JPH06228709A - Austenitic iron-base alloy with irradiation resistance - Google Patents

Austenitic iron-base alloy with irradiation resistance

Info

Publication number
JPH06228709A
JPH06228709A JP5016335A JP1633593A JPH06228709A JP H06228709 A JPH06228709 A JP H06228709A JP 5016335 A JP5016335 A JP 5016335A JP 1633593 A JP1633593 A JP 1633593A JP H06228709 A JPH06228709 A JP H06228709A
Authority
JP
Japan
Prior art keywords
atom
iron
chromium
atomic
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5016335A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kodama
光弘 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP5016335A priority Critical patent/JPH06228709A/en
Publication of JPH06228709A publication Critical patent/JPH06228709A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To provide an austenitic iron-base alloy suitable for nuclear reactor equipment material and improved in intergranular corrosion cracking resistance. CONSTITUTION:In an austenitic stainless steel, as austenitic stainless steel of ordinary purity, having a composition consisting of, by weight, 10.0-18.0% nickel, 16.0-18.0% chromium, 2.0-3.0% molybdenum, <=0.03% carbon, <=2.0% manganese, <=0.01% phosphorus, <=0.005% sulfur, <=0.5% silicon, and the balance essentially iron, respective amounts of nickel, chromium, molybdenum, manganese, and iron are regulated so that the electron hole concentration, represented by (electron hole concentration)=[0.66Xnickel(atomic %)+2.66Xiron(atomic %)+3.66 Xmanganese(atomic %)+4.66X(chromium(atomic %)+molybdenum (Atomic %)]divided by 100, becomes <=2.75. By this method, austenite phase can be stabilized and intergranular corrosion resistance to irradiation can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はオーステナイト鉄基合金
に係り、特に原子炉炉内機器に適した耐食性に優れたオ
ーステナイト鉄基合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an austenitic iron-base alloy, and more particularly to an austenitic iron-base alloy suitable for reactor internal equipment and having excellent corrosion resistance.

【0002】[0002]

【従来の技術】オーステナイト系ステンレス鋼製制御
棒、炉内計装管等の原子炉炉内機器は、高温純水という
環境に置かれるうえに、他の原子炉構成材料に比べて比
較的高い中性子照射を受けている。一方、高温純水中で
オーステナイト系ステンレス鋼は、粒界応力腐食割れ
(IGSCC)を起こすことがある。IGSCCの主た
る材料側の因子は、溶接などの熱サイクルによる粒界炭
化物の形成とそれに伴う粒界近傍におけるクロム欠乏層
の形成、すなわち、溶接鋭敏化である。しかしながら、
鋭敏化が全く起こっていない溶体化オーステナイト系ス
テンレス鋼においても、照射を受けた場合、非照射材に
比べて高い粒界腐食割れ感受性を示すという報告も出さ
れている。
2. Description of the Related Art Reactor internal equipment such as austenitic stainless steel control rods and instrumentation tubes are placed in an environment of high temperature pure water and are relatively expensive as compared with other constituent materials of the reactor. It is receiving neutron irradiation. On the other hand, austenitic stainless steel in high temperature pure water may cause intergranular stress corrosion cracking (IGSCC). The main factor on the material side of IGSCC is the formation of grain boundary carbides due to thermal cycles such as welding and the accompanying formation of a chromium depletion layer near the grain boundaries, that is, welding sensitization. However,
It has also been reported that solution-exposed austenitic stainless steel, which has not been sensitized at all, exhibits higher intergranular corrosion cracking susceptibility when irradiated, as compared with the non-irradiated material.

【0003】照射による材料への影響としては、照射に
よって引き起こされる照射誘起偏析により、Si(ケイ
素)およびP(リン)等が濃縮したり、Cr(クロム)
が粒界で欠乏することにより粒界の耐食性が低下するこ
とが考えられる。なお、照射によるクロム欠乏層の形成
は溶接鋭敏化とは異なり粒界炭化物の形成は伴わない。
The influence of irradiation on materials is that irradiation-induced segregation causes concentration of Si (silicon) and P (phosphorus) and Cr (chromium).
It is conceivable that the corrosion resistance of the grain boundary is reduced due to the lack of slag at the grain boundary. The formation of a chromium-deficient layer by irradiation does not involve the formation of grain boundary carbides, unlike welding sensitization.

