JPH0383804A - Production of superconducting oxide thin film - Google Patents

Production of superconducting oxide thin film

Info

Publication number
JPH0383804A
JPH0383804A JP1218720A JP21872089A JPH0383804A JP H0383804 A JPH0383804 A JP H0383804A JP 1218720 A JP1218720 A JP 1218720A JP 21872089 A JP21872089 A JP 21872089A JP H0383804 A JPH0383804 A JP H0383804A
Authority
JP
Japan
Prior art keywords
substrate
thin film
superconducting
voltage
superconducting thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1218720A
Other languages
Japanese (ja)
Inventor
Haruo Shimada
島田 春男
Wataru Ito
渉 伊藤
Muneyuki Imafuku
今福 宗行
Yasuo Takagi
康夫 高木
Toru Ito
叡 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1218720A priority Critical patent/JPH0383804A/en
Publication of JPH0383804A publication Critical patent/JPH0383804A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To form an oxide superconductor film having excellent superconducting characteristics on a substrate by generating an ionized gas containing oxygen and a superconducting composition in a closed vessel adjusted to a specific vacuum degree and applying a specific DC voltage between a substrate and a counter electrode placed at specific positions in the closed vessel. CONSTITUTION:A superconducting thin film is formed on a substrate by using a closed vessel 8 containing an ionized gas containing oxygen and a superconducting composition (the raw material gases are introduced through the lines 1 and 2) and placing at least one pair of a substrate 6 and a counter electrode 7 in the gas in a state separated from discharge electrodes 4, 5. In the above process, the temperature of the substrate 6 is adjusted between 380 deg.C and the melting point of the superconducting composition substance depositing on the substrate 6, the pressure in the closed vessel 8 is adjusted to 0.1-100Torr and DC voltage consisting of a combination of -60V to -500V and +60V to +500V is applied to the counter electrode 7 and the superconducting composition depositing on the substrate 6.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、YB’aCuO系(以下、YBCO系とす
る)、Bjl:aSr(:uO系などの酸化物超電導薄
膜の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing oxide superconducting thin films such as YB'aCuO system (hereinafter referred to as YBCO system) and Bjl:aSr (:uO system). be.

[従来の技術] 従来、Y13CO系などの酸化物超電導薄膜の製造方法
は、酸化物超電導組成体の成形工程と超電導薄膜化工程
とが分離され、この超電導薄膜の製造工程では少なくと
も800℃以上の温度が必要であった(例えば、H,A
sano et al : J、 J、 Appl、 
Phys、、27. No□8. L1487. (1
988)など)。しかし、超電導デバイス製造などには
製造工程温度の低温化が必須となってきている。
[Prior Art] Conventionally, in the manufacturing method of oxide superconducting thin films such as Y13CO, the forming process of the oxide superconducting composition and the superconducting thin film forming process are separated, and in the manufacturing process of this superconducting thin film, the temperature is at least 800°C or higher. temperature was required (e.g. H, A
sano et al: J. J. Appl.
Phys, 27. No□8. L1487. (1
988) etc.). However, lowering the manufacturing process temperature has become essential for the manufacture of superconducting devices.

このため、最近ではスパッタリング法(sp)、真空蒸
着堆積法(PVD)  プラズマ化学蒸着堆積法(p−
cvn)などの製造手法を用い、800℃以下の製造温
度で薄膜超電導体の製造が多く試みられている(例えば
、大所et al信学技報Vo1.89. No。
For this reason, recently sputtering method (sp), vacuum evaporation deposition method (PVD), plasma chemical vapor deposition method (p-
Many attempts have been made to manufacture thin film superconductors at manufacturing temperatures of 800° C. or lower using manufacturing methods such as cvn (for example, Daisho et al. IEICE Technical Report Vol. 1.89. No.

54゜PI3 (1989)など)。54° PI3 (1989), etc.).

