JPH0381076B2 - - Google Patents

Info

Publication number
JPH0381076B2
JPH0381076B2 JP59141446A JP14144684A JPH0381076B2 JP H0381076 B2 JPH0381076 B2 JP H0381076B2 JP 59141446 A JP59141446 A JP 59141446A JP 14144684 A JP14144684 A JP 14144684A JP H0381076 B2 JPH0381076 B2 JP H0381076B2
Authority
JP
Japan
Prior art keywords
thermal energy
energy storage
contact
closed container
stimulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59141446A
Other languages
Japanese (ja)
Other versions
JPS6122194A (en
Inventor
Fujio Oomae
Nobuyuki Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP59141446A priority Critical patent/JPS6122194A/en
Publication of JPS6122194A publication Critical patent/JPS6122194A/en
Publication of JPH0381076B2 publication Critical patent/JPH0381076B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/028Control arrangements therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱エネルギーを貯蔵することがで
き、必要となつた時にはいつでも貯蔵されている
熱エネルギーを取り出すことのできる熱エネルギ
ー貯蔵装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thermal energy storage device capable of storing thermal energy and extracting the stored thermal energy whenever required.

〔従来技術〕[Prior art]

近年エネルギー資源の逼迫と共に、無尽蔵のエ
ネルギー源である太陽光を利用して、昼間に熱エ
ネルギーを貯蔵し、夜間に放出させる熱サイクル
システムが検討されはじめている。このような用
途に利用される熱エネルギー貯蔵物としては、水
や砕石などで代表される顕熱型と無機塩水和物や
有機の結晶性物質が起こす融解等の相変化潜熱を
利用する潜熱型とが存在する。ところで前者は熱
エネルギー貯蔵装置の容量や重量が相当大きくな
り、又熱の放出に伴い熱エネルギー貯蔵物自体の
温度が低下したり、更にそれが置かれている環境
の温度変化により勝手に熱を放出してしまうとい
う問題がある。一方後者は相変化潜熱が大きいた
め装置をコンパクト化でき、しかも放熱に伴う熱
エネルギー貯蔵物自体の温度低下は小さいという
利点がある。しかしこの潜熱型も前者の顕熱型と
同じくそれが置かれている環境温度の変化により
勝手に熱を放出してしまうという問題がある。こ
のような特性は、例えは農業用途のように可能な
限り温度を一定に保つ用途には有用なものの、利
用者が任意の時期、任意の温度条件下で初めて熱
の放出を行わせしめる用途には不都合である。す
なわち最近流行の使い捨てカイロのように、所望
の時期に熱を放出させる用途には使用できない。
このことは多くの潜熱型熱エネルギー貯蔵物の使
用可能性を狭める要因になつている。
In recent years, as energy resources have become tighter, studies have begun to consider heat cycle systems that utilize sunlight, which is an inexhaustible energy source, to store thermal energy during the day and release it at night. Thermal energy storage materials used for such purposes include the sensible heat type, which is represented by water and crushed stone, and the latent heat type, which uses phase change latent heat such as melting caused by inorganic salt hydrates and organic crystalline substances. exists. However, in the case of the former, the capacity and weight of the thermal energy storage device are considerably large, and the temperature of the thermal energy storage device itself decreases as heat is released, and furthermore, it may spontaneously release heat due to temperature changes in the environment in which it is placed. The problem is that it is released. On the other hand, the latter has the advantage that the device can be made more compact because of its large phase change latent heat, and the temperature drop of the thermal energy storage itself due to heat radiation is small. However, like the former sensible heat type, this latent heat type also has the problem of spontaneously releasing heat due to changes in the environmental temperature in which it is placed. Although these characteristics are useful in applications where the temperature is kept as constant as possible, such as in agricultural applications, they are useful in applications where the user is forced to release heat for the first time at any time and under any temperature conditions. is inconvenient. In other words, it cannot be used to release heat at a desired time, like the disposable body warmers that have become popular recently.
This is a factor that limits the usability of many latent heat type thermal energy stores.