【0004】高純度オーステナイト系ステンレス鋼は、
上記因子のうち不純物元素の濃縮に着目し、不純物元素
量を限定することにより高照射を受けた場合でも耐粒界
腐食割れ性の優れた性能を有することを目的として開発
されたものである。なお、この種の技術に関する文献と
して、例えば、「オーステナイト鋼の粒界腐食」(J.S.
Armijo : Intergranular Corrosion of Nonsensitized
Austenitic Steels,Corrosion vol.24 p.24 (1968))
、あるいは「BWRおよびPWR炉心におけるオース
テナイト系ステンレス鋼およびNi基合金の変形特性」
(F.Garazarolli et al. : Deformability of Austeniti
c Stainless Steel and Ni-base Alloy inthe core of
a Boilling and a Pressurized Water Reactor, Proc.
Int. Symp. Environmental Degradation of Materials
in Nuclear System-Water Reactors, Montery, Cal. U.
S.A., Sep. p.442 (1983)) が挙げられる。
High-purity austenitic stainless steel is
Focusing on the concentration of impurity elements among the above factors, it was developed for the purpose of having excellent performance of intergranular corrosion cracking resistance even when high irradiation is performed by limiting the amount of impurity elements. In addition, as a document related to this type of technology, for example, “Grain boundary corrosion of austenitic steel” (JS
Armijo: Intergranular Corrosion of Nonsensitized
Austenitic Steels, Corrosion vol.24 p.24 (1968))
, Or “Deformation characteristics of austenitic stainless steels and Ni-based alloys in BWR and PWR cores”
(F. Garazarolli et al .: Deformability of Austeniti
c Stainless Steel and Ni-base Alloy in the core of
a Boilling and a Pressurized Water Reactor, Proc.
Int. Symp. Environmental Degradation of Materials
in Nuclear System-Water Reactors, Montery, Cal. U.
SA, Sep. p. 442 (1983)).

【0005】また、照射によるクロム欠乏層の形成の阻
止については、ステンレス鋼中でクロムよりも原子半径
が大きい元素を添加することにより、照射によって生成
する過剰の原子空孔をトラップして粒界におけるクロム
欠乏を抑制するという方法が報告されている(特開平2
−4945号)。
In order to prevent the formation of a chromium deficient layer by irradiation, an element having a larger atomic radius than that of chromium in stainless steel is added to trap excess atomic vacancies generated by irradiation and to cause grain boundaries. Has been reported to suppress chromium deficiency in Japan (Japanese Patent Application Laid-Open No. HEI-2)
-4945).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記オ
ーステナイト系ステンレス鋼はいずれも、必ずしも所期
の目的どおりには耐粒界腐食割れ性が改善されない場合
があることが明らかになった。この原因として、照射に
よって生成する過剰の格子欠陥によりオーステナイト相
が不安定になり耐食性が低下すると考えられる。また、
応力腐食割れのように応力が負荷される場合、その傾向
は顕著になると予想される。
However, it has been clarified that the intergranular corrosion cracking resistance of all of the above austenitic stainless steels may not always be improved as intended. It is considered that this is because the austenite phase becomes unstable due to excessive lattice defects generated by irradiation, and the corrosion resistance decreases. Also,
When stress is applied like stress corrosion cracking, the tendency is expected to become remarkable.