しかしながら、これらのいずれの製造方法においても超
電導組成薄膜への効果的な酸素の添加法が課題となって
いる。
However, in any of these manufacturing methods, the problem is how to effectively add oxygen to the superconducting composition thin film.

[発明が解決しようとする課題] 本発明は、上記課題を解決するために基板上に堆積され
つつあ°る超電導組威体に効果的に酸素を添加し、超電
導特性に優れた超電導薄膜の製造方法を提供することを
目的とする。
[Problems to be Solved by the Invention] In order to solve the above-mentioned problems, the present invention effectively adds oxygen to a superconducting composite that is being deposited on a substrate, thereby creating a superconducting thin film with excellent superconducting properties. The purpose is to provide a manufacturing method.

[課題を解決するための手段] 本発明は、密閉容器内の酸素および超電導組成を含む電
離ガス中に少なくとも一対の基板と対極を放電極から独
立して配置して基板上に薄膜を製造する方法において、
前記基板の温度が380℃から基板上に堆積する超電導
組成体物質の融点以下の範囲で、密閉容器内の圧力が0
.1〜100 Torrであるとともに前記一対の対極
と基板上に堆積されつつある超電導組成体物質間に、基
板上に堆積されつつある超電導組成体物質をマイナス6
0V以上500v以下の直流電圧とプラス60V以上5
00v以下の直流電圧の組合せ印加、または、マイナス
として60v以上500v以下、またはプラスとして6
0V以上500V以下の直流電圧を印加することにより
、超電導特性に優れた超電導薄膜を得ようとするもので
ある。
[Means for Solving the Problems] The present invention produces a thin film on a substrate by arranging at least one pair of a substrate and a counter electrode independently of a discharge electrode in an ionized gas containing oxygen and a superconducting composition in a closed container. In the method,
When the temperature of the substrate is in the range from 380°C to below the melting point of the superconducting composition material deposited on the substrate, the pressure in the sealed container is 0.
.. 1 to 100 Torr and the superconducting composition material being deposited on the substrate between the pair of counter electrodes and the superconducting composition material being deposited on the substrate.
DC voltage of 0V or more and 500V or less and plus 60V or more5
Applying a combination of DC voltages of 00v or less, or 60v or more and 500v or less as negative, or 6 as positive
The aim is to obtain a superconducting thin film with excellent superconducting properties by applying a DC voltage of 0 V to 500 V.

〔作用] 以下、本発明の超電導薄膜の製造方法について図面に基
すいて説明する。
[Function] Hereinafter, the method for manufacturing a superconducting thin film of the present invention will be explained based on the drawings.

第1図は、本発明の製造に用いる装置の模式図を示した
もので、この模式図に基すいて製造方法を説明する。本
発明に適用できる酸化物超電導薄膜としては、YBCO
系、 B1Ca5rCuO系などを挙げることができる
。また、超電導薄膜堆積用基板には特別な制約はないが
、MgOなとの基板が用いられている。
FIG. 1 shows a schematic diagram of an apparatus used for manufacturing the present invention, and the manufacturing method will be explained based on this schematic diagram. As the oxide superconducting thin film applicable to the present invention, YBCO
Examples include B1Ca5rCuO system and the like. Furthermore, although there are no particular restrictions on the substrate for superconducting thin film deposition, a substrate such as MgO is used.

