JPH0380864B2 - - Google Patents

Info

Publication number
JPH0380864B2
JPH0380864B2 JP58095788A JP9578883A JPH0380864B2 JP H0380864 B2 JPH0380864 B2 JP H0380864B2 JP 58095788 A JP58095788 A JP 58095788A JP 9578883 A JP9578883 A JP 9578883A JP H0380864 B2 JPH0380864 B2 JP H0380864B2
Authority
JP
Japan
Prior art keywords
content
corrosion resistance
ions
less
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58095788A
Other languages
Japanese (ja)
Other versions
JPS59222559A (en
Inventor
Haruhiko Kajimura
Hiroo Nagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9578883A priority Critical patent/JPS59222559A/en
Publication of JPS59222559A publication Critical patent/JPS59222559A/en
Publication of JPH0380864B2 publication Critical patent/JPH0380864B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐食性にすぐれたオーステナイトス
テンレス鋼、特に核燃料再処理装置の構造材料と
してすぐれた耐食性を示すオーステナイトステン
レス鋼に関する。 従来、軽水炉の使用済み核燃料の再処理の際に
みられるような高温の硝酸環境下で使用される材
料としては、25%Cr−25%Ni系の材料(例:
URANUS65……商品名)が用いられている。し
かし、硝酸中にCr6+イオンが存在すると、それら
のイオンが酸化剤として材料に作用して粒界腐食
が著しく加速することが知られているように、上
述のような環境においては慣用の25%Cr−20%
Ni系の材料でもまだ耐食性が十分ではない場合
がある。 軽水炉を利用した原子力発電がかなり普及した
現在、多量の使用済み核燃料を再処理する必要が
生じており、したがつて、長期間の連続使用に耐
えるすぐれた耐食性を備えた材料の開発が望まれ
ている。 かかる要望を満たす材料としては以下のような
特性を備えていることが必要である。 すなわち、軽水炉使用済み核燃料を再処理する
際に見られるような高温硝酸中で使用される材料
では、硝酸に対する耐食性が満足されなければな
らないのはもちろんのこと、Cr6+イオンや核燃料
から混入した酸化剤(Ru等)による腐食電位の
上昇に伴う腐食速度の増加、粒界腐食の加速現像
に対してもより優れた耐食性を具備していなけれ
ばならない。しかも、装置あるいは部材の組立て
に溶接施行が行われることを考慮した場合、溶接
部の鋭敏化による耐食性劣化を極力押えることも
必要である。 かくして、本発明の目的とするところは、すぐ
れた溶接性とともに、Cr6+イオンの存在下でもす
ぐれた耐食性を示す、特に使用済み核燃料の再処
理設備用構造材として有用なオーステナイトステ
ンレス鋼を提供することである。 ここに、本発明者らは、従来の25%Cr−20%
Ni系の合金において通常0.020%程度含有されて
いたP含有量を0.005%以下に制限することによ
り、溶体化および鋭敏化の際のPの粒界偏析を押
え、Cr6+イオンの存在下でもすぐれた耐食性を示
すことを見い出し、さらにCr、Ni量を制限し、
Cを低減し、またNbを適量添加することにより
鋭敏化の際におけるCの安定化を図つたオーステ
ナイトステンレス鋼が上述のような目的を達成で
きることを見い出して本発明を完成したものであ
る。 よつて、本発明は 重量%で、 C:0.03%未満、Si:0.4%以下、Mn:2.0%以
下、Cr:15〜30%、Ni:7〜28%、P:0.005%
以下、Nb:Nb(%)≧10C(%)、ただし0.4%以
下、 残部的実質的にFeよりなる、耐硝酸性オース
テナイトステンレス鋼である。 本発明において合金組成を上述のように制限し
た理由は次の通りである。 C:Cは鋭敏化を促進するので耐粒界腐食性を
向上させるためにはC含有量はできるだけ低減す
ることが望ましい。本発明にあつては、0.03%以
上となると粒界腐食性が悪くなるので、本発明に
おいてC含有量は0.03%未満とする。さらに望ま
しくは0.01%以下である。 Si:Siは脱酸材として、および硝酸中耐食性の
改善のため0.4%以下含有させる。硝酸中の耐食
性の点からは0.4%を越えるとSiがステンレスの
溶解反応を促進し、腐食速度および粒界腐食とも
に大きくなる。 Mn:Mnも脱酸剤として2.0%以下含有させる。 Cr:Crは一般の耐食性ばかりでなく硝酸に対
する耐食性を確保するために、15%以上は必要で
ある。また、Cr含有量の高い方が耐食性は良い
が、しかし30%を越えるとその耐食性向上効果が
飽和される。また、多量に加えるとオーステナイ
ト組織を確保するためNi含有量を高めることに
よる加工性の劣化およびコストアツプが生じるた
め、本発明にあつてはCr含有量の上限を30%と
する。 Ni:オーステナイト組織にするために必要な
量として、Ni含有量は7〜28%とする。 Nb:Cを安定化させるためC含有量の10倍以
上含有させる(Nb/C10)。ただし、溶接性を
考慮し、0.4%以下とする。 P:本発明者らの知見によれば、耐粒界腐食性
を改善するために低い方が望ましく、したがつ
て、本発明にあつては、特にP含有量は0.005%
以下とする。P:0.005%以下では耐粒界腐食性
が通常Pの含有量のPを含む材料の2倍以上とな
る。 次に、実施例によつて本発明をさらに説明す
る。 実施例 第1表に合金組成を示す各供試材について、溶
接時の熱影響部での鋭敏化を想定し、1100℃×30
分加熱×水冷、次いで650℃×30時間加熱の熱処
理を行つて鋭敏化を行つた。かくして得られた供
試材を用いて、Cr6+イオンの存在下での硝酸溶液
中の耐食性試験を行つた。この耐食性試験は、
8N−HNO3+0.3g/ Cr6+イオンおよび8N−
HNO3+0.6g/ Cr6+イオンのCr6+イオン含
有硝酸溶液を用い、その沸騰溶液に上記各供試材
を48時間浸漬して行つた。 このときの耐食性試験の結果を腐食速度および
粒界腐食深さについてグラフにまとめて第1図な
いし第6図に示す。図中の番号は第1表の合金番
号を示す。 第1図のグラフはNi含有量を20%にし、Cr量
を変化させたときの腐食速度の変化を示したもの
であり、供試材としては、0.01%C−20%Ni−
0.25%Nbの組成のものを使い、これを0.3g/
のCr6+イオンを含む硝酸溶液に浸漬した。図示の
結果からも明らかなようにCr含有量15%未満で
は、耐食性が劣化し、一方、30%を越えるとCr
の効果が飽和している。 第2図のグラフは、同じく0.3g/のCr6+
オンを含む硝酸溶液中での粒界腐食深さに及ぼす
C含有量の影響を明らかにするが、Cが0.03%よ
り含有量がふえると耐食性が著しく劣化する。な
お、No.10〜No.13の鋼は参考例として示すものであ
つて、供試材として25%Cr−20%NiでNbを含ま
ないものを使つたが、Nbはすでに述べたように
Cの安定化作用があり、したがつて、Nbを添加
することによつて耐粒界腐食性は一層改善される
ことが分かる。しかし、Nbを添加し、P量を低
減した鋼においてもC量が0.03%以上となると腐
食深さは大きくなる。No.10〜No.13の例でP含有量
は比較的高く、後述するP含有量の低減による効
果と比較してみると、本発明においてC含有量の
低減だけでは十分でないことが分かる。 第3図および第4図は、0.005%Cの供試材
(0.005%C−25%Cr−20%Ni−0.25%Nb)での
P含有量の腐食速度および粒界腐食深さに及ぼす
影響を示したものであり、P含有量が高くなるに
つれてCr6+イオンの増加に対して耐食性の劣化が
激しいが、しかし、P含有量を0.005%以下にす
るとCr6+イオンの増加による影響はほとんどなく
なる。なお、図中、黒丸はCr6+イオンを0.6g/
含む場合を、白丸は0.3g/含む場合をそれ
ぞれ示す。 次に、第5図および第6図はC含有量が0.015
%の供試材についてのP含有量の影響を示したも
のであり、0.005%以下にPを規制することによ
りCr6+イオンの増加による耐食性劣化はほとんど
なくなるのが分かる。 第7図は、Cr6+イオンを0.3g/含む硝酸中
での粒界腐食深さに及ぼすNbの影響を示したも
のである。0.015%C材ではNbの効果は発揮され
るが、Pが0.02%と高いためその耐食性は十分で
はない。0.005%とC量を低め、Pも0.005%とし
た材料でもNbが効果があり、耐粒界腐食性を高
めるためにはCをできるだけ低め、しかもPを
0.005%以下とし、さらにNbを添加することが必
要であることがわかる。
The present invention relates to an austenitic stainless steel that has excellent corrosion resistance, and particularly to an austenitic stainless steel that exhibits excellent corrosion resistance as a structural material for nuclear fuel reprocessing equipment. Conventionally, 25% Cr-25% Ni-based materials (e.g.
URANUS65...product name) is used. However, as it is known that the presence of Cr 6+ ions in nitric acid acts on the material as an oxidizing agent, significantly accelerating intergranular corrosion. 25%Cr−20%
Even Ni-based materials may not have sufficient corrosion resistance. Now that nuclear power generation using light water reactors has become widespread, there is a need to reprocess large amounts of spent nuclear fuel.Therefore, there is a desire to develop materials with excellent corrosion resistance that can withstand long-term continuous use. ing. A material that satisfies these demands must have the following properties. In other words, materials used in high-temperature nitric acid, such as those found in the reprocessing of spent nuclear fuel from light water reactors, must not only have corrosion resistance to nitric acid, but also corrosion resistance due to Cr 6+ ions and nuclear fuel contamination. It must also have better corrosion resistance against increased corrosion rate due to increased corrosion potential due to oxidizing agents (Ru, etc.) and accelerated development of intergranular corrosion. Furthermore, considering that welding is performed in the assembly of devices or members, it is also necessary to suppress deterioration of corrosion resistance due to sensitization of welded parts as much as possible. Thus, an object of the present invention is to provide an austenitic stainless steel that exhibits excellent weldability and excellent corrosion resistance even in the presence of Cr 6+ ions, and is particularly useful as a structural material for spent nuclear fuel reprocessing equipment. It is to be. Here, the present inventors have developed the conventional 25% Cr-20%
