JPH0380992B2 - - Google Patents
Info
- Publication number
- JPH0380992B2 JPH0380992B2 JP58111847A JP11184783A JPH0380992B2 JP H0380992 B2 JPH0380992 B2 JP H0380992B2 JP 58111847 A JP58111847 A JP 58111847A JP 11184783 A JP11184783 A JP 11184783A JP H0380992 B2 JPH0380992 B2 JP H0380992B2
- Authority
- JP
- Japan
- Prior art keywords
- stage cylinder
- pump case
- shield
- pump
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 238000009833 condensation Methods 0.000 description 7
- 230000005494 condensation Effects 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B37/00—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
- F04B37/06—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
- F04B37/08—Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Description
【発明の詳細な説明】
本発明は、真空排気用のクライオポンプ装置に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cryopump device for evacuation.
従来、この種装置として、例えば第1図示のよ
うに、直円筒形のポンプケースa内に、冷凍機本
体bから上方にのびる下側の1段シリンダcと、
上側の2段シリンダdとを備えると共に、該2段
シリンダdの頂部からその外周下方にのびるクラ
イオパネルeと、該1段シリンダcの頂部から上
方へのびて該クライオパネルeを囲むシールドf
とを備え、ポンプケースaとシールドfの間に広
い緩衝空間を設けたものが知られている。該クラ
イオパネルeは2段シリンダdにより15〜20Kに
冷却され、シールドfは1段シリンダcにより80
〜130Kに冷却される。こうした構成のポンプは、
その上側の真空装置g内のスパツタリング用ガ
ス、エツチング用ガス等のガスのうち、超低温で
凝縮するガスはクライオパネルeに凝縮し、それ
以外の凝縮温度の高いガスや水蒸気はバツフルを
設けたシールドfに凝縮するため、該真空装置g
内は高真空に排気される。しかし、ポンプケース
aとシールドfとの間には、ポンプケースaから
シールドfへの熱伝導を遮断するために多少の空
間があり、これを介して真空装置gのガスや水蒸
気がその下側即ちシールドfの下方のポンプ内圧
の上昇を防ぐための緩衝空間に侵入し、1段シリ
ンダcの周面に凝縮してしまう。この周面に凝縮
したガスや水蒸気は、1段シリンダcの温度が真
空装置gの負荷増大等の原因で上昇したときに再
蒸発し、ポンプ内の圧力上昇や圧力不安定の不都
合をもたらす。更に説明すれば、真空装置g内で
は、CVD、ドライエツチング、スパツタリング
等の処理のために、各種のガスが使用されるが、
これらのガスは蒸気圧が100Kで5×10-3トール
以下のものが多く、一方、前記した1段シリンダ
cは下端が常温(例えば20℃)のポンプケースa
に接しているために常温で、その頂部は冷却され
て80〜130K(最も温度が下がつたときには35〜
40K)の低温となり、幅広い温度勾配を有してい
る。そのため上記の空間に侵入したガスや水蒸気
は、夫々の蒸気圧と対応する温度の1段シリンダ
cの周壁に凝縮するが、該1段シリンダcが温度
上昇すると凝縮した一部のものが再蒸発する。例
えば、第4図に於いて、1段シリンダcが40〜
293Kの温度勾配を有している場合、H2Oの圧力
(分圧)が1×10-3トールの時、水の蒸気圧の1
×10-3トールに対応する温度(約200K)以下の
温度を有する範囲(斜線部分)のシリンダcの周
壁にH2Oが凝縮することになる。ところが、真
空装置gの負荷の増大や外部よりの熱負荷で1段
シリンダcの低温部の温度が80Kまで上昇する
と、1段シリンダcの温度勾配は変化し、第5図
示のように、今まで200Kであつた所が、例えば
220Kまで上昇し、そこと新たに200Kとなつた所
との間Aに凝縮していたH2Oはその蒸気圧が1
×10-3トールとなつてしまうため、再蒸発してし
まうことになる。そのため、排気中に上記した空
間の圧力が上昇して上記した不都合をもたらし、
可及的に真空装置gの圧力上昇をもたらして例え
ば安定したスパツタリングを行なえなくなる結果
となる。 Conventionally, as shown in the first diagram, a device of this type has a lower one-stage cylinder c extending upward from a refrigerator main body b in a right cylindrical pump case a;
an upper two-stage cylinder d, a cryopanel e extending from the top of the second-stage cylinder d downward to its outer periphery; and a shield f extending upward from the top of the first-stage cylinder c and surrounding the cryopanel e.