第1図中の1および2は原料ガス流入口、3はガス流出
口、4および5は電離ガスを発生させる放電電極を、6
,7は放電用電極の間に適当な間隔を置き設置された超
電導薄膜堆積用基板および対極、8はそれらを収納し、
内部の雰囲気圧力を任意の状態に調節できる密閉容器、
9は超電導薄膜堆積用基板および対極との間に印加する
電圧電源、10は放電極に印加する高圧電源、11は超
電導薄膜堆積用基板を所望の温度に加熱する加熱機構、
12は密閉容器内のガス排気や圧力調整機能を有する真
空排気機構である。
In Fig. 1, 1 and 2 are raw material gas inlets, 3 is a gas outlet, 4 and 5 are discharge electrodes that generate ionized gas, and 6 are discharge electrodes that generate ionized gas.
, 7 is a superconducting thin film deposition substrate and a counter electrode installed at appropriate intervals between the discharge electrodes, 8 houses them,
A sealed container whose internal atmospheric pressure can be adjusted to any desired state.
9 is a voltage power source applied between the superconducting thin film deposition substrate and the counter electrode; 10 is a high voltage power source applied to the discharge electrode; 11 is a heating mechanism that heats the superconducting thin film deposition substrate to a desired temperature;
Reference numeral 12 denotes a vacuum evacuation mechanism having functions of exhausting gas and adjusting pressure inside the closed container.

また、図において、13は密閉容器8のパージ用ガス流
入口、14はバブラー、15はマス・フロー制御機構、
16.17.18.19は電源と各放電極、基板、対極
を接続する導線である。
In addition, in the figure, 13 is a purge gas inlet of the closed container 8, 14 is a bubbler, 15 is a mass flow control mechanism,
16, 17, 18, and 19 are conducting wires connecting the power source, each discharge electrode, the substrate, and the counter electrode.

まず、密閉容器内の放電極の間に超電導WI膜堆積用基
板および対極を適当な間隔をとって設置する。その後、
密閉容器8内を真空状態にしたのち、ガス導入口1およ
び2を開き、原料ガス流量比を所望の値に合わせるとと
もに、真空排気機構12により密閉容器内の圧力を所望
の圧力に調節した後、放電電極4゜5に電圧を印加し、
放電極間に放電を発生させ、放電電極間のガスを電離イ
オン化する。
First, a superconducting WI film deposition substrate and a counter electrode are placed between the discharge electrodes in a closed container with an appropriate spacing between them. after that,
After creating a vacuum inside the closed container 8, open the gas inlets 1 and 2, adjust the raw material gas flow rate ratio to a desired value, and adjust the pressure inside the closed container to the desired pressure using the vacuum evacuation mechanism 12. , applying a voltage to the discharge electrode 4°5,
A discharge is generated between the discharge electrodes to ionize the gas between the discharge electrodes.

本発明による製造方法において、原料ガス導入口1およ
び2の一方は、酸素を含むガスとし、他方を不活性ガス
をキャリヤーガスとした超電導薄膜組成を含むガスとす
る。例えば、YBCO系超電導薄膜を製造する場合には
、酸素ガスとは別にBa。
In the manufacturing method according to the present invention, one of the source gas inlets 1 and 2 is a gas containing oxygen, and the other is a gas containing a superconducting thin film composition with an inert gas as a carrier gas. For example, when manufacturing a YBCO-based superconducting thin film, Ba is used in addition to oxygen gas.

Y、 Cuのキレート化合物を別々のバブラー容器に挿
入し、各バブラーを所望の温度に加熱しキレート化合物
を昇華させ、Heなどの不活性なキャリヤーガスを用い
て密閉容器に流入させる。また各原料ガスの流量は、バ
ブラーの温度、組成比および密閉容器内の設定圧力に基
すき調整する。
Chelate compounds of Y and Cu are inserted into separate bubbler containers, and each bubbler is heated to a desired temperature to sublimate the chelate compounds, which are then flowed into a closed container using an inert carrier gas such as He. Further, the flow rate of each raw material gas is adjusted based on the temperature of the bubbler, the composition ratio, and the set pressure in the closed container.

本発明による製造方法において、超電導特性に優れた超
電導薄膜を得るためには、密閉容器内の圧力は、0.I
 Torr以上が、また安定な放電状態を得るためには
、100 Torr以下であることが必要である。
In the manufacturing method according to the present invention, in order to obtain a superconducting thin film with excellent superconducting properties, the pressure inside the closed container must be 0. I
Torr or more, but in order to obtain a stable discharge state, it needs to be 100 Torr or less.

本発明による製造方法において、放電電極間に放電を発
生させる電源の周波数には100kHz以下を用い、家
庭用交流電源(50〜60Hz)でもよい。
In the manufacturing method according to the present invention, the frequency of the power source that generates discharge between the discharge electrodes is 100 kHz or less, and may be a household AC power source (50 to 60 Hz).

100k)lz以下の周波数を用いることによりプラズ
マ発生箇所を限定することができ、しかも、プラズマ化
に投入する電力は、従来から使用されているメガHzの
周波数を持つ放電用電源を用いた電力に比べ十から百分
の−と小さくてよい。また、100kHz以下の周波数
を用いることにより、超電導薄膜堆積用基板の温度およ
び超電導薄膜堆積用基板温度と対極間への印加電圧の制
御性がメガHzの周波数を持つ放電°用電源を用いた時
よりも改善される。
By using a frequency of 100k) lz or less, it is possible to limit the location of plasma generation, and the power input for plasma generation is comparable to that of the conventionally used discharge power source with a megahertz frequency. It can be as small as 10 to 100 times smaller than that. In addition, by using a frequency of 100 kHz or less, controllability of the temperature of the superconducting thin film deposition substrate and the voltage applied between the superconducting thin film deposition substrate temperature and the counter electrode is improved when using a discharge power source with a megahertz frequency. improved than.

放電を放電電極間に発生させた後、電源9で発生させた
電圧を超電導薄膜堆積用基板6と対極7に印加する。
After a discharge is generated between the discharge electrodes, a voltage generated by a power source 9 is applied to the superconducting thin film deposition substrate 6 and the counter electrode 7.

本発明において、印加する電圧の大きさは、ガス圧、ガ
ス種、超電導薄膜堆積用基板と対極の電極間距離および
超電導薄膜堆積用基板と対極の表面積比などにより選択
するが、超電導・薄膜特性に優れた超電導薄膜を得るに
は、超電導薄膜堆積用基板と対極に印加する電圧は、超
電導薄膜堆積用基板をマイナス60V以上500v以下
の直流電圧とプラス60V以上500v以下の直流電圧
の組合せ印加とすることにより臨界温度とともに臨界電
流密度の改善効果が顕著となる。また、超電導薄膜堆積
用基板をプラスとして60V以上500V以下、または
超電導薄膜堆積用基板をマイナスとして[)OV以上5
00v以下の直流電圧を印加してもよい。
In the present invention, the magnitude of the voltage to be applied is selected depending on the gas pressure, gas type, distance between the electrodes of the substrate for superconducting thin film deposition and the counter electrode, and the surface area ratio of the substrate for superconducting thin film deposition and the counter electrode, etc. In order to obtain a superconducting thin film with excellent performance, the voltage applied to the substrate for superconducting thin film deposition and the counter electrode is a combination of a DC voltage of -60 V or more and 500 V or less and a DC voltage of +60 V or more and 500 V or less. By doing so, the effect of improving the critical current density as well as the critical temperature becomes remarkable. In addition, 60V or more and 500V or less with the superconducting thin film deposition substrate as a positive value, or [)OV or more and 5 with the superconducting thin film deposition substrate as a negative value.
A DC voltage of 00V or less may be applied.

プラスの印加電圧が60Vより低くても電圧印加効果が
認められるものの優れた超電導特性は得られず、500
vよりも高い印加電圧では、超電導薄膜表面に損傷が発
生し易くデバイスなどの製造上は好ましくない。
Even if the positive applied voltage is lower than 60 V, the voltage application effect is observed, but excellent superconducting properties cannot be obtained;
An applied voltage higher than v tends to damage the surface of the superconducting thin film, which is unfavorable for manufacturing devices.

