06322549A (en) * 1993-05-12 1994-11-22 Sumitomo Metal Ind Ltd Surface treated steel material excellent in weather resistance
JPH07207455A (en) * 1994-01-14 1995-08-08 Sumitomo Metal Ind Ltd Surface treatment for steel excellent in weather resistance
JPH0813158A (en) * 1994-06-27 1996-01-16 Sumitomo Metal Ind Ltd Steel excellent in weatherability and surface treating method therefor
JPH1171632A (en) * 1997-06-24 1999-03-16 Kobe Steel Ltd Steel excellent in bare weatherability and weldability
JPH11241174A (en) * 1998-02-27 1999-09-07 Nkk Corp Rust stabilizing surface treatment for steel material
JPH11241172A (en) * 1998-02-27 1999-09-07 Kobe Steel Ltd Formation of rust on steel material, excellent in corrosion resistance
JP2001271135A (en) * 2000-03-24 2001-10-02 Sumitomo Metal Ind Ltd Steel excellent in weather resistance in high floating salinity environment
JP2001303281A (en) * 2000-04-25 2001-10-31 Kawasaki Steel Corp Method for manufacturing surface treated steel material excellent in weather resistance
JP2002053929A (en) * 2000-08-03 2002-02-19 Kawasaki Steel Corp Highly weather resistance steel
JP2002127300A (en) * 2000-10-19 2002-05-08 Nippon Steel Corp Surface-treated weatherable steel, surface treatment agent for weatherable steel and surface treatment method for weatherable steel
JP2003277943A (en) * 2002-03-20 2003-10-02 Jfe Steel Kk Surface treated steel having excellent weather resistance and appearance uniformity

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241982A (en) * 1993-02-22 1994-09-02 Sumitomo Metal Ind Ltd Method for evaluating stabilization of rust of weather resistant steel material
JPH06322549A (en) * 1993-05-12 1994-11-22 Sumitomo Metal Ind Ltd Surface treated steel material excellent in weather resistance
JPH07207455A (en) * 1994-01-14 1995-08-08 Sumitomo Metal Ind Ltd Surface treatment for steel excellent in weather resistance
JPH0813158A (en) * 1994-06-27 1996-01-16 Sumitomo Metal Ind Ltd Steel excellent in weatherability and surface treating method therefor
JPH1171632A (en) * 1997-06-24 1999-03-16 Kobe Steel Ltd Steel excellent in bare weatherability and weldability
JPH11241174A (en) * 1998-02-27 1999-09-07 Nkk Corp Rust stabilizing surface treatment for steel material
JPH11241172A (en) * 1998-02-27 1999-09-07 Kobe Steel Ltd Formation of rust on steel material, excellent in corrosion resistance
JP2001271135A (en) * 2000-03-24 2001-10-02 Sumitomo Metal Ind Ltd Steel excellent in weather resistance in high floating salinity environment
JP2001303281A (en) * 2000-04-25 2001-10-31 Kawasaki Steel Corp Method for manufacturing surface treated steel material excellent in weather resistance
JP2002053929A (en) * 2000-08-03 2002-02-19 Kawasaki Steel Corp Highly weather resistance steel
JP2002127300A (en) * 2000-10-19 2002-05-08 Nippon Steel Corp Surface-treated weatherable steel, surface treatment agent for weatherable steel and surface treatment method for weatherable steel
JP2003277943A (en) * 2002-03-20 2003-10-02 Jfe Steel Kk Surface treated steel having excellent weather resistance and appearance uniformity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012117145A (en) * 2010-11-10 2012-06-21 Nippon Sharyo Seizo Kaisha Ltd Method for forming rust layer on weather resistance steel at early stage
CN104060273A (en) * 2014-06-12 2014-09-24 江苏金陵特种涂料有限公司 Long-acting corrosion-resistance paint for steel structure and preparation method thereof

Also Published As

Publication number Publication date
JP5201806B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
Nordlien et al. Formation of a zirconium-titanium based conversion layer on AA 6060 aluminium
Fratesi et al. Corrosion resistance of Zn-Ni alloy coatings in industrial production
Sun et al. A comparative study on the corrosion of galvanized steel under simulated rust layer solution with and without 3.5 wt% NaCl
JP2019108616A (en) Passivation of micro-discontinuous chromium deposited from trivalent electrolyte
JP2011208200A (en) Surface-treated corrosion-resistant steel material having excellent weather resistance
Živković et al. Protective properties of cataphoretic epoxy coating on aluminium alloy AA6060 modified with electrodeposited Ce-based coatings: Effect of post-treatment
JP5201806B2 (en) Coated steel with excellent corrosion resistance and corrosion fatigue resistance
US7625439B1 (en) Bath composition for converting surface of ferrous metal to mixed oxides and organometallic compounds of aluminum and iron
Abdulwahab et al. Structural evolution, thermomechanical recrystallization and electrochemical corrosion properties of Ni-Cu-Mg amorphous coating on mild steel fabricated by dual-anode electrolytic processing
JP4901120B2 (en) Zinc-containing plating film
JP2006315238A (en) Weatherable structural steel material excellent in long-period durability in high flying chloride environment
Lanzoni et al. Structure and Corrosion Behaviour of Electroless Ni Coatings Deposited from Differently Stabilised Baths
JP2009041092A (en) Chemical treatment liquid for galvanizing or galvannealing film, and method for forming corrosion protection coating using the same
Shibli et al. Development of zinc oxide-rich inner layers in hot-dip zinc coating for barrier protection
JP4455712B2 (en) Coated steel with atmospheric corrosion resistance
Geary et al. The influence of dichromate and cerium passivation treatments on the dissolution of SnZn coatings
JP2004263240A (en) Black plating system free from hexavalent chromium
JP2009203497A (en) Highly corrosion resistant plated steel and method of manufacturing the same
JP2008069414A (en) Magnesium alloy member
JP2006131971A (en) Cold rolled steel sheet having excellent phosphate treatability and salt warm water resistance after coating
CN114846171A (en) Hot-dip alloyed steel material having excellent corrosion resistance and method for producing same
Prashantha et al. Corrosion behaviour of Cu-Al-Be based shape memory alloy with and without coating
JP5153063B2 (en) Steel surface treatment method
JP4302842B2 (en) Iron rust stabilizer, method for forming stabilized iron rust layer, and steel material having stabilized iron rust layer
Wan et al. Interaction of cerium species with alumina-filmed surfaces

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees