JPH0381176B2 - - Google Patents
Info
- Publication number
- JPH0381176B2 JPH0381176B2 JP58083070A JP8307083A JPH0381176B2 JP H0381176 B2 JPH0381176 B2 JP H0381176B2 JP 58083070 A JP58083070 A JP 58083070A JP 8307083 A JP8307083 A JP 8307083A JP H0381176 B2 JPH0381176 B2 JP H0381176B2
- Authority
- JP
- Japan
- Prior art keywords
- multiplier
- multiplication
- multiplicand
- operation device
- logic operation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000047 product Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 5
- 238000007792 addition Methods 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 230000010354 integration Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/53—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
- G06F7/5306—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with row wise addition of partial products
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
Description
【発明の詳細な説明】
本発明はデータ処理装置に関し、特に乗算機能
を有する1チツプマイクロコンピユータに関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a data processing device, and more particularly to a one-chip microcomputer with multiplication functionality.
音声処理、図形処理あるいは一般データ処理等
において演算制御用としてマイクロコンピユータ
が使用されているが、その中でデイジタル2進数
で表現された乗数と被乗数との乗算を行なう回路
として乗数の桁或いは桁のグループに応じた被乗
数の部分積を生成し、これら部分積に乗数のビツ
トに応じて重みをつけ、累積して積を導出する型
の並列乗算回路が集積化されている。しかし従来
はこの乗算回路は一般にマイクロコンピユータに
内蔵されている、論理演算装置(ALU)とは物
理的に分離して形成されている。しかし、並列乗
算装置の全加算器は乗算専用であるため、ハード
ウエア構成が多くなり、LSIなどの集積回路にお
いては、集積度を上げる点で著しく不利であつ
た。 Microcomputers are used for arithmetic control in audio processing, graphics processing, general data processing, etc., and among them, microcomputers are used as circuits to multiply the multiplicand by the multiplier expressed in digital binary numbers. A parallel multiplication circuit is integrated that generates partial products of multiplicands according to groups, weights these partial products according to the bits of the multiplier, and accumulates them to derive a product. However, conventionally, this multiplication circuit has been physically separated from the arithmetic logic unit (ALU) that is generally built into a microcomputer. However, since the full adder of the parallel multiplication device is dedicated to multiplication, it requires a large amount of hardware, which is a significant disadvantage in terms of increasing the degree of integration in integrated circuits such as LSI.
本発明は乗算を四則演算の1つとしてとらえ、
乗算実行のうち加算を実行するユニツトをマイク
ロコンピユータのALUで実行させることによつ
てチツプ内のハードウエア回路を簡略化するよう
にしたものである。 The present invention regards multiplication as one of the four arithmetic operations,
The hardware circuit within the chip is simplified by having the ALU of the microcomputer execute the unit that executes addition among the multiplications.
本発明の基本的構成は、デジタル2進数の乗数
及び被乗数の並列乗算において、乗数の桁或いは
桁のグループに応じた被乗数の部分積を生成し、
これら部分積に乗数のビツトに応じ重みをつけ、
これをALUに導いてここで累積して積み導出す
ることを特徴とし、乗算の中で加算を必要とする
データをALUに導くためのデータラインを設け、
ALUにおいて乗算結果を得るようにしたもので
ある。 The basic structure of the present invention is to generate a partial product of the multiplicand according to a digit or a group of digits of the multiplier in parallel multiplication of a digital binary number multiplier and a multiplicand,
Weight these partial products according to the bits of the multiplier,
It is characterized by leading this to the ALU where it is accumulated and calculated, and a data line is provided to lead the data that needs to be added during multiplication to the ALU.
The multiplication result is obtained in the ALU.
次に本発明の実施例について図面を参照して説
明する。第1図は上記した従来の4ビツト並列乗
算器のハードウエアブロツク図である。乗算器の
単位回路Aは、第2図に示すように、部分積をと
る回路1と、部分積と前段の全加算器とキヤリー
との和をとる全加算器2から成つている。被乗数
X(例えば4ビツトX0〜X3)と乗数Y(例えば4
ビツトY0〜Y3)の乗算X×Yを実行する為には、
第1図のように単位回路Aが少くとも12個必要で
あり、従来のデータ処理装置においてはこの乗算
器はALU(図示せず)とは独立して存在してい
た。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a hardware block diagram of the conventional 4-bit parallel multiplier described above. As shown in FIG. 2, the unit circuit A of the multiplier consists of a circuit 1 that takes partial products, and a full adder 2 that takes the sum of the partial products, the preceding full adder, and the carry. Multiplicand X (for example, 4 bits X 0 to X 3 ) and multiplier Y (for example, 4 bits
To execute the multiplication X×Y of bits Y 0 to Y 3 ),
As shown in FIG. 1, at least 12 unit circuits A are required, and in conventional data processing devices, this multiplier existed independently of the ALU (not shown).