ところが最近になつて無機塩水和物にキサンタ
ンガムを添加することによつて、熱エネルギーを
貯蔵した状態で非常に安定であり、利用者が定め
る任意の時期及び任意の温度条件下で自在に貯蔵
熱エネルギーを放出させることができることが示
された(特開昭59−53578号)。すなわち同公報に
は、酢酸ナトリウム3水和物に代表される無機塩
水和物とキサンタンガムからなる熱エネルギー貯
蔵物に熱エネルギーを長期的に貯蔵できること及
びその貯蔵熱エネルギーを取り出すには単結晶や
尖鋭物のような核形成源を外部から導入させるか
微弱電流を流せばよいことが開示されている。
However, recently, by adding xanthan gum to inorganic salt hydrate, it has become extremely stable in the state of storing thermal energy, and can be freely stored at any time and under any temperature conditions determined by the user. It was shown that energy could be released (Japanese Patent Application Laid-open No. 53578/1983). In other words, the publication states that thermal energy can be stored for a long period of time in a thermal energy storage material made of an inorganic salt hydrate such as sodium acetate trihydrate and xanthan gum, and that the stored thermal energy can be extracted using single crystal or sharp It has been disclosed that a nucleation source such as a material may be introduced from the outside or a weak current may be applied.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そこで本発明者らは、前記公報の技術につき具
体的に検討を行つたところ、貯蔵されている熱エ
ネルギーを取り出すには前記の各方法では極めて
不安定な再現性しか示さないことが判つた。例え
ば尖鋭物でもつて熱エネルギー貯蔵物の表面を刺
激する場合には、刺激を受ける熱エネルギー貯蔵
物の表面部分は水分が略消失して硬い皮膜状にな
つている必要があり、例えば密閉計の容器に入れ
られて水分とのバランスが安定しており硬い皮膜
状の表面を有しない熱エネルギー貯蔵物の場合に
は、尖鋭物でもつて刺激しても核形成を生じず、
したがつて熱エネルギーの放出は生じないことが
判つた。すなわち尖鋭物による刺激にたよる方法
においては、熱エネルギー貯蔵物は常に何らかの
形で外気と接触して表層部分の水分を蒸発させる
ような状態下で使用しなければならないことを意
味し、当然ながら長期間使用すると水分消失によ
る組成変化によつて初期性能が低下するという問
題がある。又密閉容器で使用できないことから実
用上の問題もある。一方電流による刺激は、理由
は不明ながら確実に核形成を再現させることはで
きない。これらの方法に比較して単結晶を熱エネ
ルギー貯蔵物に放り込む方法は、確かに核形成を
促進させて熱エネルギーの放出を行わしめるが、
工業的に連結して単結晶のような核形成源を添加
する方法は難しい。
Therefore, the present inventors conducted a specific study on the technique disclosed in the above-mentioned publication, and found that each of the above-mentioned methods exhibits only extremely unstable reproducibility in extracting stored thermal energy. For example, when stimulating the surface of a thermal energy storage object with a sharp object, the surface of the thermal energy storage object to be stimulated must be almost free of moisture and become a hard film. In the case of a thermal energy storage product that is placed in a container, has a stable moisture balance, and does not have a hard film-like surface, nucleation will not occur even if stimulated with a sharp object.
It was therefore found that no release of thermal energy occurred. In other words, in a method that relies on stimulation with sharp objects, this means that the thermal energy storage device must always be used in some form of contact with the outside air to evaporate the moisture on the surface layer. When used for a long period of time, there is a problem that the initial performance deteriorates due to compositional changes due to water loss. There are also practical problems because it cannot be used in a closed container. On the other hand, current stimulation cannot reliably reproduce nucleation for unknown reasons. Compared to these methods, the method of throwing a single crystal into a thermal energy store certainly promotes nucleation and releases thermal energy, but
It is difficult to industrially connect and add a nucleation source such as a single crystal.

本発明者らは、かかる点から工業的に連結して
単結晶のような核形成源を熱エネルギー貯蔵物に
与える装置が得られないか鋭意検討を重ね、本発
明に到達したものである。
From this point of view, the present inventors have conducted intensive studies to determine whether it is possible to obtain a device that can be industrially connected to provide a nucleation source such as a single crystal to a thermal energy storage material, and have arrived at the present invention.

〔発明の構成及び概要〕[Structure and outline of the invention]

すなわち本発明は親水性多糖類及び無機塩水和
物からなる熱エネルギー貯蔵物を充填した密閉容
器と、通常は該熱エネルギー貯蔵物に接触しない
ように配置され、かつ熱エネルギー取り出し開始
操作により該熱エネルギー貯蔵物に対し自在に接
触できるように、前記密閉容器に取り付けられた
刺激体とから構成され、刺激体には熱エネルギー
貯蔵物及び結晶化剤が接触状態で充填されてお
り、かつその熱エネルギー貯蔵物の少なくとも一
部は密閉容器内の熱エネルギー貯蔵物と直接的運
に接触できるように密閉容器内に露出しているこ
とを特徴とする熱エネルギー貯蔵装置に関する。
That is, the present invention relates to a closed container filled with a thermal energy storage material made of a hydrophilic polysaccharide and an inorganic salt hydrate, and a closed container that is normally arranged so as not to come into contact with the thermal energy storage material, and which is arranged so as not to come into contact with the thermal energy storage material, and which is operated to start extracting the thermal energy. and a stimulator attached to the sealed container so as to be able to freely contact the energy storage, and the stimulator is filled with the thermal energy storage and the crystallization agent in contact with each other, and the stimulator is filled with the thermal energy storage and the crystallization agent in contact with The present invention relates to a thermal energy storage device characterized in that at least a portion of the energy store is exposed within the closed container so as to be in direct contact with the thermal energy store within the closed container.

