JPH0381774A - Photosensitive material and electrophotographic sensitive body - Google Patents

Photosensitive material and electrophotographic sensitive body

Info

Publication number
JPH0381774A
JPH0381774A JP21882189A JP21882189A JPH0381774A JP H0381774 A JPH0381774 A JP H0381774A JP 21882189 A JP21882189 A JP 21882189A JP 21882189 A JP21882189 A JP 21882189A JP H0381774 A JPH0381774 A JP H0381774A
Authority
JP
Japan
Prior art keywords
state
thin film
low resistance
voltage
photosensitive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21882189A
Other languages
Japanese (ja)
Inventor
Shiro Asakawa
浅川 史朗
Katsunori Waratani
克則 藁谷
Katsuhiro Nichogi
二梃木 克洋
Yukihiro Saito
斉藤 幸廣
Akira Taomoto
昭 田尾本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21882189A priority Critical patent/JPH0381774A/en
Publication of JPH0381774A publication Critical patent/JPH0381774A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To allow the storage of an electrostatic image and to eliminate the need for repeating image projection at every one time of copying by using a material which changes from a high resistance state to a low resistance state by a light irradiation and can be forcibly released in the low resistance state. CONSTITUTION:The thin film consisting of this material changes from the high resistanced R1 state to the low resistance R3 state and maintains this state for a specified period of time when the voltage above the threshold voltage Vth is impressed thereto while the thin film is not irradiated with the light. The thin film is reset to the R1 state from the R3 state when a reverse voltage is impressed thereto. The threshold voltage Vth' drops while the thin film is irradiated with light. The thin film changes from the high resistance R2 state to the low resistance R4 state and maintains this state for a specified period of time when the voltage above the voltage Vth' is impressed thereto. The thin film is reset to the R2 state when the reverse voltage is impressed thereto. The thin film, therefore, exhibits an optical switching function and a memory function when irradiated with light after the voltage above the voltage Vth' and below the voltage Vth is impressed thereto. Lead phthalocyanine having a crystal structure contg. much monoclinic crystal system is preferably used for this material.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、情報産業分野に好適な光メモリ機能を有す
る感光性材料、あるいは、電子写真用感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a photosensitive material having an optical memory function suitable for the information industry or a photoreceptor for electrophotography.

従来の技術 従来、電子写真用感光体として、ポリビニルカルバゾー
ル/トリニトロフルオレノン、フタロシアニンなどの有
機系感光体が知られている。これらの感光体は、光照射
(画像投影)している間だけ光の当たっている領域が低
抵抗状態になることを利用したものである。ただ、光照
射を止めれば、低抵抗状態が解除されるので、潜像がメ
モリされる訳ではない。潜像がメモリできれば、1回の
複写を行う毎に画像投影をする必要がなく、1回の画像
投影で何度も繰り返し複写することが可能になる。
2. Description of the Related Art Conventionally, organic photoreceptors such as polyvinylcarbazole/trinitrofluorenone and phthalocyanine are known as electrophotographic photoreceptors. These photoreceptors take advantage of the fact that the area exposed to light is in a low resistance state only during light irradiation (image projection). However, if the light irradiation is stopped, the low resistance state is released, so the latent image is not stored in memory. If the latent image can be stored in memory, there is no need to project an image every time one copy is made, and it becomes possible to copy the image many times with one image projection.

発明が解決しようとする課題 最近、上記の電子写真用感光体において、Cu/TCN
Qのもつメモリ機能を組み合わせ潜像をメモリするよう
にし、1回の画像投影で複数回の複写が行えるようにす
る方法も提案されてはいる(電子写真学会誌 第24巻
 第86頁 1986年)。
Problems to be Solved by the Invention Recently, in the above electrophotographic photoreceptor, Cu/TCN
A method has also been proposed in which the memory function of Q is combined to memorize latent images so that multiple copies can be made with one image projection (Journal of the Electrophotographic Society Vol. 24, p. 86, 1986) ).

