JPH0456750A - Austenitic iron base alloy - Google Patents

Austenitic iron base alloy

Info

Publication number
JPH0456750A
JPH0456750A JP16673390A JP16673390A JPH0456750A JP H0456750 A JPH0456750 A JP H0456750A JP 16673390 A JP16673390 A JP 16673390A JP 16673390 A JP16673390 A JP 16673390A JP H0456750 A JPH0456750 A JP H0456750A
Authority
JP
Japan
Prior art keywords
less
stainless steel
austenitic
austenitic stainless
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16673390A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Kodama
児玉 光弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP16673390A priority Critical patent/JPH0456750A/en
Publication of JPH0456750A publication Critical patent/JPH0456750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To prevent the generation of intergranular stress corrosion cracking caused by neutron irradiation in an alloy by manufacturing furnace equipment such as a control rod and a furnace instrument tube in a nuclear reactor of an austenitic stainless steel contg. La or Ce. CONSTITUTION:Equipment such as a control rod and a furnace instrument tube used in a neutron reactor is manufactured of an austenitic iron alloy having acompsn. obtd. by adding, by weight, 0.5 to 1.0% La or Ce to an austenitic stainless steel contg. 10.0 to 14.0% Ni, 16.0 to 18.0% Cr, 2.0 to 3.0% Mo, <0.03% C, <2.0% Mn, <0.04% P, <0.03% S and <1.0% Si. The equipment in a nuclear reactor extremely small in integranular stress corrosion cracking caused by neutron irradiation can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はオーステナイト鉄基合金に係り、特に原子炉炉
内機器に好適な耐食性に優れたオーステナイト鉄基合金
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an austenitic iron-based alloy, and particularly to an austenitic iron-based alloy with excellent corrosion resistance suitable for equipment in a nuclear reactor.

[従来の技術] オーステナイト系ステンレス鋼製の制御棒、炉内計装管
等の原子炉炉内機器は、常に高温純水という環境に置か
れるうえに、他の原子炉構成材料に比べて比較的高い中
性子照射を受けている。−方、高温純水中でオーステナ
イト系ステンレス鋼は、粒界応力腐食割れ(Iascc
)を起こすことがある。IGSCCの主たる材料側の因
子は、溶接などの熱サイクルによる粒界炭化物の形成と
それに伴なう粒界近傍におけるクロム欠乏層の形成、す
なわち、溶接鋭敏化である。しかしながら、鋭敏化が全
く起こっていない溶体化オーステナイト系ステンレス鋼
においても、照射を受けた場合、非照射材に比べて高い
粒界腐食割れ感受性を示すという報告も出されている。
[Conventional technology] In-core reactor equipment such as control rods and in-core instrumentation tubes made of austenitic stainless steel are constantly placed in an environment of high-temperature pure water, and compared to other reactor constituent materials, Receives high neutron irradiation. On the other hand, austenitic stainless steel undergoes intergranular stress corrosion cracking (Iascc) in high-temperature pure water.
) may occur. The main material-related factors in IGSCC are the formation of grain boundary carbides due to thermal cycles such as welding and the accompanying formation of a chromium-deficient layer near the grain boundaries, that is, weld sensitization. However, it has been reported that even solution-treated austenitic stainless steel, which has not undergone any sensitization, exhibits higher intergranular corrosion cracking susceptibility when irradiated than non-irradiated material.

照射による材料への影響としては、照射によって引き起
こされる照射誘起偏析により、Si(ケイ素)およびP
(リン)等が濃縮して粒界の耐食性が低下することが考
えられる。
The effects of irradiation on materials include Si (silicon) and P due to irradiation-induced segregation caused by irradiation.
It is thought that corrosion resistance of grain boundaries decreases due to concentration of (phosphorus) and the like.