親水性多糖類 本発明の熱エネルギー貯蔵物を構成する成分の
一つである親水性多糖類は、ホモ多糖類、ヘテロ
多糖類あるいはこれらの誘導体といつた如何なる
種類でもよい。このような親水性多糖類の例とし
ては、グルカンであるセルロース、アミロース、
ラミナラン、アミロペクチン、グリコーゲン、微
生物のデキストラン等、ガラクタンである寒天ア
ガロース、λ−カラゲナン、カタツムリのガラク
タン等のフルクタンであるダリヤやキクイモ根茎
のイヌリン、レバン、トリチシン等、高等植物の
キシラン、ゾウゲヤシや海藻あるいは酵母のマン
ナン、N−アセチルグルコサミンポリマーである
キチン、ポリガラクツロン酸であるペクチン酸、
落花生、リンゴ、テンサイのアラビナン等のホモ
多糖類、あるいはこれらの誘導体、すなわちアル
キル化、アセチル化、硫酸エステル化、酢酸エス
テル化等を行つたもの例えばカルボキシメチルセ
ルロース、ヒドロキシメチルセルロース、ヒドロ
キシエチルセルロース、ジヒドロキシエチルセル
ロース、ヒドロキシプロピルセルロース等を挙げ
ることができる。又別には、D−グルコースとD
−マンノースが互いにβ1→4結合したグルコマ
ンノグリカンであるコンニヤクマンナン、木材の
グルコマンナン、このグルコマンナン主鎖にD−
ガラクトースがα1→6結合して分岐している針
葉樹材のガラクトグルコマンノグリカン、グアガ
ム(グアラン)、カラマツのアラビノガラクトグ
リカン、アラビアガム、トラガントガムのトラガ
ント酸、アルギン酸、グリコサミノグリカン、ロ
ーカストビーガンガム等のヘテロ多糖類あるいは
これらの誘導体、更にヘテロ多糖の一種である細
胞外ヘテロ多糖すなわち細菌Xanthomnas
compestrisの培地より得られるD−グルコース、
D−マンノース、D−グルクロン酸を構成単位と
するキサンタンガム、Pseudomnasのmucoid株
の培地より得られるD−マンヌロン酸、L−グル
クロン酸を構成単位とするヘテロ多糖、A.
indicumの培地より得られるD−グルクロン酸、
D−グリセロ−D−マンノヘプトース、D−グル
コース、D−マンノースを構成単位とする酸性ヘ
テロ多糖とD−グルコース、D−マンノース、L
−アラビノース、L−ラムノースを構成単位とす
る中性ヘテロ多糖の混合物等あるいはこれら誘導
体を挙げることができる。これらの中では各種の
無機塩水和物と相溶し易く、増粘効果が大きくて
ゲル化効果が優れ、又工業的に入手し易いことか
ら、キサンタンガム、ヒドロキシルエチルセルロ
ース等のヒドロキシルアルキセルロース、ヒドロ
キシプロピル化グアガム等のヒドロキシアルキル
化グアガムが好ましく、とくにキサンタンガムは
これらのバランスが一番優れていて好ましい。一
般的にキサンタムはケコル社より「ケルトロル
(KELTROL)」及び「ケルザン(KELZAN)」
の商標名で市販されており、又ヒドロキシプロピ
ル化グアガムは「ジヤガーHP−11」の商標名で
市販されていて容易に入手し得る。
Hydrophilic polysaccharide The hydrophilic polysaccharide, which is one of the components constituting the thermal energy storage product of the present invention, may be of any kind such as homopolysaccharides, heteropolysaccharides, or derivatives thereof. Examples of such hydrophilic polysaccharides include cellulose, which is a glucan, amylose,
Laminaran, amylopectin, glycogen, dextran from microorganisms, galactans such as agar agarose, λ-carrageenan, snail galactan, inulin from the rhizomes of dahlia and Jerusalem artichoke, levan, tritisin, etc., xylan from higher plants, elephant palm, seaweed, etc. Yeast mannan, N-acetylglucosamine polymer chitin, polygalacturonic acid pectic acid,
Homopolysaccharides such as arabinan from peanuts, apples, and sugar beets, or derivatives thereof, such as alkylation, acetylation, sulfate esterification, acetate esterification, etc., such as carboxymethylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, dihydroxyethylcellulose, Examples include hydroxypropylcellulose. Alternatively, D-glucose and D
- Konjac mannan, a glucomannoglycan in which mannoses are bonded to each other β1→4, wood glucomannan, D- in the glucomannan main chain.
Galactoglucomannoglycan from coniferous wood in which galactose is branched with α1→6 bonds, guar gum (gualan), arabinogalactoglycan from larch, gum arabic, tragacanthic acid from gum tragacanth, alginic acid, glycosaminoglycan, locust vegan Heteropolysaccharides such as gum or their derivatives, as well as extracellular heteropolysaccharides, which are a type of heteropolysaccharide, i.e. bacteria Xanthomnas
D-glucose obtained from the medium of D. compestris,
A.
D-glucuronic acid obtained from the medium of D. indicum,
Acidic heteropolysaccharide whose constituent units are D-glycero-D-mannoheptose, D-glucose, and D-mannose, and D-glucose, D-mannose, and L
Examples include mixtures of neutral heteropolysaccharides having -arabinose and L-rhamnose as constituent units, and derivatives thereof. Among these, xanthan gum, hydroxyl alkyl cellulose such as hydroxyl ethyl cellulose, hydroxypropyl cellulose, etc. Hydroxyalkylated guar gum such as guar gum is preferred, and xanthan gum is particularly preferred since it has the best balance of these. Generally, xantham is available as “KELTROL” and “KELZAN” from Kekol.
Hydroxypropylated guar gum is commercially available under the trade name "Jager HP-11" and is readily available.