しかしながら、この提案されている電子写真用感光体は
、構成が複雑で製造が難しく、また、コストも高いこと
から実用性に乏しい。
However, this proposed electrophotographic photoreceptor has a complicated structure, is difficult to manufacture, and is expensive, so it is impractical.

この発明は、上記の事情に鑑み、光メモリ機能を有する
とともに、単純な材料構成であり、かつ単純な構造であ
って、しかも、製造自体が容易で製造コストも低い感光
性材料および電子写真用感光体を提供することを課題と
する。
In view of the above circumstances, the present invention provides a photosensitive material and an electrophotographic photosensitive material that have an optical memory function, have a simple material composition, a simple structure, are easy to manufacture, and have a low manufacturing cost. The challenge is to provide one's body.

課題を解決するための手段 前記課題を解決するため、請求項1の感光性材料および
請求項3の電子写真用感光体は、有機物薄膜であって、
一定の閾値電圧以上の電圧が印加されると低抵抗状態に
変化する特性、光照射状態においては前記閾値電圧が低
下する特性、前記低抵抗状態を少なくとも一定期間保持
できる特性、および、前記低抵抗状態が逆電圧印加によ
り解除される特性をそれぞれ有している。
Means for Solving the Problems In order to solve the problems, the photosensitive material according to claim 1 and the electrophotographic photoreceptor according to claim 3 are organic thin films,
A characteristic that changes to a low resistance state when a voltage equal to or higher than a certain threshold voltage is applied, a characteristic that the threshold voltage decreases in a light irradiation state, a characteristic that the low resistance state can be maintained for at least a certain period of time, and the low resistance Each has the characteristic that the state is released by applying a reverse voltage.

有機物薄膜としては、請求項2の感光性材料にみるよう
に、電極用基材表面に鉛フタロシアニンでもって形成さ
れていて、単斜晶系を多く含む結晶構造を有するととも
に、結晶のC軸が基板表面に平行な向きに配向している
ものが使われる。
As seen in the photosensitive material of claim 2, the organic thin film is formed of lead phthalocyanine on the surface of the electrode base material, has a crystal structure containing a large amount of monoclinic system, and has a C-axis of the crystal. Those oriented parallel to the substrate surface are used.

上記有機物薄膜は、基本的に光導電性をもつとともに、
結晶軸が特定の方向に揃って(配向し)おり、電気電導
に異方性をもっている。通常、薄膜は基板となる電極上
に形成されるが、高導電結晶軸が主として基材表面に平
行となる向きに配向するようにするのである。もちろん
、電圧(電界)は高導電結晶軸と垂直の方向に印加され
る。
The organic thin film basically has photoconductivity, and
The crystal axes are aligned (orientated) in a specific direction, and the electrical conduction has anisotropy. Usually, a thin film is formed on an electrode serving as a substrate, and the highly conductive crystal axis is oriented mainly parallel to the surface of the substrate. Of course, the voltage (electric field) is applied in a direction perpendicular to the highly conductive crystal axis.

作用 この発明において、機構は十分に詳かではないが、光照
射により高抵抗状態から低抵抗状態への変化がみられる
とともに、低抵抗状態のメモリ状態の強制解除が可能で
あり、電子写真用感光体では、静電画像の記憶ができる
In this invention, although the mechanism is not fully understood, a change from a high resistance state to a low resistance state is observed by light irradiation, and it is possible to forcibly release the memory state of the low resistance state. A photoreceptor can store electrostatic images.

実施例 以下に本発明の実施例を鉛フタロシアニン薄膜の場合を
例にとって、印加電圧と薄膜の抵抗状態の変化およびメ
モリ機能に関し詳しく説明する。
EXAMPLES Below, examples of the present invention will be described in detail, taking the case of a lead phthalocyanine thin film as an example, with regard to applied voltage, changes in resistance state of the thin film, and memory function.