By limiting the P content, which is normally around 0.020% in Ni-based alloys, to 0.005% or less, grain boundary segregation of P during solution treatment and sensitization is suppressed, and even in the presence of Cr 6+ ions, We discovered that it exhibits excellent corrosion resistance, and furthermore, by limiting the amount of Cr and Ni,
The present invention was completed by discovering that an austenitic stainless steel with reduced C and the addition of an appropriate amount of Nb to stabilize C during sensitization can achieve the above objectives. Therefore, the present invention has the following properties by weight: C: less than 0.03%, Si: 0.4% or less, Mn: 2.0% or less, Cr: 15-30%, Ni: 7-28%, P: 0.005%
Hereinafter, Nb: Nb (%) ≧ 10C (%), but not more than 0.4%, and is a nitric acid-resistant austenitic stainless steel with the remainder substantially composed of Fe. The reason why the alloy composition is limited as described above in the present invention is as follows. C: Since C promotes sensitization, it is desirable to reduce the C content as much as possible in order to improve intergranular corrosion resistance. In the present invention, the C content is set to be less than 0.03%, since intergranular corrosion deteriorates when the C content exceeds 0.03%. More preferably, it is 0.01% or less. Si: Si is contained at 0.4% or less as a deoxidizer and to improve corrosion resistance in nitric acid. From the viewpoint of corrosion resistance in nitric acid, if Si exceeds 0.4%, the dissolution reaction of stainless steel will be promoted, and both the corrosion rate and intergranular corrosion will increase. Mn: Mn is also included as a deoxidizing agent in an amount of 2.0% or less. Cr: 15% or more of Cr is required to ensure not only general corrosion resistance but also corrosion resistance against nitric acid. Further, the higher the Cr content, the better the corrosion resistance, but if it exceeds 30%, the effect of improving corrosion resistance is saturated. Furthermore, if added in a large amount, the increase in Ni content to ensure an austenitic structure will cause deterioration in workability and increase in cost, so in the present invention, the upper limit of the Cr content is set at 30%. Ni: The Ni content is set to 7 to 28% as the amount necessary to form an austenitic structure. Nb: In order to stabilize C, it is contained at least 10 times the C content (Nb/C10). However, considering weldability, the content should be 0.4% or less. P: According to the findings of the present inventors, a lower P content is desirable in order to improve intergranular corrosion resistance. Therefore, in the present invention, the P content is particularly 0.005%.
The following shall apply. When P: 0.005% or less, the intergranular corrosion resistance is more than twice that of a material containing the normal P content. Next, the present invention will be further explained by examples. Example For each test material whose alloy composition is shown in Table 1, 1100℃×30
Sensitization was carried out by heating for 1 minute x water cooling, then heating at 650°C for 30 hours. Using the thus obtained test material, a corrosion resistance test in a nitric acid solution in the presence of Cr 6+ ions was conducted. This corrosion resistance test