キサンタンガム(Xantan Gum)は、下記一
般式()のような反復単位を有すると考えら
れ、その分子量の多くは200万〜500万程度であ
る。
Xanthan gum is thought to have a repeating unit represented by the following general formula (), and most of its molecular weights are about 2 million to 5 million.

本発明においては親水性多糖類として上述した
ものを使用できるが、これらは単独で又は2種以
上混合して使用してもよい。とくにその効果が著
しいキサンタンガムを主成分としての他の多糖類
を混合する系は好適である。この際混合割合はと
くに制限はなく、薯望の割合で混合することが可
能であるが、好ましくはキサンタンガムが半分以
上になるようにする。これらの混合物の特徴はキ
サンタンガム単独使用時よりも少ない量で済むこ
とであり、したがつて効率の高い熱エネルギー貯
蔵物が得られる。
In the present invention, the above-mentioned hydrophilic polysaccharides can be used, but these may be used alone or in combination of two or more. Particularly suitable is a system in which xanthan gum, which has remarkable effects, is mixed with other polysaccharides as a main component. At this time, there is no particular restriction on the mixing ratio, and it is possible to mix at any desired ratio, but preferably the amount of xanthan gum is half or more. A feature of these mixtures is that they require less amount than when using xanthan gum alone, thus providing a highly efficient thermal energy store.

無機塩水和物 無機塩水和物としては、潜熱型蓄熱剤として知
られている種々のものが例示できる。具体的には
硝酸リチウム3水和物(LiON3・3H2O)、クロ
ム酸ナトリウム10水和物(Na2CrO4・10H2O)、
硫酸ナトリウム10水和物(Na2So4・10H2O)、炭
酸ナトリウム10水和物(Na2CO3・10H2O)、リ
ン酸水素ナトリウム12水和物(Na2HPO4
12H2O)、チオ硫酸ナトリウム5水和物
(Na2S2O3・5H2O)、酢酸ナトリウム3水和物
(CH3COONa.3H2O)、硝酸マグネシウム6水和
物(Mg(NO32・6H2O)、塩化マグネシウム6水
和物(MgCl2・6H2O)、塩化カルシウム6水和物
(CaCl2・6H2O)、塩化ストロンチウム6水和物
(SrCl2・6H2O)等がある。これらは単独で使用
されるほか2種以上混合して用いてもよい。
Inorganic Salt Hydrate Examples of inorganic salt hydrates include various types known as latent heat type heat storage agents. Specifically, lithium nitrate trihydrate (LiON 3・3H 2 O), sodium chromate decahydrate (Na 2 CrO 4・10H 2 O),
Sodium sulfate decahydrate (Na 2 So 4・10H 2 O), sodium carbonate decahydrate (Na 2 CO 3・10H 2 O), sodium hydrogen phosphate decahydrate (Na 2 HPO 4
12H 2 O), sodium thiosulfate pentahydrate (Na 2 S 2 O 3.5H 2 O), sodium acetate trihydrate (CH 3 COONa.3H 2 O), magnesium nitrate hexahydrate (Mg ( NO 3 ) 2・6H 2 O), magnesium chloride hexahydrate (MgCl 2・6H 2 O), calcium chloride hexahydrate (CaCl 2・6H 2 O), strontium chloride hexahydrate (SrCl 2・6H 2 O), etc. These may be used alone or in combination of two or more.