光照射しない状態(暗状態)では、第1図に実線で示す
ように、印加電圧V〈閾値電圧vthである場合、薄膜
は高抵抗R1状態を維持するが、印加電圧V≧閾値電圧
v thとなった場合、薄膜は高抵抗R,状態から低抵
抗R3状態に変化する。つまり、スイッチング機能が発
揮されるのである。
In the state without light irradiation (dark state), as shown by the solid line in FIG. 1, if the applied voltage V<threshold voltage vth, the thin film maintains the high resistance R1 state, but if the applied voltage V≧threshold voltage v th When , the thin film changes from the high resistance R state to the low resistance R3 state. In other words, the switching function is demonstrated.

−旦、低抵抗R3状態に変化すると、この状態は少なく
とも一定期間持続する。つまり、メモリ機能が発揮され
るのである。しかし、第1図にみるように、逆電圧を印
加すれば、低抵抗R3状態を元の高抵抗′fL1状態に
強制的に復帰させられる。
- Once changed to the low resistance R3 state, this state persists for at least a certain period of time. In other words, the memory function is demonstrated. However, as shown in FIG. 1, by applying a reverse voltage, the low resistance R3 state can be forcibly returned to the original high resistance 'fL1 state.

メモリ状態が解除されるのである。The memory state is released.

光照射状態では、第1図に破線で示すように、印加電圧
■〈閾値電圧v th’である場合、薄膜は高抵抗R2
状態にある。ただ、この高抵抗R2状態は先の高抵抗R
,状態に比べ抵抗値は低くなっている。これは、光照射
量に応じてキャリアが発生するのに伴い導電性が高まる
からである。そして、光照射状態のままで、印加電圧V
≧閾値電圧V th’となると、薄膜(の光の当たって
いる領域)は高抵抗R2状態から低抵抗R4状態に変化
する。
In the light irradiation state, as shown by the broken line in FIG. 1, when the applied voltage is <threshold voltage v th', the thin film has a high resistance
in a state. However, this high resistance R2 state is similar to the previous high resistance R2 state.
, the resistance value is lower compared to the state. This is because conductivity increases as carriers are generated depending on the amount of light irradiation. Then, while keeping the light irradiation state, the applied voltage V
When ≧threshold voltage V th', the thin film (the area on which the light hits) changes from the high resistance R2 state to the low resistance R4 state.

−旦、低抵抗R4状態に変化すると、この状態が一定期
間持続する。しかし、第1図にみるように、逆電圧を印
加することにより、低抵抗R4状態を高抵抗状態に強制
的に復帰させることができろ。
- Once the resistance changes to the low resistance R4 state, this state continues for a certain period of time. However, as shown in FIG. 1, by applying a reverse voltage, the low resistance state R4 can be forcibly returned to the high resistance state.

上のことから分かるように、この発明の感光性材料では
、光照射に伴い閾値電圧はV’ th −+v th’
へ低下するのである。したがって、薄膜に閾値電圧V 
th’以上〜閾値電圧vth未満の電圧をかけておいて
光を照射すれば、光スイツチング機能が発揮されるとと
もに、メモリ機能が発揮されることとなる。kお、低抵
抗R4状態における抵抗値は、低抵抗R3状態のそれに
比べて同じか低い。
As can be seen from the above, in the photosensitive material of the present invention, the threshold voltage is V' th −+v th' upon irradiation with light.
This results in a decline to Therefore, the threshold voltage V
If a voltage greater than or equal to th' and less than the threshold voltage vth is applied and light is irradiated, the optical switching function and memory function will be exhibited. The resistance value in the low resistance R4 state is the same or lower than that in the low resistance R3 state.

このような特性の有機物薄膜は、例えば、低次元導電異
方性を有する金属錯体、電荷移動錯体等でもって形成さ
れた薄膜のうちに見られるが、勿論、これに限らないこ
とはいうまでもない。より具体的には、有機物薄膜は、
フタロシアニンの金属錯体やポルフィリンの金属錯体等
のような高分子化合物の金属錯体、各種ドナーとアクセ
プターの組み合わせ等で形成されるが、これに限らない
Organic thin films with such characteristics are found, for example, in thin films formed of metal complexes, charge transfer complexes, etc. that have low-dimensional conductive anisotropy, but it goes without saying that they are not limited to these. do not have. More specifically, the organic thin film is
It is formed by, but not limited to, a metal complex of a polymer compound such as a metal complex of phthalocyanine or a metal complex of porphyrin, or a combination of various donors and acceptors.