【0007】本発明は上記の状況に鑑みなされたもの
で、通常純度オーステナイト系ステンレス鋼において照
射によるオーステナイト相の不安定化を阻止することに
より、耐粒界腐食割れ性を向上できるオーステナイト鉄
基合金を提供することを目的としたものである。
The present invention has been made in view of the above circumstances, and in an ordinary-purity austenitic stainless steel, an austenite iron base alloy capable of improving intergranular corrosion cracking resistance by preventing destabilization of the austenite phase by irradiation. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】上記目的は、ニッケル1
0.0〜18.0重量%、クロム16.0〜18.0重
量%、モリブデン2.0〜3.0重量%、炭素0.03
重量%以下、マンガン2.0重量%以下、リン0.01
重量%以下、硫黄0.005重量%以下、ケイ素0.5
重量%以下、残部が主として鉄からなるオーステナイト
系ステンレス鋼において、次式で示される電子空孔濃度
が2.75以下になるようにニッケル、クロム、モリブ
デン、マンガンおよび鉄の量を調整することによって達
成される。 電子空孔濃度={0.66×ニッケル原子%+2.66×鉄原子
%+3.66×マンガン原子%+4.66×(クロム原子%+モ
リブデン原子%)}÷100
The above-mentioned object is to achieve nickel 1
0.0-18.0 wt%, chromium 16.0-18.0 wt%, molybdenum 2.0-3.0 wt%, carbon 0.03
Weight% or less, manganese 2.0 weight% or less, phosphorus 0.01
Wt% or less, sulfur 0.005 wt% or less, silicon 0.5
By adjusting the amounts of nickel, chromium, molybdenum, manganese, and iron so that the electron vacancy concentration represented by the following formula is 2.75 or less in an austenitic stainless steel whose weight ratio is less than or equal to and the balance is mainly iron To be achieved. Electron vacancy concentration = {0.66 x nickel atom% + 2.66 x iron atom% + 3.66 x manganese atom% + 4.66 x (chromium atom% + molybdenum atom%)} ÷ 100

【0009】[0009]

【作用】Ni 10.0〜18.0重量%、Cr 1
6.0〜18.0重量%、Mo2.0〜3.0重量%、
C 0.03重量%以下、Mn 2.0重量%以下、P
0.01重量%以下、S 0.005重量%以下、Si
0.5重量%以下、残部が主としてFeからなる通常
純度のオーステナイト系ステンレス鋼において、上記式
で示した電子空孔濃度が2.75以下になるようにニッ
ケル、クロム、モリブデン、マンガンおよび鉄を調整す
ることにより、母相のオーステナイト相を安定化させる
ことができる。
Function: Ni 10.0-18.0 wt%, Cr 1
6.0-18.0 wt%, Mo 2.0-3.0 wt%,
C 0.03 wt% or less, Mn 2.0 wt% or less, P
0.01 wt% or less, S 0.005 wt% or less, Si
In an austenitic stainless steel of 0.5% by weight or less and the balance mainly consisting of Fe, nickel, chromium, molybdenum, manganese and iron are added so that the electron vacancy concentration shown by the above formula becomes 2.75 or less. By adjusting, the austenite phase of the mother phase can be stabilized.

【0010】したがって本発明のオーステナイト鉄基合
金は照射によるオーステナイト相の不安定化が阻止さ
れ、耐食性を向上することができる。相の不安定化は応
力が負荷される場合に顕著なので、オーステナイト相の
安定化は特に耐応力腐食割れ性の向上に寄与することが
大である。また、相の安定化は照射によって生成する過
剰の格子欠陥の再結合を促進させ、照射誘起粒界偏析も
抑制することができるので、耐粒界腐食割れ性の向上に
この点からも効果がある。
Therefore, in the austenite iron-based alloy of the present invention, the destabilization of the austenite phase due to irradiation is prevented and the corrosion resistance can be improved. Since the instability of the phase is remarkable when stress is applied, the stabilization of the austenite phase largely contributes to the improvement of stress corrosion cracking resistance. In addition, the stabilization of the phase promotes the recombination of excess lattice defects generated by irradiation, and can also suppress the irradiation-induced grain boundary segregation, which is also effective in improving the intergranular corrosion crack resistance. is there.