熱エネルギー貯蔵物 熱エネルギー貯蔵物は前述した親水性多糖類と
無機塩水和物とを混合することにより得られる。
この時無機塩水和物が充分に増粘されてヒドロゲ
ル状になり、相分離が防止されるよう、使用する
無機塩水和物に応じて適宜親水性多糖類の種類を
選択する。又両者の系に必要に応じて第3成分を
添加してヒドロゲル状の安定化を計つてもかまわ
ない。このような組合せの例として、酢酸ナトリ
ウム3水和物−キサンタンガム、酢酸ナトリウム
3水和物−ヒドロキシプロピルグアガム、酢酸ナ
トリウム3水和物−ヒドロキシエチルセルロー
ス、酢酸ナトリウム3水和物−キサンタンガム−
ローカスビーンガム、硫酸ナトリウム10水和物−
キサンタンガム−塩化ナトリウム等が例示でき
る。
Thermal Energy Store Thermal energy store is obtained by mixing the aforementioned hydrophilic polysaccharide and inorganic salt hydrate.
At this time, the type of hydrophilic polysaccharide is appropriately selected depending on the inorganic salt hydrate to be used so that the inorganic salt hydrate is sufficiently thickened to form a hydrogel and phase separation is prevented. Further, a third component may be added to both systems as necessary to stabilize the hydrogel state. Examples of such combinations include sodium acetate trihydrate-xanthan gum, sodium acetate trihydrate-hydroxypropyl guar gum, sodium acetate trihydrate-hydroxyethylcellulose, sodium acetate trihydrate-xanthan gum-
Locus bean gum, sodium sulfate decahydrate
Examples include xanthan gum and sodium chloride.

親水性多糖類と無機塩水和物の混合割合は、使
用する多糖の種類及び無機塩水和物の種類あるい
はこれらの組合せの種類によつて異なるので一概
に規定することが難しいものの、概ね親水性多糖
類が1〜10重量%、好ましくは2〜5重量%、無
機塩水和物が90〜99重量%、好ましくは95〜98重
量%である。
The mixing ratio of hydrophilic polysaccharide and inorganic salt hydrate varies depending on the type of polysaccharide used, the type of inorganic salt hydrate, or the type of combination thereof, so it is difficult to define it unconditionally. The sugar content is 1 to 10% by weight, preferably 2 to 5% by weight, and the inorganic salt hydrate is 90 to 99% by weight, preferably 95 to 98% by weight.

以上の構成の熱エネルギー貯蔵物は、熱源を与
えられることによつて無機塩水和物が融解してエ
ネルギーを蓄積し、その後雰囲気温度が低下し無
機塩水和物の融点未満になつてもヒドロゲル状と
なつて過冷却を保持し続け固化(結晶化)が生じ
ないという特性を有している。
The thermal energy storage material with the above structure melts the inorganic salt hydrate by applying a heat source and stores energy, and even if the ambient temperature decreases and becomes below the melting point of the inorganic salt hydrate, it remains in the form of a hydrogel. Therefore, it has the characteristic that it continues to maintain supercooling and does not solidify (crystallize).

結晶化剤 結晶化剤としては公知の種々のものを用いるこ
とができ、例えは水酸化ストロンチウム、ハロゲ
ン化ストロンチウム、炭酸ストロンチウム、水酸
化バリウム、ハロゲン化バリウム、炭酸バリム、
チオ硫酸バリウム、硫酸バリウム、三塩化ニツケ
ル、タルク、銅粉、ホウ砂、ホウ酸、あるいは無
機塩の無水物といつたものを例示できる。これら
の中では、熱エネルギー貯蔵物を構成する無機塩
水和物と同じ無機塩の無水物を使用するのが好ま
しい。
Crystallizing Agent Various known crystallizing agents can be used, such as strontium hydroxide, strontium halide, strontium carbonate, barium hydroxide, barium halide, barium carbonate,
Examples include barium thiosulfate, barium sulfate, nickel trichloride, talc, copper powder, borax, boric acid, and anhydrous inorganic salts. Among these, it is preferable to use an anhydride of the same inorganic salt as the inorganic salt hydrate constituting the thermal energy storage material.

結晶化剤の働きは、熱エネルギー貯蔵物中の無
機塩水和物の過冷却防止である。すなわち結晶化
剤が添加されると、融解状態の無機塩水和物は融
点未満になると直ちに固化し、親水性多糖類が共
存していたとしてもヒドロゲル状で過冷却状態の
まま安定化することはない。
The function of the crystallizing agent is to prevent supercooling of the inorganic salt hydrate in the thermal energy store. In other words, when a crystallizing agent is added, the inorganic salt hydrate in the molten state immediately solidifies when the temperature drops below the melting point, and even if a hydrophilic polysaccharide is present, it will not remain stable in a supercooled state in the form of a hydrogel. do not have.