有機物薄膜の厚みは、0.01〜10μm程度、好まし
くは0.1〜5μm程度の範囲であるが、これに限らな
い。
The thickness of the organic thin film is in the range of about 0.01 to 10 μm, preferably about 0.1 to 5 μm, but is not limited thereto.

この発明における有機物薄膜は、真空蒸着法、スパッタ
リング等の通常の薄膜形成により作ることができるが、
低次元(好ましくは一次元)導電方向が電極に対し平行
の方向となるように結晶が配向するよう膜形成の制御を
行う。
The organic thin film in this invention can be made by ordinary thin film formation methods such as vacuum evaporation and sputtering.
Film formation is controlled so that the crystals are oriented so that the low-dimensional (preferably one-dimensional) conductive direction is parallel to the electrode.

例えば、電子写真用感光体等では、普通、有機物薄膜が
下地基材兼用の電極上に形成されるが、電極材料として
、例えば、Au 、Ag s AA! 、C!u等の金
属や合金、さらにはシリコン等の半導体が挙げられるが
、これらに限らない。また、有機物薄膜の表面に保護用
の絶縁薄膜が積層形成されていてもよい。
For example, in electrophotographic photoreceptors, etc., an organic thin film is usually formed on an electrode that also serves as a base material. Examples of electrode materials include Au, Ags AA! ,C! Examples include, but are not limited to, metals and alloys such as u, and semiconductors such as silicon. Further, a protective insulating thin film may be laminated on the surface of the organic thin film.

この発明において、上記のように高抵抗状態から低抵抗
状態に変化する機構は十分に詳かではないが、例えば、
以下のような機構であると推察している。もちろん、こ
の発明は、この機構説明により何ら制限を受けるもので
はない。
In this invention, although the mechanism of changing from a high resistance state to a low resistance state as described above is not sufficiently detailed, for example,
We speculate that the mechanism is as follows. Of course, the present invention is not limited in any way by this explanation of the mechanism.

第2図(a)にみるように、低次元導電有機物薄膜1は
、基板2表面に平行に高導電カラム7を有しており、例
えば、人がアクセプターでBがドナーであれば、これら
は交互積層形の電荷移動錯体であるが、Aが金属錯体で
Bが軸配位子であったり、A、B共に金属錯体であった
りしてもよい。もちろん、カラム7と垂直の方向は十分
に電気絶縁(高抵抗)状態にある。
As shown in FIG. 2(a), the low-dimensional conductive organic thin film 1 has highly conductive columns 7 parallel to the surface of the substrate 2. For example, if a person is an acceptor and B is a donor, these columns Although this is an alternately laminated charge transfer complex, A may be a metal complex and B may be an axial ligand, or both A and B may be metal complexes. Of course, the direction perpendicular to column 7 is sufficiently electrically insulated (high resistance).

しかしながら、カラム7に欠陥が存在したり、あるいは
、カラ3フ間に相互作用が存在し得る場合には、カラム
7と垂直の方向に電圧が印加されれば、電界の存在領域
Eには、第2図(b)にみるように、カラム7の相互作
用が誘起され、この領域の抵抗値が低くなる。相互作用
は、電界による電荷移動に伴って新たな電荷移動錯体が
形成される場合、あるいは、電界による分子回転でカラ
ム間に低次元カラムが新たに形成される場合等に基づく
ものと推察される。
However, if there is a defect in the column 7 or if there is an interaction between the column 7 and the column 7, if a voltage is applied in the direction perpendicular to the column 7, the electric field exists in the region E. As shown in FIG. 2(b), the interaction of the columns 7 is induced, and the resistance value in this region becomes low. The interaction is thought to be based on the formation of new charge transfer complexes due to charge transfer due to the electric field, or the formation of new low-dimensional columns between columns due to molecular rotation due to the electric field. .