マイナスの印加電圧が60Vより低くても電圧印加効果
が認められるものの優れた超電導特性は得られず、50
0■よりも高い印加電圧では、超電導薄膜表面に損傷が
発生し易くデバイスなどの製造上は好ましくない。また
、マイナスの印加電圧では、臨界温度がプラスの印加電
圧に比べ若干劣るものの、超電導結晶構造体が一方向に
揃い晶出する。
Even if the negative applied voltage is lower than 60 V, the voltage application effect is observed, but excellent superconducting properties cannot be obtained, and the voltage applied is lower than 60 V.
An applied voltage higher than 0 ■ tends to damage the surface of the superconducting thin film, which is unfavorable in terms of manufacturing devices. Furthermore, when applying a negative voltage, the superconducting crystal structure crystallizes in one direction, although the critical temperature is slightly lower than when applying a positive voltage.

超電導薄膜堆積用基板と対極の表面積比には特別な制約
はないが、超電導薄膜堆積用基板の表面積は対極よりも
小さくすることが望ましい。
Although there is no particular restriction on the surface area ratio between the substrate for superconducting thin film deposition and the counter electrode, it is desirable that the surface area of the substrate for superconducting thin film deposition be smaller than that of the counter electrode.

次に、加熱機構11によって超電導薄膜堆積用基板を所
望の温度に加熱制御する。本発明において、超電導薄膜
堆積用基板の加熱温度範囲はB電導薄膜構造晶出が前提
であり、380℃以下の温度では超電導fi膜構造の晶
出が難しく、また超電導薄膜堆積用基板の加熱温度の上
限は、超電導組成体の融点以下で゛あることが必要であ
る。
Next, the heating mechanism 11 controls the heating of the superconducting thin film deposition substrate to a desired temperature. In the present invention, the heating temperature range of the substrate for superconducting thin film deposition is based on the assumption that crystallization of the B-conducting thin film structure is possible, and it is difficult to crystallize the superconducting fi film structure at temperatures below 380°C, and the heating temperature range of the substrate for superconducting thin film deposition is The upper limit of is required to be below the melting point of the superconducting composition.

本発明の加熱方式には特別な制約はないが、加熱による
不純ガス成分の混入などの少ない赤外加熱方式などが通
している。
Although there are no particular restrictions on the heating method of the present invention, infrared heating methods, etc., which are less likely to introduce impure gas components due to heating, are commonly used.

[実施例コ 第1図に示した装置を用い、超電導薄膜を製造した。[Example code] A superconducting thin film was manufactured using the apparatus shown in FIG.

本発明製造法による超電導薄膜製造にあたっては、原料
ガスにはHeをキャリヤーガスとしたYを含有するHe
混合ガスは昇華温度100℃で5〜15cc/min、
 Baを含有するHe混合ガスは昇華温度180℃で5
0cc/min、Cu成分を含有するHe混合ガスは昇
華温度115℃で12.5〜50cc/minおよび0
゜ガスを100cc/minをそれぞれ密閉容器に流入
させ、密閉容器内の圧力をl0Torrに保持した。ガ
スの電離化には周波数50Hz電源を用い、4Wの電力
を投入した。
In producing a superconducting thin film by the production method of the present invention, the raw material gas is He containing Y and He as a carrier gas.
The mixed gas has a sublimation temperature of 100°C and a flow rate of 5 to 15 cc/min.
The He mixed gas containing Ba has a sublimation temperature of 180°C.
0 cc/min, He mixed gas containing Cu component has a sublimation temperature of 115°C, 12.5 to 50 cc/min and 0
100 cc/min of gas was flowed into each sealed container, and the pressure inside the sealed container was maintained at 10 Torr. A power source with a frequency of 50 Hz was used to ionize the gas, and a power of 4 W was applied.