熱エネルギー貯蔵装置 本発明の熱エネルギー貯蔵装置は、原則的に熱
エネルギー貯蔵物を充填した密閉容器と刺激体と
からなる。刺激体には熱エネルギー貯蔵物及び結
晶化剤とが接触状態で充填されていて、その熱エ
ネルギー貯蔵物の少なくとも一部は密閉容器内に
露出している。この刺激体は通常の密閉容器内の
熱エネルギー貯蔵物と接触しないように配置さ
れ、かつ熱エネルギー取り出し開始操作により、
その露出部分が密閉容器内の熱エネルギー貯蔵物
と自在に接触できるよう密閉容器に取り付けられ
ている。このような構成を採ることによつて、過
冷却によつて融解した状態でヒドロゲル状になつ
ている密閉容器内の熱エネルギー貯蔵物に対し、
結晶化剤の働きによつて既に固化している刺激体
内の熱エネルギー貯蔵物を任意の時点で接触させ
ることができる。そしてこの固化している刺激体
の熱エネルギー貯蔵物の接触部を核として、密閉
容器内の熱エネルギー貯蔵物の固化が伝播してゆ
き、蓄積されている熱エネルギーを放出すること
となる。この刺激体の接触時間は長時間を必要と
しなく、瞬間的なものでよい。
Thermal Energy Storage Device The thermal energy storage device of the invention essentially consists of a closed container filled with a thermal energy store and a stimulating body. The stimulator is filled with a thermal energy store and a crystallizing agent in contact with each other, with at least a portion of the thermal energy store being exposed within the closed container. This stimulator is placed so that it does not come into contact with the thermal energy storage in a normal closed container, and by the operation of starting thermal energy extraction,
It is attached to the closed container so that its exposed portion can freely contact the thermal energy store within the closed container. By adopting such a configuration, the thermal energy stored in the closed container, which is in the form of a hydrogel in a molten state due to supercooling, is
The thermal energy stores in the stimulus body, which have already solidified by the action of the crystallizing agent, can be brought into contact at any time. Then, the solidification of the thermal energy storage in the sealed container propagates through the contact portion of the thermal energy storage of the solidified stimulus, and the stored thermal energy is released. The contact time of this stimulator does not need to be long and may be instantaneous.

〔実施例〕〔Example〕

本発明の熱エネルギー貯蔵装置の一例を第1図
を使用して説明する。密閉容器1内には熱エネル
ギー貯蔵物6が充填されている。容器上部にはパ
ツキン2を介して管状の刺激体3がスプリング5
と共に設けてある。管状刺激体の密閉容器内熱エ
ネルギー貯蔵物と接触する側の開口部には、熱エ
ネルギー貯蔵物6が充填されており、他の空間部
には結晶化剤7が充填されている。刺激体3は通
常は容器1内の熱エネルギー貯蔵物6と接触しな
いように配置され、熱エネルギー取り出し開始操
作により、刺激体3の熱エネルギー貯蔵物6が密
閉容器1内の熱エネルギー貯蔵物6に接触するよ
うに取り付けられている。刺激体の他の開口部に
は栓4が取り付けられて、刺激体内の結晶化剤及
び熱エネルギー貯蔵物が蒸発したり組成変化が生
じないようになつている。刺激体を密閉容器内の
熱エネルギー貯蔵物に接触させる時は、熱エネル
ギー取り出し開始操作として、何らかの機械的作
用により刺激体を押し下げればよく、刺激体内の
熱エネルギー貯蔵物が密閉容器内のそれに接触し
たらスプリング5の力学的作用によつて刺激体は
もとの位置にもどることとなる。この時、密閉容
器内の上部空間には水などを張りつめてもよい。
An example of the thermal energy storage device of the present invention will be explained using FIG. 1. The closed container 1 is filled with thermal energy storage 6 . A tubular stimulator 3 is connected to a spring 5 through a gasket 2 at the top of the container.
It is provided with. The opening of the tubular stimulator on the side that comes into contact with the thermal energy storage in the closed container is filled with thermal energy storage 6, and the other space is filled with crystallization agent 7. The stimulator 3 is normally arranged so as not to come into contact with the thermal energy storage 6 in the container 1, and the thermal energy storage 6 of the stimulator 3 is transferred to the thermal energy storage 6 in the closed container 1 by the thermal energy extraction starting operation. It is attached so that it makes contact with the A stopper 4 is attached to the other opening of the stimulator to prevent evaporation or compositional changes of the crystallizing agent and thermal energy stores within the stimulator. When the stimulator is brought into contact with the thermal energy storage in the sealed container, the stimulator may be pushed down by some mechanical action to initiate thermal energy extraction, and the thermal energy stored in the stimulator is brought into contact with the thermal energy stored in the sealed container. Once in contact, the stimulator returns to its original position due to the mechanical action of the spring 5. At this time, the upper space inside the closed container may be filled with water or the like.