これらの状態は一定の緩和時間(例えば、数時間〜1日
、あるいはそれ以上)の間は保たれ、低抵抗状態がメモ
リされることとなる。緩和時間が過ぎるか、逆電界(逆
電圧)をかければ元の高抵抗状態に戻る。
These conditions are maintained for a certain relaxation time (eg, several hours to a day or more) and the low resistance state is memorized. If the relaxation time passes or a reverse electric field (reverse voltage) is applied, it returns to its original high resistance state.

光照射を行う場合、光により生じたキャリアの存在によ
り、絶縁方向の抵抗値が低くなり、これに伴い、閾値電
圧の低下がもたらされるのであろうと推察される。
When light irradiation is performed, it is presumed that the presence of carriers generated by the light lowers the resistance value in the insulation direction, resulting in a decrease in the threshold voltage.

続いて、請求項3の電子写真用感光体での画像メモリ作
用について説明する。
Next, the image memory function of the electrophotographic photoreceptor according to the third aspect of the present invention will be explained.

第3図(a)にみるように、感光体1表面をコロナチャ
ージングにより帯電させる。この場合、帯電は感光体に
かかる電圧が閾値電圧v th’以上で閾値電圧Vth
未溝の範囲となるように調整される。
As shown in FIG. 3(a), the surface of the photoreceptor 1 is charged by corona charging. In this case, charging occurs when the voltage applied to the photoreceptor is equal to or higher than the threshold voltage Vth'.
Adjusted to the ungrooved range.

ついで、第3図(b)にみるように、画像投影すれば光
の当たった領域は、前述した如く、低抵抗状態に変わり
、その状態がメモリされる。そして、第3図(C)にみ
るように、再び帯電させるとメモリされた低抵抗状態領
域では直ちに電荷が中和され、投影した画像に応じた静
電画像が得られる。
Then, as shown in FIG. 3(b), when an image is projected, the area hit by the light changes to a low resistance state as described above, and this state is stored in memory. Then, as shown in FIG. 3(C), when it is charged again, the charges are immediately neutralized in the memorized low resistance state region, and an electrostatic image corresponding to the projected image is obtained.

以下、さらに詳細に説明する。This will be explained in more detail below.

まず、請求項1.2記載の感光性材料の実施例について
示す。
First, an example of the photosensitive material according to claim 1.2 will be described.

Al基板上に厚み3μmの鉛フタロシアニン薄からなる
感光性材料を設けた。薄膜形成は、1σ5Torrの真
空雰囲気下、1え/SECの蒸着速度で行った。この感
光性材料の有効面積は1−である。
A photosensitive material made of a thin lead phthalocyanine film having a thickness of 3 μm was provided on an Al substrate. The thin film was formed in a vacuum atmosphere of 1σ5 Torr at a deposition rate of 1e/SEC. The effective area of this photosensitive material is 1-.

この感光性材料に300vの電圧がかかるようにしてお
いて、ハロゲン・タングステンランプ(白色先約20 
mW/cri )を当てたところ、表面の電圧は約10
0〜150vに減少した。光照射を止めても、表面の電
圧低下状態に変化はなかった。
A voltage of 300V is applied to this photosensitive material, and a halogen tungsten lamp (with a white tip of about 20V) is applied to the photosensitive material.
mW/cri), the surface voltage was approximately 10
It decreased to 0-150v. Even when the light irradiation was stopped, there was no change in the voltage drop state on the surface.

このことから、この感光性材料では、高抵抗状態から低
抵抗状態へ変化するしきい値が光照射により低下してい
ることが分かるとともに、低抵抗状態が保持されている
ことも分かる。
From this, it can be seen that in this photosensitive material, the threshold value for changing from a high resistance state to a low resistance state is lowered by light irradiation, and it is also understood that the low resistance state is maintained.

また、感光性材料の高抵抗値を光照射前に測定しておい
て、光照射した後のメモリ状態の低抵抗値を比較してみ
たところ、光照射を完了した後、抵抗値の大幅な低下が
みられた。そして、感光性材料に逆電圧を印加し、抵抗
値を調べてみたところ、元の抵抗値に戻っていることが
分かった。
In addition, when we measured the high resistance value of the photosensitive material before light irradiation and compared it with the low resistance value in the memory state after light irradiation, we found that the resistance value significantly decreased after light irradiation was completed. A decrease was observed. When a reverse voltage was applied to the photosensitive material and the resistance was examined, it was found that the resistance had returned to its original value.