また、超電導薄膜堆積用基板の温度範囲を300〜90
0℃、堆積速度を1〜20(入/S)、密閉容器圧力を
5.OTorrとした。
In addition, the temperature range of the substrate for superconducting thin film deposition was set at 300 to 90°C.
0°C, deposition rate 1-20 (in/s), closed container pressure 5. It was set as OTorr.

第2図は、超電導薄膜堆積用基板の印加電圧をプラス1
50 Vの直流電圧とOVの場合について、本製造法に
よる膜厚0.5μmの超電導薄膜を製造したときの超電
導薄膜堆積用基板温度による超電導薄膜の臨界温度変化
を示す。第2図の横軸は超電導薄膜堆積用基板温度を示
し、縦軸は超電導薄膜の臨界温度を示す。第2図中のA
は、超電導薄膜堆積用基板の印加電圧がプラス150v
の直流電圧を印加した場合を示す。第2図中のBは、超
電導薄膜堆積用基板の印加電圧がOvの場合を示す。
Figure 2 shows the voltage applied to the substrate for superconducting thin film deposition by +1
The critical temperature change of a superconducting thin film depending on the substrate temperature for superconducting thin film deposition is shown when a superconducting thin film with a thickness of 0.5 μm is manufactured by this manufacturing method in the case of a DC voltage of 50 V and OV. The horizontal axis in FIG. 2 indicates the substrate temperature for superconducting thin film deposition, and the vertical axis indicates the critical temperature of the superconducting thin film. A in Figure 2
The voltage applied to the substrate for superconducting thin film deposition is plus 150V.
This shows the case when a DC voltage of . B in FIG. 2 indicates the case where the voltage applied to the superconducting thin film deposition substrate is Ov.

曲、IiAは、曲線Bよりも低い基板温度から80に以
上の臨界温度を示している。
Curve IiA shows a critical temperature of 80°C or more from a lower substrate temperature than curve B.

第3図は、超電導薄膜堆積用基板温度500℃での基板
印加電圧の大きさと臨界電流密度との関係を示す。第2
図の横軸は印加電圧を示し、縦軸は臨界電流密度を示す
。第3図中のCは、基板にプラスとマイナスの極性を組
合せ電圧を印加した場合を示す。第3図中のDは、基板
にプラスのみの電圧を印加した場合を示す。Eは、基板
にマイナスのみの電圧を印加した場合を示す。曲線Cは
、曲線Eよりも高い臨界電流密度を示しており、プラス
とマイナス°の極性を組合せ印加する方が他の方法より
高臨界電流密度が得られる。
FIG. 3 shows the relationship between the magnitude of the voltage applied to the substrate and the critical current density at a substrate temperature of 500° C. for superconducting thin film deposition. Second
The horizontal axis of the figure shows the applied voltage, and the vertical axis shows the critical current density. C in FIG. 3 shows the case where a voltage with a combination of plus and minus polarities is applied to the substrate. D in FIG. 3 shows the case where only positive voltage is applied to the substrate. E shows the case where only negative voltage was applied to the substrate. Curve C shows a higher critical current density than curve E, and a higher critical current density can be obtained by applying a combination of plus and minus polarities than by other methods.

以上のように、本発明の製造方法を適用することにより
、従来法よりも低い温度で、しかも高臨界電流密度の超
電導薄膜が得られる。
As described above, by applying the manufacturing method of the present invention, a superconducting thin film having a higher critical current density can be obtained at a lower temperature than the conventional method.