高純度オーステナイト系ステンレス鋼は、上記因子に着
目し、不純物元素量を限定することにより高照射を受け
た場合でも耐粒界腐食割れ性の優れた性能を有すること
を目的として開発されたものである。なお、この種の技
術に関する文献として、例えば、「オーステナイト鋼の
粒界腐食」(J、S、Arm1jo、Corrosio
n、vol、24、 p、24(1968):1:nt
e−rgranuLar Corrosion of 
Non5ensitized Au5teni−tie
 5teels)、あるいはrBlIRおよびPWR炉
心におけるオーステナイト系ステンレス鋼およびNi基
合金の変形特性」(F、Garazarolli et
 al、、Proc+Int、Symp、Enviro
nmental Degradation of Ma
terialsin  Nuclear  Syste
m−1i1ater  Reactors、阿onte
ry、Cal。
High-purity austenitic stainless steel was developed with a focus on the above factors, with the aim of providing excellent intergranular corrosion cracking resistance even when subjected to high irradiation by limiting the amount of impurity elements. be. In addition, as a literature related to this type of technology, for example, "Intergranular Corrosion of Austenitic Steel" (J, S., Arm1jo, Corrosio
n, vol, 24, p, 24 (1968):1:nt
e-rgranuLar Corrosion of
Non5ensitized Au5teni-tie
"Deformation Properties of Austenitic Stainless Steels and Ni-Based Alloys in rBlIR and PWR Cores" (F, Garazzarolli et al.
al,, Proc+Int, Symp, Enviro
Mental Degradation of Ma
terialsin Nuclear System
m-1i1ater Reactors, Aonte
ry, Cal.

Ll、S、A、Sep、p、442(1983):De
formability of Au5tenitic
 5tainless 5teel and N1−b
ase A11ay in thecore of a
 Boiling and a Pressurize
d WaterReactor)が挙げられる。
Ll, S, A, Sep, p, 442 (1983): De
Formability of Au5tenitic
5stainless 5teel and N1-b
ase A11ay in the core of a
Boiling and a Pressurize
dWaterReactor).

[発明が解決しようとする課題] しかしながら、上記の高純度オーステナイト系ステンレ
ス鋼は、通常純度のステンレス鋼(以下通常純度材とい
う)に比べて照射脆化の程度が大きく、機械的特性上問
題があることが明らかになった。この原因としては、照
射によって生成する転位ループの生成核として作用する
不純物元素が高純度化することにより少なくなり、照射
脆化のもとである転位ループ形態が通常純度材と異なる
ため照射脆化しやすくなることが考えられる。
[Problem to be solved by the invention] However, the above-mentioned high-purity austenitic stainless steel has a greater degree of irradiation embrittlement than normal-purity stainless steel (hereinafter referred to as normal-purity material), and has problems in terms of mechanical properties. One thing became clear. The reason for this is that impurity elements that act as nuclei for dislocation loops generated by irradiation are reduced due to high purity, and the form of dislocation loops that cause irradiation embrittlement is different from that of ordinary pure materials, which causes irradiation embrittlement. It is possible that it will become easier.

本発明は上記の状況に鑑みなされたもので、通常純度材
において、特に高純度化することなく、不純物元素の粒
界偏析を阻止することにより耐粒界腐食割れ性を向上で
きるオーステナイト鉄基台金を提供することを目的とし
たものである。
The present invention was made in view of the above circumstances, and is an austenitic iron base that can improve intergranular corrosion cracking resistance by preventing grain boundary segregation of impurity elements in normally pure materials without particularly increasing the purity. The purpose is to provide money.

[課題を解決するための手段] 上記課題を解決するための本発明に係るオーステナイト
鉄基合金の構成は、ニッケル10.0〜14.0wt%
、クロム16.0〜18.0wt%、モリブデン2.0
〜3゜0wt%、炭素0゜03wt%以下、マンガン2
.0wt%以下、リン0.04wt%以下、硫黄0.0
3wt%以下、ケイ素1.0wt%以下、残部が主とし
て鉄からなるオーステナイト系ステンレス鋼に、ランタ
ンまたはセリウムを0.5〜1.0wt%となるように
含有させるようにしたことである。
[Means for Solving the Problems] The composition of the austenitic iron-based alloy according to the present invention for solving the above problems is as follows: 10.0 to 14.0 wt% nickel
, chromium 16.0-18.0wt%, molybdenum 2.0
~3゜0wt%, carbon 0゜03wt% or less, manganese 2
.. 0wt% or less, phosphorus 0.04wt% or less, sulfur 0.0
The austenitic stainless steel contains 0.5 to 1.0 wt% of lanthanum or cerium to an austenitic stainless steel consisting of 3 wt% or less, 1.0 wt% or less of silicon, and the remainder mainly iron.