8N−HNO 3 +0.3g/ Cr 6+ ion and 8N−
A nitric acid solution containing Cr 6+ ions (HNO 3 +0.6 g/Cr 6+ ions) was used, and each of the above test materials was immersed in the boiling solution for 48 hours. The results of the corrosion resistance test at this time are summarized in graphs regarding corrosion rate and intergranular corrosion depth, and are shown in FIGS. 1 to 6. The numbers in the figure indicate the alloy numbers in Table 1. The graph in Figure 1 shows the change in corrosion rate when the Ni content is 20% and the Cr content is changed.
Use one with a composition of 0.25%Nb, and add 0.3g/
Cr 6+ ions in a nitric acid solution. As is clear from the results shown, when the Cr content is less than 15%, corrosion resistance deteriorates, while when it exceeds 30%, the Cr content is lower than 15%.
The effect of is saturated. The graph in Figure 2 also reveals the effect of C content on intergranular corrosion depth in a nitric acid solution containing 0.3 g/Cr 6+ ions, but the C content is higher than 0.03%. Corrosion resistance deteriorates significantly. Steels No. 10 to No. 13 are shown as reference examples, and the test materials used were 25% Cr-20% Ni and did not contain Nb. It can be seen that C has a stabilizing effect, and therefore, the intergranular corrosion resistance is further improved by adding Nb. However, even in steel with Nb added and P content reduced, the corrosion depth increases when the C content is 0.03% or more. In Examples No. 10 to No. 13, the P content is relatively high, and when compared with the effect of reducing the P content, which will be described later, it can be seen that reducing the C content alone is not sufficient in the present invention. Figures 3 and 4 show the effect of P content on the corrosion rate and intergranular corrosion depth in 0.005%C test material (0.005%C-25%Cr-20%Ni-0.25%Nb). As the P content increases, the corrosion resistance deteriorates more severely due to the increase in Cr 6+ ions, but when the P content is lower than 0.005%, the effect of the increase in Cr 6+ ions becomes It almost disappears. In addition, in the figure, the black circles represent Cr 6+ ions at 0.6g/
White circles indicate 0.3g/containing case. Next, in Figures 5 and 6, the C content is 0.015.
% of the sample material, and it can be seen that by regulating P to 0.005% or less, corrosion resistance deterioration due to an increase in Cr 6+ ions is almost eliminated. FIG. 7 shows the influence of Nb on the intergranular corrosion depth in nitric acid containing 0.3 g/Cr 6+ ions. In the 0.015% C material, the effect of Nb is exhibited, but the corrosion resistance is not sufficient because the P content is as high as 0.02%. Nb is effective even in materials with a low C content of 0.005% and a P content of 0.005%.In order to improve intergranular corrosion resistance, it is necessary to keep the C content as low as possible and the P content as low as possible.
It can be seen that it is necessary to set the content to 0.005% or less and further add Nb.