It is known that the pump has a wide buffer space between the pump case a and the shield f. The cryopanel e is cooled to 15-20K by the second stage cylinder d, and the shield f is cooled to 80K by the first stage cylinder c.
Cooled to ~130K. A pump with this configuration is
Among the gases such as sputtering gas and etching gas in the vacuum device g above it, gases that condense at extremely low temperatures are condensed on the cryopanel e, and other gases and water vapor with high condensation temperatures are stored in a shield provided with a baffle. The vacuum device g
The inside is evacuated to a high vacuum. However, there is some space between the pump case a and the shield f to block heat conduction from the pump case a to the shield f, and gas and water vapor from the vacuum device g pass through this space to the lower side. That is, it invades the buffer space below the shield f to prevent the pump internal pressure from rising, and condenses on the circumferential surface of the first-stage cylinder c. The gas and water vapor condensed on the circumferential surface re-evaporate when the temperature of the first-stage cylinder c rises due to an increase in the load on the vacuum device g, etc., resulting in an increase in pressure within the pump and inconveniences such as pressure instability. To explain further, various gases are used in the vacuum device g for processing such as CVD, dry etching, and sputtering.
Most of these gases have a vapor pressure of 100 K and less than 5 × 10 -3 Torr. On the other hand, the first stage cylinder c described above has a pump case a whose lower end is at room temperature (e.g. 20°C).
Because it is in contact with the
40K) and has a wide temperature gradient. Therefore, gas and water vapor that have entered the above space condense on the peripheral wall of the first stage cylinder c, which has a temperature corresponding to the respective vapor pressure, but when the temperature of the first stage cylinder c rises, some of the condensed material re-evaporates. do. For example, in Fig. 4, the first stage cylinder c is 40~
With a temperature gradient of 293K, when the pressure (partial pressure) of H 2 O is 1 × 10 -3 Torr, the vapor pressure of water is 1
H 2 O condenses on the peripheral wall of the cylinder c in the range (hatched area) having a temperature lower than the temperature corresponding to ×10 -3 Torr (approximately 200 K). However, when the temperature of the low-temperature part of the first-stage cylinder c rises to 80K due to an increase in the load on the vacuum device g or an external heat load, the temperature gradient of the first-stage cylinder c changes, and as shown in Figure 5, For example, the place where it was 200K until
The temperature rises to 220K, and between that point and the new 200K point, the H 2 O condensed at A has a vapor pressure of 1.
Since it becomes ×10 -3 torr, it will evaporate again. As a result, the pressure in the above-mentioned space increases during evacuation, causing the above-mentioned inconvenience.
The result is that the pressure in the vacuum device g increases as much as possible, making it impossible to perform stable sputtering, for example.