【0011】なお、オーステナイト相安定性パラメータ
ーである電子空孔濃度は値が小さいほどオーステナイト
相が安定である。電子空孔濃度の式からわかるように、
ニッケル量が多いほど電子空孔濃度は小さくなるのでオ
ーステナイト相は安定になり、照射による耐食性の劣化
を防止できると考えられる。しかしながら、高ニッケル
合金になると、照射によってニッケルの析出物が生成す
るので、必ずしも耐食性は向上しない。したがって、電
子空孔濃度を用いた相安定の判定は本発明のニッケル濃
度範囲の鉄基合金でのみ有効である。
The smaller the electron vacancy concentration, which is the austenite phase stability parameter, the more stable the austenite phase. As can be seen from the formula of electron vacancy concentration,
Since the electron vacancy concentration decreases as the amount of nickel increases, the austenite phase becomes stable, and it is considered that deterioration of corrosion resistance due to irradiation can be prevented. However, in the case of a high nickel alloy, nickel precipitates are generated by irradiation, and therefore corrosion resistance is not necessarily improved. Therefore, the determination of phase stability using the electron vacancy concentration is effective only for the iron-based alloy in the nickel concentration range of the present invention.

【0012】[0012]

【実施例】本発明の実施例を図面を参照して説明する。
重量%で、Ni 10.0〜18.0%、Cr 16.
0〜18.0%、Mo2.0〜3.0%、C 0.03
%以下、Mn 2.0%以下、P 0.01%以下、S
0.005%以下、Si 0.5%以下、残部が主と
してFeからなるオーステナイト系ステンレス鋼におい
て、上記式で示した電子空孔濃度を種々変化させて、数
種のオーステナイト鉄基合金を製造し、それぞれに対し
て中性子照射して応力腐食割れ試験を実施し、照射によ
る応力腐食割れ感受性に及ぼす電子空孔濃度の効果を調
べた。
Embodiments of the present invention will be described with reference to the drawings.
% By weight, Ni 10.0-18.0%, Cr 16.
0 to 18.0%, Mo 2.0 to 3.0%, C 0.03
% Or less, Mn 2.0% or less, P 0.01% or less, S
In an austenitic stainless steel containing 0.005% or less, Si 0.5% or less, and the balance mainly Fe, various kinds of austenite iron-based alloys were manufactured by variously changing the electron vacancy concentration shown in the above formula. , And the stress corrosion cracking test was carried out by neutron irradiation, and the effect of electron vacancy concentration on the stress corrosion cracking susceptibility by irradiation was investigated.

【0013】その結果を図1に示す。図1において縦軸
は粒界破面率を示し、値が大きいほど応力腐食割れ感受
性が大きいことを表す。横軸は電子空孔濃度を表す。こ
の図に示すように、電子空孔濃度が小さいほど粒界破面
率が小さくなり、耐応力腐食割れ性が向上することがわ
かる。
The results are shown in FIG. In FIG. 1, the vertical axis represents the grain boundary fracture surface ratio, and the larger the value, the greater the stress corrosion cracking susceptibility. The horizontal axis represents the electron vacancy concentration. As shown in this figure, it is understood that the smaller the electron vacancy concentration, the smaller the intergranular fracture surface ratio and the better the stress corrosion cracking resistance.

【0014】なお、図1に示される合金のうち、次の4
種の合金の組成は以下のとおりである。電子空孔濃度
2.878の合金(図中1番右側の点):ニッケル1
0.9重量%(10.4原子%)、クロム18.1重量
%(19.4原子%)、モリブデン2.2重量%(1.
3原子%)、炭素0.02重量%(0.09原子%)、
マンガン1.5重量%(1.5原子%)、リン0.00
4重量%(0.007原子%)、硫黄0.002重量%
(0.003原子%)、ケイ素0.03重量%(0.0
6原子%)、残部は鉄
Among the alloys shown in FIG. 1, the following 4
The composition of the seed alloys is as follows: Alloy with electron vacancy concentration 2.878 (point on the right side of No. 1 in the figure): Nickel 1
0.9 wt% (10.4 atom%), chromium 18.1 wt% (19.4 atom%), molybdenum 2.2 wt% (1.
3 atom%), carbon 0.02 wt% (0.09 atom%),
Manganese 1.5% by weight (1.5 atom%), phosphorus 0.00
4 wt% (0.007 atom%), sulfur 0.002 wt%
(0.003 atomic%), silicon 0.03% by weight (0.0
6 atom%), balance iron