[作用] 本発明は、Ni 10.0〜14.0wt%、Cr16
.O〜18.0wt%、Mo2.0〜3.0wt%、C
o、03wt%以下、Mn2.0wt%以下、Po、0
4wt%以下So、03wt%以下、Si1.0wt%
以下、残部が主として鉄からなる5US316Lオース
テナイト系ステンレス鋼に、不純物元素と化合物を形成
しやすいLa(ランタン)またはCe(セリウム)を含
有させたことにより不純物元素を粒内に固定することが
できる。その結果、高純度化することなく不純物元素の
粒界偏析を防止することができ、高純度化による照射脆
化の問題も解決することができる。
[Function] The present invention has Ni 10.0 to 14.0 wt%, Cr16
.. O~18.0wt%, Mo2.0~3.0wt%, C
o, 03 wt% or less, Mn 2.0 wt% or less, Po, 0
4wt% or less So, 03wt% or less, Si1.0wt%
Hereinafter, impurity elements can be fixed within the grains by incorporating La (lanthanum) or Ce (cerium), which easily form compounds with impurity elements, into 5US316L austenitic stainless steel, the remainder of which is mainly iron. As a result, grain boundary segregation of impurity elements can be prevented without increasing the purity, and the problem of irradiation embrittlement due to the increase in purity can also be solved.

ただし、LaおよびCeを多量に添加するとオーステナ
イト相が不安定になり、Fe系化合物を形成しやすくな
るのでLaおよびCeの添加量は1.0wt%以下が好
ましい。また、不純物元素と化合物を形成させるため少
なくとも0.5wt%以上添加する必要がある。
However, if large amounts of La and Ce are added, the austenite phase becomes unstable and Fe-based compounds are likely to be formed, so the amounts of La and Ce added are preferably 1.0 wt% or less. Further, in order to form a compound with an impurity element, it is necessary to add at least 0.5 wt% or more.

[実施例] 本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

まず、wt%で、Ni 10.O〜14.0%、Cr1
6.O〜18.0%、Mo2.0〜3.0%以下、Co
、03%以下、Mn2.0%以下。
First, in wt%, Ni 10. O~14.0%, Cr1
6. O~18.0%, Mo2.0~3.0% or less, Co
, 03% or less, Mn 2.0% or less.

Po、04%以下、So、03%以下Si1.0%以下
、残部が主としてFeからなるオーステナイト系ステン
レス鋼に、LaまたはCeを種々の濃度(0、1〜2 
、 Ow t%)で含有させて、Fe−Cr−Ni−M
o−LaおよびF e −Cr−N i −M o −
Ceの2系統のオーステナイト鉄基合金を製造し、粒界
腐食試験を実施して、夫々のLaおよびCe添加の効果
を調べた。
Austenitic stainless steel consisting of Po, 0.4% or less, So, 0.3% or less, Si 1.0% or less, and the remainder mainly Fe, is coated with La or Ce at various concentrations (0, 1 to 2
, Ow t%), Fe-Cr-Ni-M
o-La and Fe-Cr-Ni-Mo-
Two types of austenitic iron-based alloys containing Ce were manufactured, and intergranular corrosion tests were conducted to investigate the effects of adding La and Ce, respectively.

粒界腐食試験は6価クロムを含む5規定沸騰硝゛酸液に
各被試験鋼を6時間浸漬して行った。その結果を図面に
示す。図面において横軸はLaまたはCe濃度を表し、
縦軸は粒界腐食感受性(割れ長さの比)を表す。この図
に示すようにLaまたはCeの濃度を0.5wt%以上
にすると耐粒界腐食割れ性が著しく向上することがわか
る。
The intergranular corrosion test was conducted by immersing each steel to be tested in a 5N boiling nitric acid solution containing hexavalent chromium for 6 hours. The results are shown in the drawing. In the drawing, the horizontal axis represents La or Ce concentration,
The vertical axis represents intergranular corrosion susceptibility (crack length ratio). As shown in this figure, it can be seen that when the concentration of La or Ce is 0.5 wt% or more, the intergranular corrosion cracking resistance is significantly improved.

また、例えば5US316Lオーステナイト系ステンレ
ス鋼中へのLaまたはCe元素の添加はオーステナイト
相の安定性等から、最大1.0wt%と推定されるので
、本実施例におけるLaまたはCeの添加量は、0.5
〜1.0wt%が好適である。
Furthermore, for example, the addition of La or Ce elements to 5US316L austenitic stainless steel is estimated to be at most 1.0 wt% from the stability of the austenite phase, etc., so the amount of La or Ce added in this example is 0. .5
~1.0 wt% is suitable.

本実施例の効果は、耐食性および耐脆性破壊にすぐれた
原子炉炉内機器用のオーステナイト鉄基合金が得られた
ことである。
The effect of this example is that an austenitic iron-based alloy for internal equipment in a nuclear reactor with excellent corrosion resistance and brittle fracture resistance was obtained.