一方、1段シリンダの周壁に沿うようにポンプ
ケースをくびれさせ、シールドとポンプケースと
の間の空間を狭めることによりコンダクタンスを
小さくし、1段シリンダの周壁にガスを到達し難
くして周壁へのガスの凝縮を防ぐことも行なわれ
ており、例えば特開昭57−176372号公報にくびれ
たポンプケースを備えたクライオポンプが見られ
る。しかし、このようにポンプケースを1段シリ
ンダに沿わせても、熱負荷の変動に伴なう圧力変
動は小さくなるが、多少ともガスが狭いシールド
とポンプケースの間の空間に入り込んで1段シリ
ンダに凝縮することは防止できず、ポンプ入口の
バルブを閉めてポンプを止めたときに、該空間が
狭いためにポンプの内圧が第1図示の直円筒形の
ポンプケースのクライオポンプよりも高くなる不
都合を生じる。ポンプの内圧が高まると、通常は
クライオポンプに設けた安全弁からガスを放出し
てポンプの安全を維持するが、ガスが可燃性或い
は有毒性のものである場合には放出すると危険が
伴う。このような場合、ポンプケースが第1図示
のような直円筒形に形成され、緩衝空間が広く内
圧が余り高まらないクライオポンプが使用され
る。 On the other hand, by constricting the pump case along the circumferential wall of the first-stage cylinder and narrowing the space between the shield and the pump case, the conductance is reduced, making it difficult for gas to reach the circumferential wall of the first-stage cylinder. Efforts have also been made to prevent condensation of the gas. For example, a cryopump equipped with a constricted pump case can be seen in JP-A-57-176372. However, even if the pump case is placed along the first-stage cylinder in this way, pressure fluctuations due to changes in heat load will be reduced, but some gas will enter the narrow space between the shield and the pump case, causing the first-stage cylinder to Condensation in the cylinder cannot be prevented, and when the pump is stopped by closing the pump inlet valve, the internal pressure of the pump is higher than that of the cryopump with the right cylindrical pump case shown in Figure 1 because the space is narrow. This will cause some inconvenience. When the internal pressure of the pump increases, gas is normally released from a safety valve provided in the cryopump to maintain the safety of the pump, but if the gas is flammable or toxic, releasing it can be dangerous. In such a case, a cryopump is used in which the pump case is formed into a right cylindrical shape as shown in the first diagram, the buffer space is wide, and the internal pressure does not increase much.
従つて、ポンプケースとシールドとの間の緩衝
空間の大小は、ポンプ性能にとつて一長一短であ
る。 Therefore, the size of the buffer space between the pump case and the shield has advantages and disadvantages for pump performance.
本発明は、ポンプ停止時の内圧の上昇が小さ
く、熱負荷の変動に伴なう圧力不安定の小さいク
ライオポンプ装置を得ることを目的としたもの
で、ポンプケース内に、冷凍機本体から上方にの
びる下側の1段シリンダと、上側の2段シリンダ
とを備えると共に、該2段シリンダの頂部からそ
の外周下方にのびるクライオパネルと、該1段シ
リンダの頂部から上方へのびて該クライオパネル
の外周を囲むシールドとを備え、該ポンプケース
を直円筒形に形成してその底部と該シールドとの
間に広い緩衝空間を設けるようにしたものにおい
て、該ポンプケース内の該緩衝空間に、ポンプケ
ースの底面壁から上方にのび、該1段シリンダの
外周をこれと間隔を存して覆い且つ上端部が該シ
ールドの下方において該ポンプケース内に開放さ
れた室温壁を設けたことを特徴とする。 The purpose of the present invention is to obtain a cryopump device in which the increase in internal pressure when the pump is stopped is small and the pressure instability caused by fluctuations in heat load is small. A cryopanel that extends from the top of the second-stage cylinder to a lower outer circumference thereof, and a cryopanel that extends upward from the top of the first-stage cylinder. and a shield surrounding the outer periphery of the pump case, and the pump case is formed into a right cylindrical shape to provide a wide buffer space between the bottom of the pump case and the shield, in which the buffer space in the pump case includes: A room temperature wall is provided that extends upward from the bottom wall of the pump case, covers the outer periphery of the first-stage cylinder with a space therebetween, and has an open upper end in the pump case below the shield. shall be.
本発明の実施例を図面第2図に付説明する。 An embodiment of the present invention will be explained with reference to FIG. 2 of the drawings.