[発明の効果コ 本発明により、従来法よりも低い温度で、かつ印加電圧
をプラスとマイナスの極性組合せにより高臨界電流密度
の超電導薄膜が得られることから、本発明は種々の超電
導薄膜の製造、なかでも成膜温度の低温化が要請されて
いる超電導デバイス製造にも有効である。
[Effects of the Invention] Since the present invention allows a superconducting thin film with a high critical current density to be obtained at a lower temperature than conventional methods and by combining the applied voltage with positive and negative polarities, the present invention is applicable to the production of various superconducting thin films. It is particularly effective for manufacturing superconducting devices, which requires lowering the film formation temperature.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の製造方法を説明するための図、第2
図は、本発明の製造方法による超電導薄膜堆積用基板温
度による超電導薄膜の臨界温度変化を示す図、第3図は
、本発明の製造方法による超電導薄膜堆積用基板による
臨界電流密度変化を示す図である。 1.2.2’、2″・・・ガス流入口、3・・・ガス流
出口、4.5・・・放電電極、6・・・超電導薄膜堆積
用基板、7・・・対極、8・・・密閉容器、9・・・電
圧電源、1゜・・・放電用高圧電源、11−・・加熱機
構、] 2−・・真空排気機構、13−・・密閉容器パ
ージ用ガス流入口514゜14’、14“・・・バブラ
ー 15.15’、15“・・・マス・フロー制御機構
、16.17.18.19−・・導線。
Fig. 1 is a diagram for explaining the manufacturing method of the present invention, Fig. 2 is a diagram for explaining the manufacturing method of the present invention;
The figure shows the critical temperature change of a superconducting thin film depending on the temperature of the substrate for superconducting thin film deposition according to the manufacturing method of the present invention, and FIG. 3 shows the critical current density change depending on the substrate temperature for superconducting thin film deposition according to the manufacturing method of the present invention. It is. 1.2.2', 2''...Gas inlet, 3...Gas outlet, 4.5...Discharge electrode, 6...Substrate for superconducting thin film deposition, 7...Counter electrode, 8 ... Sealed container, 9... Voltage power source, 1°... High voltage power source for discharge, 11-... Heating mechanism, ] 2-... Vacuum exhaust mechanism, 13-... Gas inlet for airtight container purging 514°14', 14"...bubbler 15.15', 15"...mass flow control mechanism, 16.17.18.19-...conductor.

Claims (3)