第3図は、本発明の一実施例として従来と対比
するために4ビツトの並列乗算器を構成した時の
回路図である。単位回路は第1図と同じで、部分
積をとる回路1と全加算器2とから成つている。
しかしながら累積加算はALU4で実行するよう
にデータライン3を通してALUに接続されてい
る。最終的な積5はALU4から取り出される。
尚、ALUと乗算回路とを接続するためにANDゲ
ートが用いられる。第1図と同様に被乗数X(4
ビツト)と乗数Y(4ビツト)の乗算X×Yを実
行するのに必要な単位回路Aは本実施例では6個
で済む。残りの加算はデータライン3を通して6
ビツトのALU4(これは本来マイクロコンピユ
ータチツプにあるもの)で実行することができ、
このALUの出力として最終的な積Z5が得る。 FIG. 3 is a circuit diagram of a 4-bit parallel multiplier constructed as an embodiment of the present invention for comparison with the conventional one. The unit circuit is the same as that in FIG. 1, and consists of a circuit 1 for taking partial products and a full adder 2.
However, the cumulative addition is connected to ALU through data line 3 so that it is performed in ALU 4. The final product 5 is retrieved from ALU4.
Note that an AND gate is used to connect the ALU and the multiplication circuit. As in Figure 1, the multiplicand X (4
In this embodiment, only six unit circuits A are required to execute the multiplication X.times.Y of the multiplier Y (4 bits) and the multiplier Y (4 bits). The remaining additions are done through data line 3 and 6.
It can be executed by the bit ALU4 (which is originally found in microcomputer chips),
The final product Z5 is obtained as the output of this ALU.
本発明は以上説明したように、デジタル2進数
の乗数及び被乗数の並列乗算を行なう場合、乗数
の桁或いは桁のグループに応じた被乗数の部分積
を生成し、これら部分積に乗数のビツトに応じ重
みをつけ、累積して積を導出する型の並列乗算回
路の一構成部を論理演算装置(ALU)で置き換
えたデータ処理装置が得られる。従つて、演算の
効率を損うことなくデータ処理装置のハードウエ
ア構成を減らし、集積度を高めることができると
いう効果がある。 As explained above, when performing parallel multiplication of a multiplier and a multiplicand of digital binary numbers, the present invention generates partial products of the multiplicand according to the digits or groups of digits of the multiplier, and divides these partial products according to the bits of the multiplier. A data processing device is obtained in which a component of a parallel multiplication circuit that derives a product by weighting and accumulating is replaced with an arithmetic logic unit (ALU). Therefore, there is an effect that the hardware configuration of the data processing device can be reduced and the degree of integration can be increased without impairing calculation efficiency.
第1図は従来の4ビツト並列乗算器のブロツク
図、第2図はその単位回路タ図である。
A……単位回路、1……部分積をとる回路、2
……全加算器、X……被乗数、Y……乗数。
第3図は本発明の一実施例による4ビツト並列
乗算器の回路ブロツク図である。
A……単位回路、3……データライン、4……
ALU、5……最終的な積、X……被乗数、Y…
…乗数。
FIG. 1 is a block diagram of a conventional 4-bit parallel multiplier, and FIG. 2 is a unit circuit diagram thereof. A... Unit circuit, 1... Circuit that takes partial products, 2
...full adder, X...multiplicand, Y...multiplier. FIG. 3 is a circuit block diagram of a 4-bit parallel multiplier according to one embodiment of the present invention. A... Unit circuit, 3... Data line, 4...
ALU, 5...final product, X...multiplicand, Y...
…multiplier.