【0015】電子空孔濃度2.795の合金(図中左か
ら4番目の点):ニッケル12.4重量%(11.7原
子%)、クロム17.2重量%(18.4原子%)、モ
リブデン2.1重量%(1.2原子%)、炭素0.01
重量%(0.05原子%)、マンガン1.4重量%
(1.4原子%)、リン0.008重量%(0.01原
子%)、硫黄0.003重量%(0.005原子%)、
ケイ素0.42重量%(0.8原子%)、残部は鉄
Alloy with electron vacancy concentration of 2.795 (fourth point from the left in the figure): 12.4 wt% (11.7 at%) nickel, 17.2 wt% (18.4 at%) chromium. , Molybdenum 2.1% by weight (1.2 atom%), carbon 0.01
Wt% (0.05 atom%), manganese 1.4 wt%
(1.4 atom%), phosphorus 0.008 wt% (0.01 atom%), sulfur 0.003 wt% (0.005 atom%),
0.42% by weight of silicon (0.8 atom%), balance iron

【0016】電子空孔濃度2.775の合金(図中左か
ら2番目の点):ニッケル14.0重量%(13.3原
子%)、クロム16.5重量%(17.7原子%)、モ
リブデン2.3重量%(1.3原子%)、炭素0.01
重量%(0.05原子%)、マンガン1.4重量%
(1.4原子%)、リン0.005重量%(0.009
原子%)、硫黄0.002重量%(0.003原子
%)、ケイ素0.25重量%(0.50原子%)、残部
は鉄
Alloy with electron vacancy concentration of 2.775 (second point from the left in the figure): 14.0 wt% (13.3 atom%) of nickel, 16.5 wt% (17.7 atom%) of chromium , Molybdenum 2.3% by weight (1.3 atomic%), carbon 0.01
Wt% (0.05 atom%), manganese 1.4 wt%
(1.4 atom%), phosphorus 0.005 weight% (0.009
Atomic%), sulfur 0.002% by weight (0.003 atomic%), silicon 0.25% by weight (0.50 atomic%), balance iron.

【0017】電子空孔濃度2.725の合金(図中1番
左側の点):ニッケル15.8重量%(15.0原子
%)、クロム16.1重量%(17.3原子%)、モリ
ブデン2.4重量%(1.4原子%)、炭素0.02重
量%(0.09原子%)、マンガン1.5重量%(1.
5原子%)、リン0.004重量%(0.007原子
%)、硫黄0.002重量%(0.003原子%)、ケ
イ素0.03重量%(0.80原子%)、残部は鉄
Alloy with electron vacancy concentration of 2.725 (point on the left side in the figure): 15.8 wt% (15.0 atom%) of nickel, 16.1 wt% (17.3 atom%) of chromium, Molybdenum 2.4% by weight (1.4 atomic%), carbon 0.02% by weight (0.09 atomic%), manganese 1.5% by weight (1.
5 atom%), phosphorus 0.004 wt% (0.007 atom%), sulfur 0.002 wt% (0.003 atom%), silicon 0.03 wt% (0.80 atom%), balance iron.

【0018】[0018]

【発明の効果】以上説明したように、本発明のオーステ
ナイト鉄基合金は、電子空孔濃度が2.75以下になる
ようにニッケル、クロム、モリブデン、マンガンおよび
鉄を所定濃度範囲内で調整することによって、中性子照
射を受けても応力腐食割れの発生しにくい、耐粒界腐食
割れ性に優れた原子炉炉内機器用の材料を提供すること
ができる。
As described above, in the austenitic iron-based alloy of the present invention, nickel, chromium, molybdenum, manganese and iron are adjusted within a predetermined concentration range so that the electron vacancy concentration becomes 2.75 or less. As a result, it is possible to provide a material for nuclear reactor reactor equipment that is resistant to stress corrosion cracking even when exposed to neutron irradiation and has excellent intergranular corrosion cracking resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】粒界破面率と電子空孔濃度の関係を示す図。FIG. 1 is a diagram showing a relationship between a grain boundary fracture surface ratio and an electron vacancy concentration.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G21C 17/10 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G21C 17/10