【特許請求の範囲】[Claims] 1.密閉容器内の酸素および超電導組成を含む電離ガス
中に少なくとも一対の基板と対極を放電極から独立して
配置して基板上に薄膜を製造する方法において、前記基
板の温度が380℃から基板上に堆積する超電導組成体
物質の融点以下の範囲で、密閉容器内の圧力が0.1〜
100Torrであるとともに前記一対の対極と基板上
に堆積されつつある超電導組成体物質間に、基板上に堆
積されつつある超電導組成体物質をマイナス60V以上
500V以下の直流電圧とプラス60V以上500V以
下の直流電圧の組合せ印加を特徴とする酸化物超電導薄
膜の製造方法。
1. A method of manufacturing a thin film on a substrate by arranging at least one pair of substrate and a counter electrode independently of a discharge electrode in an ionized gas containing oxygen and a superconducting composition in a closed container, wherein the temperature of the substrate is from 380°C to The pressure inside the closed container is from 0.1 to below the melting point of the superconducting composition material deposited on the
100 Torr, and between the pair of counter electrodes and the superconducting composition material being deposited on the substrate, the superconducting composition material being deposited on the substrate is subjected to a DC voltage of -60 V or more and 500 V or less and a DC voltage of +60 V or more and 500 V or less. A method for producing an oxide superconducting thin film characterized by applying a combination of DC voltages.
2.密閉容器内の酸素および超電導組成を含む電離ガス
中に少なくとも一対の基板と対極を放電極から独立して
配置して基板上に薄膜を製造する方法において、前記基
板の温度が380℃から基板上に堆積する超電導組成体
物質の融点以下の範囲で、密閉容器内の圧力が0.1〜
100Torrであるとともに前記一対の対極と基板上
に堆積されつつある超電導組成体物質間に、基板上に堆
積されつつある超電導組成体物質をマイナスとして60
V以上500V以下の直流電圧を印加することを特徴と
する酸化物超電導薄膜の製造方法。
2. A method of manufacturing a thin film on a substrate by arranging at least one pair of substrate and a counter electrode independently of a discharge electrode in an ionized gas containing oxygen and a superconducting composition in a closed container, wherein the temperature of the substrate is from 380°C to The pressure inside the closed container is from 0.1 to below the melting point of the superconducting composition material deposited on the
100 Torr and 60 Torr between the pair of counter electrodes and the superconducting composition material being deposited on the substrate, with the superconducting composition material being deposited on the substrate being negative.
A method for producing an oxide superconducting thin film, the method comprising applying a DC voltage of V or more and 500 V or less.
3.密閉容器内の酸素および超電導組成を含む電離ガス
中に少なくとも一対の基板と対極を放電極から独立して
配置して基板上に薄膜を製造する方法において、前記基
板の温度が380℃から基板上に堆積する超電導組成体
物質の融点以下の範囲で、密閉容器内の圧力が0.1〜
100Torrであるとともに前記一対の対極と基板上
に堆積されつつある超電導組成体物質間に、基板上に堆
積されつつある超電導組成体物質をプラスとして60V
以上500V以下の直流電圧を印加することを特徴とす
る酸化物超電導薄膜の製造方法。
3. A method of manufacturing a thin film on a substrate by arranging at least one pair of substrate and a counter electrode independently of a discharge electrode in an ionized gas containing oxygen and a superconducting composition in a closed container, wherein the temperature of the substrate is from 380°C to The pressure inside the closed container is from 0.1 to below the melting point of the superconducting composition material deposited on the
100 Torr, and 60 V between the pair of counter electrodes and the superconducting composition material being deposited on the substrate, with the superconducting composition material being deposited on the substrate being positive.
A method for producing an oxide superconducting thin film, characterized in that a DC voltage of at least 500 V is applied.
JP1218720A 1989-08-28 1989-08-28 Production of superconducting oxide thin film Pending JPH0383804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1218720A JPH0383804A (en) 1989-08-28 1989-08-28 Production of superconducting oxide thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1218720A JPH0383804A (en) 1989-08-28 1989-08-28 Production of superconducting oxide thin film

Publications (1)

Publication Number Publication Date
JPH0383804A true JPH0383804A (en) 1991-04-09

Family

ID=16724384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1218720A Pending JPH0383804A (en) 1989-08-28 1989-08-28 Production of superconducting oxide thin film

Country Status (1)

Country Link
JP (1) JPH0383804A (en)

Similar Documents

Publication Publication Date Title
EP0342039B1 (en) Josephson device and method of making same
JPH01104774A (en) Production of thin film of oxide superconductor
JPH0867968A (en) Production of oxide thin film
JPS5884111A (en) Improved plasma deposition for silicon
JPH0383804A (en) Production of superconducting oxide thin film
JPH0243334B2 (en)
JPH0290568A (en) Manufacture of thin film transistor
JPH04219301A (en) Production of oxide superconductor thin film
JP2767298B2 (en) LAMINATED THIN FILM AND PROCESS FOR PRODUCING THE SAME
JPH0257686A (en) Manufacture of thin lead-titanate film
JPS6263419A (en) Formation of polycrystalline silicon thin film
JP2815621B2 (en) Manufacturing method of oxide superconductor
JPH04139007A (en) Production of oxide superconducting thin film
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JPH03253559A (en) Apparatus for producing oxide thin film
JPH01275406A (en) Production of superconductor structure
JPH0196015A (en) Formation of superconducting thin film
JPH01115014A (en) Manufacture of superconducting thin film
JPH03228804A (en) Formation of oxide superconductor film
JPH07136498A (en) Production of fullerene intercalation compound
JPH03146403A (en) Formation of oxide superconducting thin film
JPH0264013A (en) Production of oxide superconducting thin film
JPH0288426A (en) Production of superconducting thin film
JPH01294504A (en) Production of thin-film superconductor
JPH0243357A (en) Production of thin superconducting film