同図において、符号1はクライオポンプの直円
筒形のポンプケース、2は該ポンプケース1の下
側の冷凍機本体を示し、該ケース1には該冷凍機
本体2から上方にのびる下側の80〜130Kに冷却
される1段シリンダ3と上側の15〜20Kに冷却さ
れる2段シリンダ4とを備えると共に、該2段シ
リンダ4の頂部からその外周下方にのびるクライ
オパネル5と、該1段シリンダ3の頂部から該ク
ライオパネル5の外周を囲むシールド6とを備
え、該シールド6とポンプケース1の底面壁1a
との間に広い緩衝空間を設けて全体としてクライ
オポンプに構成されるようにした。図面で、3
a,4aは該1段シリンダ3及び該2段シリンダ
4の頂部の膨大する1段ステージ及び2段ステー
ジ、7はその上側のバツフル、8はクライオパネ
ルに連なる真空装置を示す。尚、該真空装置8内
では、CVD、ドライエツチング、スバツタリン
グ等の処理が行なわれ、そのために各種のガスが
該真空装置8内に供給される。更に該1段シリン
ダ3は、その下端の常温、例えば20℃からその上
端の80〜130Kの広い温度範囲を有する。 In the figure, reference numeral 1 indicates a right cylindrical pump case of the cryopump, 2 indicates a refrigerator main body on the lower side of the pump case 1, and the lower part of the cryopump extending upward from the refrigerator main body 2 is attached to the case 1. It comprises a first-stage cylinder 3 that is cooled to 80 to 130K and a second-stage cylinder 4 that is cooled to 15-20K on the upper side, and a cryopanel 5 that extends from the top of the second-stage cylinder 4 to the lower part of its outer circumference; A shield 6 surrounds the outer periphery of the cryopanel 5 from the top of the stage cylinder 3, and the shield 6 and the bottom wall 1a of the pump case 1 are connected to each other.
A wide buffer space was provided between the two to form a cryopump as a whole. In the drawing, 3
4a and 4a are the first stage and the second stage which expand at the tops of the first cylinder 3 and the second cylinder 4, 7 is a buffle above them, and 8 is a vacuum device connected to the cryopanel. Note that processes such as CVD, dry etching, and sputtering are performed within the vacuum apparatus 8, and various gases are supplied to the vacuum apparatus 8 for these purposes. Further, the first-stage cylinder 3 has a wide temperature range from normal temperature, for example, 20° C. at its lower end to 80 to 130 K at its upper end.
以上は従来のものと特に異ならず、該シールド
6とポンプケース1の底面壁1aとの間の広い緩
衝空間は前記したようにポンプ内圧の上昇の防止
作用に有効である反面、ガスが1段シリンダ3に
凝縮して圧力不安定の原因となる不都合を伴なう
が、本発明においては、該ポンプケース1の底面
壁1aとシールド6との間の緩衝空間内にその底
面壁1aから上方にのびて該1段シリンダ3の周
囲を間隔を存して覆い、その上端部がシールド6
の下方において該ポンプケース1内に開放された
室温壁9を備えるようにした。該室温壁9は、例
えば、該1段シリンダ3が約150Kから室温にな
る温度の高い部分を完全に覆う長さと、該1段シ
リンダ3の頂部よりも多少とも大きな直径を有す
る金属筒で製作される。 The above is not particularly different from the conventional one, and while the wide buffer space between the shield 6 and the bottom wall 1a of the pump case 1 is effective in preventing an increase in pump internal pressure as described above, the gas Although this is accompanied by the inconvenience of condensation in the cylinder 3 and causing pressure instability, in the present invention, in the buffer space between the bottom wall 1a of the pump case 1 and the shield 6, there is a extends to cover the first stage cylinder 3 with a gap, and its upper end is covered with a shield 6.
A room temperature wall 9 is provided which is open inside the pump case 1 below. The room temperature wall 9 is made of, for example, a metal cylinder having a length that completely covers the high temperature part of the first stage cylinder 3 where the temperature ranges from about 150K to room temperature, and a diameter somewhat larger than the top of the first stage cylinder 3. be done.
該室温壁9は、その下端がポンプケース1の底
面壁1aに接しており、上端は開放されているの
で、その全体はポンプケース1の温度即ち室温に
なり、これにガスや水蒸気が凝縮することがな
い。また、該室温壁9は1段シリンダ3の周囲を
囲むので、シールド6の下方の空間に浮遊するガ
スや水蒸気が該1段シリンダ3の室温壁9で囲ま
れた部分に入射して凝縮する確率は著しく少なく
なり、該1段シリンダ3に全体として凝縮するガ
スや水蒸気の量が減少する。 The lower end of the room temperature wall 9 is in contact with the bottom wall 1a of the pump case 1, and the upper end is open, so that the entire wall is at the temperature of the pump case 1, that is, the room temperature, and gas and water vapor are condensed thereon. Never. Further, since the room temperature wall 9 surrounds the first stage cylinder 3, gas and water vapor floating in the space below the shield 6 enters the part of the first stage cylinder 3 surrounded by the room temperature wall 9 and condenses. The probability is significantly reduced, and the amount of gas and water vapor that condenses in the first stage cylinder 3 as a whole is reduced.