続いて、請求項3記載の電子写真用感光体の実施例につ
いて説明する。
Next, an example of the electrophotographic photoreceptor according to claim 3 will be described.

有効面積が6C71LX5crILとなるようにした他
は、先の実施例と同様にして鉛フタロシアニン薄膜を用
いた電子写真用感光体を作製した。
An electrophotographic photoreceptor using a lead phthalocyanine thin film was produced in the same manner as in the previous example except that the effective area was 6C71LX5crIL.

この電子写真用感光体を既存の複写機のアルマイトドラ
ム上に取り付け、ハロゲン・タングステンを光源にして
画像投影を1回だけ行った後、続けて、80枚の複写コ
ピーを作ったところ、複写コピーには画像変化は認めら
れなかった。この実施例の電子写真用感光体では、十分
な画像メモリ機能が備わっていることが分かる。
This electrophotographic photoreceptor was mounted on the alumite drum of an existing copying machine, and after image projection was performed only once using halogen tungsten as a light source, 80 copies were made in succession. No image changes were observed. It can be seen that the electrophotographic photoreceptor of this example has a sufficient image memory function.

なお、上記両実施例の鉛フタロシアニン薄膜をX線回折
分析したところ結晶のC軸がhl基板表面に平行の向き
に配向していることが確認された。
Incidentally, when the lead phthalocyanine thin films of both of the above Examples were analyzed by X-ray diffraction, it was confirmed that the C axis of the crystal was oriented parallel to the surface of the hl substrate.

発明の効果 この発明の感光性材料および電子写真用感光体は、光照
射により高抵抗状態から低抵抗状態へ変化させられると
ともに、低抵抗状態のメモリおよびメモリ状態の強制解
除が可能な高機能材料であり、電子写真用感光体では、
静電画像の記憶ができるため、1回複写するたびに画像
投影を繰り返す必要がないので複写システム簡略化が図
れる。
Effects of the Invention The photosensitive material and the electrophotographic photoreceptor of the present invention are highly functional materials that can be changed from a high resistance state to a low resistance state by light irradiation, and can also be used as a memory in a low resistance state and forcibly release the memory state. In the electrophotographic photoreceptor,
Since electrostatic images can be stored, there is no need to repeat image projection each time a copy is made, and the copying system can be simplified.

しかも、この発明の感光性材料および電子写真用感光体
は、事実上、例えば、蒸着法により形成された鉛フタロ
シアニンからなる膜があれば事足りるのであるから、材
料構成や膜構造が単純であり、製造自体容易で製造コス
トも低いので、実用性に富んでいる。
Moreover, the photosensitive material and electrophotographic photoreceptor of the present invention actually only require a film made of lead phthalocyanine formed by vapor deposition, so the material composition and film structure are simple. Since it is easy to manufacture and the manufacturing cost is low, it is highly practical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、請求項1〜3記載の発明における有機物薄膜
の印加電圧−電流特性をあられすグラフ、第2図(a)
、(b)は、この有機物薄膜の導電機構を説明するため
の模式的断面図、第3図(a)〜(c)は、請求項3記
載の電子写真用感光体における画像メモリ作用の模式的
説明図である。 1・・・有機物薄膜、2・・・電極用基材、R1、R2
・・・高抵抗、 R3、 R4・・・低抵抗。
FIG. 1 is a graph showing the applied voltage-current characteristics of the organic thin film in the invention according to claims 1 to 3, and FIG. 2(a)
, (b) are schematic cross-sectional views for explaining the conductive mechanism of this organic thin film, and FIGS. 3(a) to (c) are schematic diagrams of the image memory function in the electrophotographic photoreceptor according to claim 3. It is an explanatory diagram. 1... Organic thin film, 2... Electrode base material, R1, R2
...High resistance, R3, R4...Low resistance.