密閉容器1内の熱エネルギー貯蔵物6を結晶化
させるための核剤としては、熱エネルギー貯蔵物
6と同種の物質の結晶化したものが好ましいが、
密閉容器1内の熱エネルギー貯蔵物6の一部のみ
を結晶化状態で保持するのは困難である。ところ
が上記熱エネルギー貯蔵装置では、刺激体3内に
熱エネルギー貯蔵物6の一部が結晶化剤7と接触
した増体で充填されているため、刺激体3内の熱
エネルギー貯蔵物6は低温下では過冷却されるこ
となく、結晶化して固化している。従つてこの状
態で刺激体3を押し下げると、結晶化している熱
エネルギー貯蔵物6が、容器1内の過冷却により
ヒドロゲル状となつた熱エネルギー貯蔵物6と接
触して核となり、その結晶化を促進する。この場
合、異種の結晶化剤7が熱エネルギー貯蔵物6に
直接接触しても結晶化速度は遅く、長時間の接触
が必要であるが、同種の熱エネルギー貯蔵物6の
結晶化物が接触すると、時間的に結晶化が起こ
り、熱エネルギーの放出が瞬時に行われる。
The nucleating agent for crystallizing the thermal energy storage material 6 in the closed container 1 is preferably a crystallized substance of the same type as the thermal energy storage material 6;
It is difficult to maintain only a portion of the thermal energy store 6 in the closed container 1 in a crystallized state. However, in the above-mentioned thermal energy storage device, since a part of the thermal energy storage material 6 in the stimulation body 3 is filled with the increase in volume that has come into contact with the crystallization agent 7, the thermal energy storage material 6 in the stimulation body 3 is kept at a low temperature. At the bottom, it crystallizes and solidifies without being supercooled. Therefore, when the stimulator 3 is pushed down in this state, the crystallized thermal energy storage material 6 comes into contact with the thermal energy storage material 6 that has become hydrogel-like due to supercooling in the container 1, becomes a nucleus, and the crystallization occurs. promote. In this case, even if the different types of crystallizing agents 7 come into direct contact with the thermal energy storage material 6, the crystallization rate is slow and long-term contact is required; however, if the crystallized products of the same type of thermal energy storage material 6 come into contact , crystallization occurs over time, and thermal energy is released instantaneously.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明の装置は、熱エネ
ルギーを所望の時期にいつでも取り出すことがで
き、又何度でも繰り返し使用でき、装置内の熱エ
ネルギー貯蔵物は密閉された環境下にあるので組
成変化がなく長期に亘り安定した性質を示すこと
になる。
As described above, the device of the present invention can extract thermal energy at any desired time, can be used repeatedly, and because the thermal energy stored in the device is in a sealed environment, It exhibits stable properties over a long period of time without any change.

このような性質を利用して本発明の装置は、釣
やダイビングといつたレジヤー用又はサバイバル
用インスタントカイロ、家庭用ルームヒーター、
自転車エンジンの冬期プレヒーター、熱感応型ミ
サイルの囮といつたものに利用できる。
Utilizing these properties, the device of the present invention can be used as an instant warmer for leisure or survival such as fishing or diving, a room heater for home use,
It can be used as a winter preheater for bicycle engines, and as a decoy for heat-sensitive missiles.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図である。 FIG. 1 is a diagram showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 親水性多糖類及び無機塩水和物からなる熱エ
ネルギー貯蔵物を充填した密閉容器と、通常は該
熱エネルギー貯蔵物に接触しないように配置さ
れ、かつ熱エネルギー取り出し開始操作により該
熱エネルギー貯蔵物に対し自在に接触できるよう
に、前記密閉容器に取り付けられた刺激体とから
構成され、刺激体には熱エネルギー貯蔵物及び結
晶化剤が接触状態で充填されており、かつその熱
エネルギー貯蔵物の少なくとも一部は密閉容器内
の熱エネルギー貯蔵物と直接的に接触できるよう
に密閉容器内に露出していることを特徴とする熱
エネルギー貯蔵装置。 2 熱エネルギー貯蔵物を構成する親水性多糖類
が、ヒドロキシルアルキルセルロース、ヒドロキ
シルアルキル化グアガム及びキサンタンガムから
選ばれる特許請求の範囲第1項記載の熱エネルギ
ー貯蔵装置。 3 熱エネルギー貯蔵物を構成する無機塩水和物
が酢酸ナトリウム3水和物又は硫酸ナトリウム10
水和物である特許請求の範囲第1項又は第2項に
記載の熱エネルギー貯蔵装置。
[Scope of Claims] 1. A closed container filled with a thermal energy storage material made of a hydrophilic polysaccharide and an inorganic salt hydrate, and an operation for starting the extraction of thermal energy, which is normally arranged so as not to come into contact with the thermal energy storage material. a stimulator attached to the closed container so as to be able to freely contact the thermal energy storage, the stimulator is filled with the thermal energy storage and a crystallizing agent in contact with each other, and at least a portion of the thermal energy storage is exposed within the closed container so as to be in direct contact with the thermal energy storage within the closed container. 2. The thermal energy storage device according to claim 1, wherein the hydrophilic polysaccharide constituting the thermal energy storage material is selected from hydroxyalkylcellulose, hydroxyalkylated guar gum, and xanthan gum. 3 The inorganic salt hydrate constituting the thermal energy storage material is sodium acetate trihydrate or sodium sulfate 10
The thermal energy storage device according to claim 1 or 2, which is a hydrate.
JP59141446A 1984-07-10 1984-07-10 Thermal energy storage device Granted JPS6122194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59141446A JPS6122194A (en) 1984-07-10 1984-07-10 Thermal energy storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59141446A JPS6122194A (en) 1984-07-10 1984-07-10 Thermal energy storage device