その作動を説明するに、前記したように真空装
置8内のガスや水蒸気がポンプケース1内に導か
れたとき、その一部は該シールド6の外周の空間
を介してその下側の空間に侵入し、該空間内の1
段シリンダ3に凝縮する傾向を生じるが、本発明
の場合、該1段シリンダ3の外周にはガスや水蒸
気の凝縮しない室温となる室温壁9が設けられて
いるため、室温壁9で囲まれた該1段シリンダ3
の周面部分には、該室温壁9と該1段シリンダ3
の間の狭い〓間を通つてきた僅かな量のガス等が
凝縮するにとどまり、前記シールド6の下側の空
間に侵入したガス等は該室温壁9に阻まれて1段
シリンダ3へ入射凝縮することがない。 To explain its operation, as mentioned above, when the gas or water vapor in the vacuum device 8 is introduced into the pump case 1, a part of it passes through the space around the outer periphery of the shield 6 and enters the space below it. 1 in the space
This tends to condense in the stage cylinder 3, but in the case of the present invention, a room temperature wall 9 is provided around the outer periphery of the first stage cylinder 3 so that the room temperature is such that gas and water vapor do not condense. The first stage cylinder 3
The room temperature wall 9 and the first stage cylinder 3 are located on the peripheral surface of the cylinder.
A small amount of gas passing through the narrow space between the shields condenses, and the gas entering the space below the shield 6 is blocked by the room temperature wall 9 and enters the first stage cylinder 3. There is no condensation.
該室温壁9の上端とシールド6の間に存在する
多少の〓間から1段シリンダ3へ入射して凝縮す
るガスは僅かであり、しかもその上端付近には1
段シリンダ3に於ける低温部分が存在するため、
上記の〓間へ侵入しようとする例えば水蒸気は先
ず該低温部分にトラツプされてしまい、1段シリ
ンダ3の中間部分にまで到達して凝縮することは
少なくなる。従つて、真空装置8の熱負荷の増大
で1段シリンダ3の温度が上昇しても、該1段シ
リンダ3の中間部分から再蒸発する例えば水蒸気
の量は僅かですみ、その低温部分から蒸発しない
ので、クライオポンプの圧力の変動は小さくな
り、真空装置8の圧力変動を可及的に抑制するこ
とが出来る。また、該1段シリンダ3の中間部分
から多少再蒸発しても、上記〓間からその外部へ
水蒸気等が出るときに、上記低温部分でトラツプ
されるので、圧力の変動は少なくなる。更に、ク
ライオポンプと真空装置8との間をパルプにより
遮断してポンプの運転を停止したとき、温度上昇
のためにポンプ内のクライオパネル5、バツフル
7、シールド6及び1段シリンダ3に凝縮したガ
スが蒸発するが、底面壁1aとシールド6の間に
広い緩衝空間があるので、蒸発による内圧の上昇
は緩和され、ポンプ内のガスを外部に排出しなく
ても済むようになり、真空装置8内の可燃性ガス
や有毒ガスの排気に安全にクライオポンプを使用
できる。 Only a small amount of gas enters the first-stage cylinder 3 and condenses through the gap between the upper end of the room temperature wall 9 and the shield 6, and moreover, there is 1 gas near the upper end.