Claims (1)
を論理演算装置を用いて実行するデータ処理装置
であつて、前記乗数および被乗数が供給される論
理ゲート回路が前記論理演算装置と独立して設け
られ、前記論理ゲート回路は、前記乗数の所定数
ずつのビツトの内容に応じて前記被乗数の部分積
を生成する論理ゲート群と、生成された部分積の
夫々の少なくとも最下位ビツトを除いた残りのビ
ツトのデータに対しビツト重みに従つた加算処理
を行ない中間データを生成する乗算単位回路とを
有し、前記中間データの各ビツトと前記部分積の
夫々の前記加算処理に用いられていない各ビツト
とをビツト重みに従つて前記論理演算装置に導く
手段がさらに設けられており、前記論理演算装置
を前記乗数および被乗数の乗算に必要な最終段の
加算器と兼用して、前記論理演算装置から乗算結
果を得るようにしたことを特徴とするデータ処理
装置。1. A data processing device that executes multiplication of a multiplier and a multiplicand of a digital binary number using a logic operation device, wherein a logic gate circuit to which the multiplier and the multiplicand are supplied is provided independently of the logic operation device; The logical gate circuit is a group of logical gates that generate partial piles of the number of riding areas according to the contents of the number of vitits of the multiplier, and the remaining Bitsuto, which is at least the lowest bet of the generated part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the part of the partial piles. and a multiplication unit circuit that performs addition processing on data according to bit weights to generate intermediate data, and each bit of the intermediate data and each bit of the partial product that is not used in the addition processing. Further, means is provided for guiding the multiplication result from the logic operation device to the logic operation device according to the bit weight, and the logic operation device is also used as a final stage adder necessary for multiplication of the multiplier and the multiplicand. A data processing device characterized in that it obtains.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58083070A JPS59208644A (en) | 1983-05-12 | 1983-05-12 | Data processor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58083070A JPS59208644A (en) | 1983-05-12 | 1983-05-12 | Data processor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59208644A JPS59208644A (en) | 1984-11-27 |
JPH0381176B2 true JPH0381176B2 (en) | 1991-12-27 |
Family
ID=13791915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58083070A Granted JPS59208644A (en) | 1983-05-12 | 1983-05-12 | Data processor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59208644A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5289435A (en) * | 1976-01-22 | 1977-07-27 | Mitsubishi Electric Corp | Multiplying device |
JPS5489449A (en) * | 1977-12-27 | 1979-07-16 | Toshiba Corp | Multiplier circuit |
JPS55105732A (en) * | 1979-02-08 | 1980-08-13 | Nippon Telegr & Teleph Corp <Ntt> | Multiplier |
-
1983
- 1983-05-12 JP JP58083070A patent/JPS59208644A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5289435A (en) * | 1976-01-22 | 1977-07-27 | Mitsubishi Electric Corp | Multiplying device |
JPS5489449A (en) * | 1977-12-27 | 1979-07-16 | Toshiba Corp | Multiplier circuit |
JPS55105732A (en) * | 1979-02-08 | 1980-08-13 | Nippon Telegr & Teleph Corp <Ntt> | Multiplier |
Also Published As
Publication number | Publication date |
---|---|
JPS59208644A (en) | 1984-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3993891A (en) | High speed parallel digital adder employing conditional and look-ahead approaches | |
US4737926A (en) | Optimally partitioned regenerative carry lookahead adder | |
US6301600B1 (en) | Method and apparatus for dynamic partitionable saturating adder/subtractor | |
US4831577A (en) | Digital multiplier architecture with triple array summation of partial products | |
US4556948A (en) | Multiplier speed improvement by skipping carry save adders | |
JPS6217770B2 (en) | ||
JPS62280930A (en) | Digital multiplier | |
US5734599A (en) | Performing a population count using multiplication | |
US4571701A (en) | Integrated circuit fast multiplier structure | |
EP0147296B1 (en) | Multiplication circuit | |
US5586071A (en) | Enhanced fast multiplier | |
US5875125A (en) | X+2X adder with multi-bit generate/propagate circuit | |
JPH0312738B2 (en) | ||
US6484193B1 (en) | Fully pipelined parallel multiplier with a fast clock cycle | |
JPH0381176B2 (en) | ||
US4935892A (en) | Divider and arithmetic processing units using signed digit operands | |
US5031136A (en) | Signed-digit arithmetic processing units with binary operands | |
JPS62154029A (en) | Multiplier circuit | |
JP2607735B2 (en) | Multiplier partial product addition method | |
US6301597B1 (en) | Method and apparatus for saturation in an N-NARY adder/subtractor | |
US6272514B1 (en) | Method and apparatus for interruption of carry propagation on partition boundaries | |
JPS6259828B2 (en) | ||
JP2675087B2 (en) | Microcomputer | |
JPH0610787B2 (en) | Multiplication processing device | |
JP2518551B2 (en) | Multi-input adder circuit |