Publications (2)

Publication Number Publication Date
JPS6122194A JPS6122194A (en) 1986-01-30
JPH0381076B2 true JPH0381076B2 (en) 1991-12-26

Family

ID=15292115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59141446A Granted JPS6122194A (en) 1984-07-10 1984-07-10 Thermal energy storage device

Country Status (1)

Country Link
JP (1) JPS6122194A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760075B2 (en) * 1987-01-31 1995-06-28 株式会社東芝 Heat storage device
JP2002303495A (en) * 2001-03-30 2002-10-18 Sumika Plastech Co Ltd Heat storage device
JP2013194970A (en) * 2012-03-19 2013-09-30 Furukawa Electric Co Ltd:The Heat accumulator and trigger unit
CN104487537B (en) 2012-08-08 2021-02-19 古河电气工业株式会社 Heat storage material composition, auxiliary heat source using same, and heat supply method
JP6886812B2 (en) * 2016-12-22 2021-06-16 株式会社竹中工務店 Water stop body and water stop method
JP7044338B2 (en) * 2016-12-22 2022-03-30 株式会社竹中工務店 Ground improvement body and ground improvement method
JP7044339B2 (en) * 2016-12-22 2022-03-30 株式会社竹中工務店 Improved ground and ground improvement method
DE102017210002A1 (en) * 2017-06-14 2018-12-20 Robert Bosch Gmbh Method and apparatus for initiating crystallization of a heat storage medium
US11560503B2 (en) * 2020-04-15 2023-01-24 Ut-Battelle, Llc Stable salt hydrate-based thermal energy storage materials

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514427A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Heat accumulator
JPS5666691A (en) * 1979-10-31 1981-06-05 Tsuchiya Mfg Co Ltd Regenerating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514427A (en) * 1978-07-17 1980-01-31 Hitachi Ltd Heat accumulator
JPS5666691A (en) * 1979-10-31 1981-06-05 Tsuchiya Mfg Co Ltd Regenerating device

Also Published As

Publication number Publication date
JPS6122194A (en) 1986-01-30

Similar Documents

Publication Publication Date Title
JPH0381076B2 (en)
Kenisarin et al. Salt hydrates as latent heat storage materials: Thermophysical properties and costs
US4574051A (en) Thermochemical energy storage
JP2581708B2 (en) Thermal energy storage composition
US4268558A (en) Thermal storage material and process for making
JPH0364391A (en) Material undergoing phase transition
US11306237B2 (en) Latent-heat storage material composition and latent-heat storage tank
CA1179117A (en) Heat storage material
JPS6179991A (en) Latent heat accumulating body
JPH053907Y2 (en)
JPS59168085A (en) Heat regenerating material
JPS6119687A (en) Thermal energy storage material
US4189393A (en) Heat storage material comprising lithium chlorate-trihydrate and a nucleating agent
JPS608380A (en) Heat accumulative material of latent heat
JPS6221038B2 (en)
JPS6058480A (en) Heat storage material
JPS59115381A (en) Heat storage material
JP3774530B2 (en) Manufacturing method of heat storage material
JPH0134475B2 (en)
JPH0134477B2 (en)
Miller Random Heap Structure of Liquids
JPS5893779A (en) Thermal energy storing composition
JPS58219399A (en) Heat accumulating material
JPH0443949B2 (en)
JPS58195796A (en) Heat accumulating material for use in space heating