Since there is a low temperature part in stage cylinder 3,
For example, water vapor that tries to enter the above-mentioned space is first trapped in the low-temperature part, and is less likely to reach the middle part of the first-stage cylinder 3 and condense. Therefore, even if the temperature of the first-stage cylinder 3 rises due to an increase in the heat load of the vacuum device 8, the amount of water vapor that re-evaporates from the intermediate portion of the first-stage cylinder 3 is small, and only a small amount of water vapor evaporates from the low-temperature portion. Therefore, fluctuations in the pressure of the cryopump are reduced, and fluctuations in the pressure of the vacuum device 8 can be suppressed as much as possible. Further, even if some re-evaporation occurs from the intermediate portion of the first-stage cylinder 3, when water vapor or the like exits from the gap to the outside, it is trapped in the low-temperature portion, so pressure fluctuations are reduced. Furthermore, when the pump operation was stopped by blocking the gap between the cryopump and the vacuum device 8 with pulp, condensation occurred in the cryopanel 5, buffer 7, shield 6, and first-stage cylinder 3 inside the pump due to the temperature rise. Although the gas evaporates, there is a wide buffer space between the bottom wall 1a and the shield 6, so the increase in internal pressure due to evaporation is alleviated, and there is no need to discharge the gas inside the pump to the outside, so the vacuum device Cryopumps can be safely used to exhaust combustible and toxic gases inside 8.
尚、該室温壁9は、例えば第3図示のように上
下にフランジ9a,9bを備える形式とすること
も可能で、この場合、上方のフランジ9aはシー
ルド6に沿つて延び、コンダクタンスを小さく制
限するので、該シールド6の下側の空間内のガス
或いは水蒸気が室温壁9で覆われていない1段シ
リンダ3の周面に入射することが一層少なくな
り、凝縮量を更に少なく出来る。 Note that the room temperature wall 9 can also be provided with upper and lower flanges 9a and 9b as shown in the third figure, for example. In this case, the upper flange 9a extends along the shield 6 to limit the conductance to a small value. Therefore, the gas or water vapor in the space below the shield 6 is less likely to enter the peripheral surface of the first-stage cylinder 3 that is not covered by the room temperature wall 9, and the amount of condensation can be further reduced.
このように本発明によるときは、直円筒形のポ
ンプケースの底面壁とシールドとの間に広い緩衝
空間を有するクライオポンプに於いて、その1段
シリンダの外周にこれを囲繞する室温壁を設けた
ので、該1段シリンダの周囲へ侵入したガス等が
これに凝縮し再蒸発する量が少なくなり、排気中
に圧力上昇或は圧力不安定を小さくできて安定し
た圧力に真空装置を維持でき、広い緩衝空間を保
有しているのでポンプの運転を停止したときの内
圧の上昇も緩和されて凝縮したガスを外部へ放出
する必要がなく、可燃性ガスや有毒ガスの真空排
気を安定に行なえ、しかもその構成は簡単で廉価
に製作できる等の効果を有する。 As described above, according to the present invention, in a cryopump having a wide buffer space between the bottom wall of the right cylindrical pump case and the shield, a room temperature wall is provided around the outer periphery of the first stage cylinder. Therefore, the amount of gas that has entered around the first-stage cylinder condenses and re-evaporates is reduced, and the pressure rise or instability during exhaust can be reduced, making it possible to maintain the vacuum device at a stable pressure. Since it has a wide buffer space, the rise in internal pressure when the pump is stopped is alleviated, and there is no need to release condensed gas to the outside, allowing for stable vacuum evacuation of flammable and toxic gases. Moreover, the structure is simple and can be manufactured at low cost.
第1図は従来例の截断正面図、第2図は本発明
の実施例の截断正面図、第3図は本発明の他の実
施例の截断正面図、第4図及び第5図は第1図に
示した従来例の作動の説明図である。
1……ポンプケース、2……冷凍機本体、3…
…1段シリンダ、4……2段シリンダ、5……ク
ライオパネル、6……シールド、8……真空装
置、9……室温壁。
FIG. 1 is a cutaway front view of a conventional example, FIG. 2 is a cutaway front view of an embodiment of the present invention, FIG. 3 is a cutaway front view of another embodiment of the present invention, and FIGS. 4 and 5 are 2 is an explanatory diagram of the operation of the conventional example shown in FIG. 1. FIG. 1... Pump case, 2... Freezer body, 3...
...1st stage cylinder, 4...2nd stage cylinder, 5... Cryopanel, 6... Shield, 8... Vacuum device, 9... Room temperature wall.