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル10.0〜18.0重量%、ク
ロム16.0〜18.0重量%、モリブデン2.0〜
3.0重量%、炭素0.03重量%以下、マンガン2.
0重量%以下、リン0.01重量%以下、硫黄0.00
5重量%以下、ケイ素0.5重量%以下、残部が主とし
て鉄からなるオーステナイト系ステンレス鋼において、
次式で示される電子空孔濃度が2.75以下であること
を特徴とする耐照射性オーステナイト鉄基合金。 電子空孔濃度={0.66×ニッケル原子%+2.66×鉄原子
%+3.66×マンガン原子%+4.66×(クロム原子%+モ
リブデン原子%)}÷100
1. Nickel 10.0-18.0% by weight, chromium 16.0-18.0% by weight, molybdenum 2.0-
3.0 wt%, carbon 0.03 wt% or less, manganese 2.
0 wt% or less, phosphorus 0.01 wt% or less, sulfur 0.00
In an austenitic stainless steel containing 5% by weight or less, silicon 0.5% by weight or less, and the balance mainly consisting of iron,
An irradiation-resistant austenitic iron-based alloy having an electron hole concentration represented by the following formula of 2.75 or less. Electron vacancy concentration = {0.66 x nickel atom% + 2.66 x iron atom% + 3.66 x manganese atom% + 4.66 x (chromium atom% + molybdenum atom%)} ÷ 100
JP5016335A 1993-02-03 1993-02-03 Austenitic iron-base alloy with irradiation resistance Pending JPH06228709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5016335A JPH06228709A (en) 1993-02-03 1993-02-03 Austenitic iron-base alloy with irradiation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5016335A JPH06228709A (en) 1993-02-03 1993-02-03 Austenitic iron-base alloy with irradiation resistance

Publications (1)

Publication Number Publication Date
JPH06228709A true JPH06228709A (en) 1994-08-16

Family

ID=11913561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5016335A Pending JPH06228709A (en) 1993-02-03 1993-02-03 Austenitic iron-base alloy with irradiation resistance

Country Status (1)

Country Link
JP (1) JPH06228709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327810A (en) * 2006-06-07 2007-12-20 Nuclear Fuel Ind Ltd Control rod for pressurized water reactor, and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327810A (en) * 2006-06-07 2007-12-20 Nuclear Fuel Ind Ltd Control rod for pressurized water reactor, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4099493B2 (en) Zirconium alloy composition with excellent creep resistance
KR950005322B1 (en) Zirconium alloy with superior ductility
US5254308A (en) Zirconium alloy with improved post-irradiation properties
JPH01275740A (en) Austenite stainless steel alloy
JPS63303038A (en) Core of light water furnace increased in resistance against stress corrosion cracking
US5316597A (en) A nuclear reactor comprising a reactor vessel and structural members made of an austenitic stainless steel having superior resistance to irradiation-induced segregation
US4640817A (en) Dual-phase stainless steel with improved resistance to corrosion by nitric acid
EP0135321B1 (en) Austenitic stainless steel with improved resistance to corrosion by nitric acid
EP0037446B1 (en) Austenitic iron base alloy
US3856517A (en) Irradiation swelling resistant alloy for use in fast neutron reactors
JPH06228709A (en) Austenitic iron-base alloy with irradiation resistance
EP0735151A1 (en) Alloy for improved corrosion resistance of nuclear reactor components
US4560407A (en) Alloy for use in a radioactive ray environment and reactor core members
JPH0368737A (en) Austenitic ni-cr-fe alloy
EP1136578B1 (en) Zirconium alloy for nuclear fuel assembly
JPH05171359A (en) Austenitic stainless steel markedly lowered in contents of nitrogen and boron
JPH05311338A (en) Irradiation resistant austenitic iron base alloy
JPH089755B2 (en) Intergranular corrosion resistance Fe-Cr-Mn alloy and its use
JPH07228963A (en) Precipitation-hardened nickel-base alloy for atomic fuel
JPH02213437A (en) High corrosion-resistant zirconium alloy for nuclear reactor
JPH0336239A (en) Austenitic iron-base alloy
JPH0456750A (en) Austenitic iron base alloy
JPH055158A (en) High intergranular corrosion resistant austenitic stainless steel
JPS6017058A (en) Alloy for apparatus in high irradiation region
JPH0368741A (en) Austenitic iron-base alloy