[発明の効果コ 以上説明したように、本発明のオーステナイト鉄基合金
は、所定量のランタンまたはセリウムを含有したことに
よって、中性子照射を受けてもIGSCCの発生しにく
い、耐粒界腐食割れ性に優れた原子炉炉内機器用の材料
を提供することがで腐食試験におけるランタンまたはセ
リウム濃度(wt%)と粒界腐食感受性の関係図である
[Effects of the Invention] As explained above, the austenitic iron-based alloy of the present invention, by containing a predetermined amount of lanthanum or cerium, has excellent intergranular corrosion cracking resistance and is resistant to IGSCC even when subjected to neutron irradiation. This is a diagram showing the relationship between lanthanum or cerium concentration (wt%) and intergranular corrosion susceptibility in corrosion tests.

〈符号の説明〉<Explanation of symbols>

Claims (1)

【特許請求の範囲】 1、ニッケル10.0〜14.0wt%、クロム16.
0〜18.0wt%、モリブデン2.0〜3.0wt%
、炭素0.03wt%以下、マンガン2.0wt%以下
、リン0.04wt%以下、硫黄0.03wt%以下、
ケイ素1.0wt%以下、残部が主として鉄からなるオ
ーステナイト系ステンレス鋼に、ランタンまたはセリウ
ムを、0.5〜1.0wt%含有させたことを特徴とす
るオーステナイト鉄基合金。 2、請求項1、記載の合金により構成されたことを特徴
とする原子炉炉内機器。
[Claims] 1. 10.0 to 14.0 wt% nickel, 16. chromium.
0-18.0wt%, molybdenum 2.0-3.0wt%
, carbon 0.03wt% or less, manganese 2.0wt% or less, phosphorus 0.04wt% or less, sulfur 0.03wt% or less,
An austenitic iron-based alloy characterized by containing 0.5 to 1.0 wt % of lanthanum or cerium in an austenitic stainless steel consisting of 1.0 wt % or less of silicon and the remainder mainly iron. 2. A nuclear reactor in-core device comprising the alloy according to claim 1.
JP16673390A 1990-06-27 1990-06-27 Austenitic iron base alloy Pending JPH0456750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16673390A JPH0456750A (en) 1990-06-27 1990-06-27 Austenitic iron base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16673390A JPH0456750A (en) 1990-06-27 1990-06-27 Austenitic iron base alloy

Publications (1)

Publication Number Publication Date
JPH0456750A true JPH0456750A (en) 1992-02-24

Family

ID=15836743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16673390A Pending JPH0456750A (en) 1990-06-27 1990-06-27 Austenitic iron base alloy

Country Status (1)

Country Link
JP (1) JPH0456750A (en)

Similar Documents

Publication Publication Date Title
Tamura et al. Development of potential low activation ferritic and austenitic steels
Cowan et al. Intergranular corrosion of iron-nickel-chromium alloys
US9238857B2 (en) Precipitation-strengthened Ni-based heat-resistant alloy and method for producing the same
US4040876A (en) High temperature alloys and members thereof
RU2262753C2 (en) Fast reactor fuel element (versions) and the can for its fabrication
JPS63303038A (en) Core of light water furnace increased in resistance against stress corrosion cracking
JPH01275740A (en) Austenite stainless steel alloy
US4640817A (en) Dual-phase stainless steel with improved resistance to corrosion by nitric acid
EP0135321B2 (en) Austenitic stainless steel with improved resistance to corrosion by nitric acid
EP0530725A1 (en) Austenitic stainless steel having superior resistance to irradiation-induced segregation
Romedenne et al. Compatibility of Fe-Cr-Al and Fe-Cr-Al-Mo oxide dispersion strengthened steels with static liquid sodium at 700° C
JPH0456750A (en) Austenitic iron base alloy
JPH05171359A (en) Austenitic stainless steel markedly lowered in contents of nitrogen and boron
JPH0336239A (en) Austenitic iron-base alloy
US4560407A (en) Alloy for use in a radioactive ray environment and reactor core members
RU2821535C1 (en) Low-activated chromium-manganese austenitic steel
JPH03223443A (en) Austenitic iron base alloy
JPH06228709A (en) Austenitic iron-base alloy with irradiation resistance
US4361443A (en) Solid solution strengthened iron-base austenitic alloy
JPH01215956A (en) Austenitic iron-base alloy
JPH05311338A (en) Irradiation resistant austenitic iron base alloy
JPS63176447A (en) Austenitic ferrous alloy
JPH0368741A (en) Austenitic iron-base alloy
JPH055158A (en) High intergranular corrosion resistant austenitic stainless steel
JPH0368737A (en) Austenitic ni-cr-fe alloy