Claims (3)

【特許請求の範囲】[Claims] (1)有機物薄膜であつて、閾値電圧以上の電圧が印加
されると低抵抗状態に変化する特性、光照射状態におい
ては前記閾値電圧が非光照射状態よりも低下する特性、
前記低抵抗状態を少なくとも一定期間継続する特性、お
よび、前記低抵抗状態が逆電圧印加により元の高抵抗状
態に復帰させられる特性をそれぞれ有する感光性材料。
(1) A characteristic of an organic thin film that changes to a low resistance state when a voltage higher than a threshold voltage is applied, and a characteristic that the threshold voltage is lower in a light irradiation state than in a non-light irradiation state;
A photosensitive material having a characteristic that the low resistance state continues for at least a certain period of time, and a characteristic that the low resistance state is returned to the original high resistance state by application of a reverse voltage.
(2)有機物薄膜が電極用基材表面に鉛フタロシアニン
でもつて形成されているとともに、単斜晶系を多く含む
結晶構造を有し、かつ、結晶のc軸が前記基板表面に平
行な向きに配向している請求項1記載の感光性材料。
(2) An organic thin film is formed on the surface of the electrode substrate using lead phthalocyanine, and has a crystal structure containing a large amount of monoclinic crystal, and the c-axis of the crystal is oriented parallel to the substrate surface. The photosensitive material according to claim 1, which is oriented.
(3)請求項1または2記載の感光性材料からなる電子
写真用感光体。
(3) An electrophotographic photoreceptor comprising the photosensitive material according to claim 1 or 2.
JP21882189A 1989-08-25 1989-08-25 Photosensitive material and electrophotographic sensitive body Pending JPH0381774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21882189A JPH0381774A (en) 1989-08-25 1989-08-25 Photosensitive material and electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21882189A JPH0381774A (en) 1989-08-25 1989-08-25 Photosensitive material and electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0381774A true JPH0381774A (en) 1991-04-08

Family

ID=16725875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21882189A Pending JPH0381774A (en) 1989-08-25 1989-08-25 Photosensitive material and electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0381774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012132A (en) * 2004-05-25 2006-01-12 Livedo Corporation Diaper product, supply information management system, use information management system and diaper product management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012132A (en) * 2004-05-25 2006-01-12 Livedo Corporation Diaper product, supply information management system, use information management system and diaper product management system
AU2005247230B2 (en) * 2004-05-25 2009-09-17 Livedo Corporation Diaper product, supply information management system, use information management system, and diaper product management system

Similar Documents

Publication Publication Date Title
JP3761691B2 (en) Multi-layer board for X-ray image and manufacturing method thereof
US4123269A (en) Electrostatographic photosensitive device comprising hole injecting and hole transport layers
US3041166A (en) Xerographic plate and method
US3861913A (en) Electrophotographic charge generation layer
US4269919A (en) Inorganic photoconductive coating, electrophotographic member and sputtering method of making the same
JPS6034747B2 (en) image forming member
JPS6030934B2 (en) image forming member
JPS6345585B2 (en)
US3961953A (en) Method of fabricating composite trigonal selenium photoreceptor
US4609605A (en) Multi-layered imaging member comprising selenium and tellurium
JPS5913021B2 (en) Composite photoreceptor material
US5192633A (en) Laminate type photosensitive material for electrophotography
JPH0381774A (en) Photosensitive material and electrophotographic sensitive body
US3795513A (en) Method of storing an electrostatic image in a multilayered photoreceptor
US3498835A (en) Method for making xerographic plates
US4314014A (en) Electrophotographic plate and process for preparation thereof
US4282298A (en) Layered imaging member and method
JPS5819B2 (en) Selenium japonica
US3709683A (en) Infrared sensitive image retention photoreceptor
GB1578960A (en) Electrophotographic imaging member and process
JPS62280864A (en) Organic photosensitive body for electrophotography
US3697172A (en) Electrostatic photography
JP2891462B2 (en) Charge holding medium exposure recording method
JPH0383291A (en) Switching memory composite function element
JP3031694B2 (en) Voltage application exposure method