Claims (1)
びる下側の1段シリンダと、上側の2段シリンダ
とを備えると共に、該2段シリンダの頂部からそ
の外周下方にのびるクライオパネルと、該1段シ
リンダの頂部から上方へのびて該クライオパネル
の外周を囲むシールドとを備え、該ポンプケース
を直円筒形に形成してその底部と該シールドとの
間に広い緩衝空間を設けるようにしたものにおい
て、該ポンプケース内の該緩衝空間に、ポンプケ
ースの底面壁から上方にのび、該1段シリンダの
外周をこれと間隔を存して覆い且つ上端部が該シ
ールドの下方において該ポンプケース内に開放さ
れた室温壁を設けたことを特徴とするクライオポ
ンプ装置。1 Inside the pump case, a lower first-stage cylinder extending upward from the refrigerator main body and an upper two-stage cylinder are provided, and a cryopanel extending from the top of the second-stage cylinder to the lower outer circumference thereof; A shield extending upward from the top of the cylinder and surrounding the outer periphery of the cryopanel, the pump case being formed into a right cylindrical shape to provide a wide buffer space between the bottom and the shield. , extends upward from the bottom wall of the pump case into the buffer space in the pump case, covers the outer periphery of the first stage cylinder with a gap therebetween, and has an upper end inserted into the pump case below the shield. A cryopump device characterized by having an open room temperature wall.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11184783A JPS606086A (en) | 1983-06-23 | 1983-06-23 | Cryopump device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11184783A JPS606086A (en) | 1983-06-23 | 1983-06-23 | Cryopump device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS606086A JPS606086A (en) | 1985-01-12 |
JPH0380992B2 true JPH0380992B2 (en) | 1991-12-26 |
Family
ID=14571654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11184783A Granted JPS606086A (en) | 1983-06-23 | 1983-06-23 | Cryopump device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS606086A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0718409B2 (en) * | 1985-12-20 | 1995-03-06 | 日電アネルバ株式会社 | Cryopump |
US5156007A (en) * | 1991-01-30 | 1992-10-20 | Helix Technology Corporation | Cryopump with improved second stage passageway |
US6187864B1 (en) * | 1997-03-13 | 2001-02-13 | Acushnet Company | Golf balls comprising blends of polyamides and ionomers |
JP2011153629A (en) * | 2011-05-17 | 2011-08-11 | Sumitomo Heavy Ind Ltd | Cryopump |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180083A (en) * | 1983-03-21 | 1984-10-12 | エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド | Cryopump which can be baked out |
-
1983
- 1983-06-23 JP JP11184783A patent/JPS606086A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180083A (en) * | 1983-03-21 | 1984-10-12 | エア・プロダクツ・アンド・ケミカルズ・インコ−ポレイテツド | Cryopump which can be baked out |
Also Published As
Publication number | Publication date |
---|---|
JPS606086A (en) | 1985-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0079960B1 (en) | Improved cryopump | |
US4514204A (en) | Bakeable cryopump | |
JPH0380992B2 (en) | ||
JP4500265B2 (en) | Cryopump | |
US4336690A (en) | Cryogenic pump with radiation shield | |
JPH0718410B2 (en) | Cryopump | |
US4454722A (en) | Cryopump | |
US11421670B2 (en) | Cryopump with enhanced frontal array | |
JP2022117029A (en) | cryopump | |
EP0126909B1 (en) | Cryopump with rapid cooldown and increased pressure stability | |
JP3062706B2 (en) | Cryopump with low temperature trap | |
TWI614406B (en) | Cryopump | |
JPH02502559A (en) | low temperature sorption pump | |
JPS606085A (en) | Cryopump device | |
JP3604228B2 (en) | Vacuum exhaust device | |
JPH10131858A (en) | Cryopump and evacuation method | |
KR102342229B1 (en) | cryopump | |
JPH025773A (en) | Cyropump | |
EP0255965B2 (en) | Refrigerant fluid trap for vacuum evaporators for the deposit of thin metal films | |
US2737779A (en) | Condensable vapor extraction apparatus | |
JPS60228779A (en) | Improvement in cryogenerator pump | |
JP3052096B2 (en) | Cryopump | |
JPH04187873A (en) | Evacuation device | |
BE332983A (en) | Device for collecting and condensing mercury vapor rising from the cathode of a mercury vapor rectifier | |
JPS61272366A (en) | Vacuum apparatus |