【表】 (注) *:本発明の範囲外
[Table] (Note) *: Outside the scope of the present invention

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第7図は本発明の実施例における
耐食性試験の結果をそれぞれまとめて示すグラフ
である。
FIGS. 1 to 7 are graphs summarizing the results of corrosion resistance tests in Examples of the present invention.

【特許請求の範囲】[Claims]

1 重量比で、C0.12%を超え0.20%以下、Si0.20
〜1.00%、Mn0.30〜1.00%、Ni0.30〜1.50%、
Cr9.5〜13.0%、Mo0.50〜1.50%、V0.15〜0.30
%、Nb0.05〜0.15%、N0.04〜0.08%を含み、さ
らにW0.5〜2.0%およびTa0.01〜0.10%を含み、
残部がFeおよび付随的不純物から成ることを特
徴とする、高クロム耐熱鋳鋼。
1 Weight ratio: C more than 0.12% and less than 0.20%, Si 0.20
~1.00%, Mn0.30~1.00%, Ni0.30~1.50%,
Cr9.5~13.0%, Mo0.50~1.50%, V0.15~0.30
%, Nb0.05~0.15%, N0.04~0.08%, further containing W0.5~2.0% and Ta0.01~0.10%,
A high chromium heat-resistant cast steel characterized by the balance consisting of Fe and incidental impurities.

JP9578883A 1983-06-01 1983-06-01 Austenitic stainless steel with superior corrosion resistance Granted JPS59222559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9578883A JPS59222559A (en) 1983-06-01 1983-06-01 Austenitic stainless steel with superior corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9578883A JPS59222559A (en) 1983-06-01 1983-06-01 Austenitic stainless steel with superior corrosion resistance

Publications (2)

Publication Number Publication Date
JPS59222559A JPS59222559A (en) 1984-12-14
JPH0380864B2 true JPH0380864B2 (en) 1991-12-26

Family

ID=14147191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9578883A Granted JPS59222559A (en) 1983-06-01 1983-06-01 Austenitic stainless steel with superior corrosion resistance

Country Status (1)

Country Link
JP (1) JPS59222559A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2420598C1 (en) * 2007-04-27 2011-06-10 Кабусики Кайся Кобе Сейко Се Austenite stainless steel of high resistance to inter-crystalline corrosion and corrosion cracking under load and procedure for production of material out of austenite stainless steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027712A (en) * 1973-07-13 1975-03-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027712A (en) * 1973-07-13 1975-03-22

Also Published As

Publication number Publication date
JPS59222559A (en) 1984-12-14

Similar Documents

Publication Publication Date Title
JP2000034546A (en) Austenitic stainless steel reduced in nickel content and excellent in corrosion resistance
JPH0471988B2 (en)
EP0135321B1 (en) Austenitic stainless steel with improved resistance to corrosion by nitric acid
JPS59222563A (en) Austenitic stainless steel with superior corrosion resitance
JPH0380864B2 (en)
US3486885A (en) Stainless steel alloy with low phosphorus content
JP2007177259A (en) Austenitic stainless steel for nuclear power use, and its manufacturing method
JPS6313692A (en) Wire for welding austenitic stainless steel
JPS59222562A (en) Austenitic stainless steel with superior corrosion resistance
US3615369A (en) Austenitic stainless steels
JPH0285341A (en) Corrosion-resistant stainless steel having low ion-emitting speed
JPS6284895A (en) Wire for mig arc welding for steel products for nuclear reactor and its production
JP3237486B2 (en) Stainless steel with excellent thermal neutron absorption capacity
JPH0336239A (en) Austenitic iron-base alloy
Votinov et al. Vanadium alloys as structural materials for fusion reactor blanket
JPH0132290B2 (en)
JPS592736B2 (en) Cr↓-Mo steel for pressure vessels
JPH0445575B2 (en)
JPH0362783B2 (en)
JPS6289845A (en) Austenitic stainless steel excellent in neutron irradiation embrittlement-resisting property
JPH0387335A (en) Ferritic steel for fusion reactor excellent in corrosion resistance
JPH0425342B2 (en)
Smith et al. VANADIUM ALLOYS
JPH01268848A (en) Equipment member excellent in nitric acid resistance
JPH06228709A (en) Austenitic iron-base alloy with irradiation resistance