JPH0380527B2 - - Google Patents
Info
- Publication number
- JPH0380527B2 JPH0380527B2 JP6438683A JP6438683A JPH0380527B2 JP H0380527 B2 JPH0380527 B2 JP H0380527B2 JP 6438683 A JP6438683 A JP 6438683A JP 6438683 A JP6438683 A JP 6438683A JP H0380527 B2 JPH0380527 B2 JP H0380527B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- membrane
- flow rate
- pump
- performance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000012528 membrane Substances 0.000 claims description 183
- 230000005856 abnormality Effects 0.000 claims description 32
- 230000007423 decrease Effects 0.000 claims description 30
- 230000008859 change Effects 0.000 claims description 28
- 239000012141 concentrate Substances 0.000 claims description 26
- 238000000926 separation method Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 14
- 230000015556 catabolic process Effects 0.000 claims description 4
- 238000006731 degradation reaction Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 description 82
- 230000006866 deterioration Effects 0.000 description 47
- 230000003204 osmotic effect Effects 0.000 description 37
- 239000000243 solution Substances 0.000 description 21
- 238000010586 diagram Methods 0.000 description 11
- 239000013535 sea water Substances 0.000 description 8
- 239000003085 diluting agent Substances 0.000 description 7
- 230000002441 reversible effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000013505 freshwater Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は膜分離装置に於ける種々の異常を各要
因毎に判別しその程度を計算する異常検出装置に
関するものである。
従来、膜分離装置では所要の希薄もしくは濃縮
溶液流量を監視しこれの経時的変化で装置の異常
を判断していた。しかし乍ら、流量の減少からは
各要因毎の判別は不可能であり、希薄もしくは濃
縮溶液流量は膜への供給圧力、流量、濃度、温度
の関数である為異なる操作条件に於ける比較は極
めて困難であつた。
本発明は膜分離装置の異常検出に関するこの欠
点を除去し、種々の異常を各要因毎に判別しその
程度を計算する異常検出装置を提供することを目
的とする。
本発明はポンプの性能曲線、溶質の濃度と浸透
圧の関係、圧力保持手段の流量特性を用いて算出
した膜前後の入口側及び出口側(濃縮側)理論圧
力(もしくは理論圧力に見合つた流量)値P0、
P2とこれらの圧力の計器の指示値P′0、P′2を比較
することに依り、次表の左列の膜入口側の圧力状
態と中列の膜出口側の圧力状態より右列の如く判
断して異常であることを検出し、且つその程度を
算出するものである。
膜入口側 膜出口側 判断
P0<P′0 P2<P′2 膜の性能低下
P0<P′0 P2>P′2 流路の閉塞
P0>P′0 P2>P′2 ポンプの性能低下
以下、本発明の実施例を図面に従つて説明す
る。第1図は制御ブロツク図を含むフローシート
である。
図示されない海水の取水ポンプにて取水された
海水は前処理工程を径て遠心ポンプ(以下単にポ
ンプと称す)1に吸込まれる。ポンプ1にて昇圧
し吐出された海水は圧力検出器2で検出される圧
力P0、流量Q0、濃度C0であり、温度検出器3で
検出される温度T0である。この状態の海水は半
透膜4に浸透圧以上の逆浸透圧を加えて圧力P1、
流量計5により計測される流量Q1、濃度C1の淡
水を出力し、圧力検出器6により検出される圧力
P2、流量Q2、濃度C2の濃縮化された海水はペル
トン水車7に供給されエネルギーを回収し、モー
タ8を助勢する。
制御装置9はその出力端が弁駆動装置10′と
弁駆動装置10′によりストロークを調節される
タービン入口ノズル7′よりなる流量制御弁10
の制御入力端に結ばれている。
制御装置9の内容をのべる。
半透膜の希薄側の流量Q1は
Q1=AMK△P ……(1)
ただし AM半透膜の面積
△P≒PM−πM ……(2)
K 膜の種類と温度による定まる係数
PM 半透膜近傍の供給海水圧力
πM 半透膜近傍の供給海水の浸透圧
である。制御装置9では次の演算が行われる。
(1) 希薄液流量Q1が設定のため入力される。
(2) ポンプ1の吐出圧力P0が仮定される。この
仮定吐出圧力P0は計算上のものであるから装
置起動時は予め一定としておいてよい。又装置
運転中は希薄側流量Q1の設定変更前のポンプ
吐出圧力P0を仮定値としてもよい。
制御装置9のブロツク11は縦軸に水頭を横
軸に流量を表わしてある。図において曲線21
はポンプ1の性能曲線(Q−H曲線)を示し、
曲線22はタービン入口ノズル7′における水
車7への入力特性曲線を示し、曲線23は半透
膜4の希薄液流量Q1を示している。
ポンプ吐出圧力P0を仮定するとポンプ吐出
量Q0が求まる。
(3) 濃縮液流量Q2=Q0−Q1であるから項目(2)に
おいて求めたQ0から設定値のQ1を減ずると求
まる。
(4) ブロツク12は縦軸に浸透圧πを横軸に溶液
の濃度CMを示してある。曲線24は溶質濃度
と浸透圧の関係を示す。半透膜4の供給側の液
濃度CMは近似的にCM≒(C0+C2)/2で定ま
る。濃度C0、C2は回収率Q1/Q0が著しく変化
しない限り、上記近似式でよい。この関係から
浸透圧πMが求まる。
(5) 供給海水が温度変化の著しいときには供給側
配管中の供給液温度を検出する温度検出器3を
設け、
K=K0(DW/T)
ただし K0 膜の種類により定まる定数
DW 膜内の水の拡散係数
T 給液の温度DW/T
により係数Kを算出する。給液の温度変化が小
さい場合には定数としてよい。TとDW/Tの
関係はブロツク13に曲線28で示される。
(6) ブロツク11,12は縦軸が同スケールで示
してあり、半透膜4供給側の膜面圧力PMは項
目(2)で仮定したポンプ1の吐出圧力P0から半
透膜4までの供給側配管の流体の管路による圧
力損失PL1を減じたものである。半透膜4の希
薄液圧力P1はほぼ一定であり、又希薄液濃度
は一定とみてよいから希薄液の浸透圧π1は一定
としてよい。そこで逆浸透圧
△P=(PM−P1)−(πM−π1) ……(3)
を算求する。この関係はブロツク11,12間
に取り出して示されている。
(7) ブロツク15はブロツク11,12と縦軸の
スケールを等しくして縦軸に浸透圧πを越える
圧力△Pと横軸に希薄液流量Q1を示している。
線25は
Q1=AMK△P ……(1)
を表わし、浸透圧を越える圧力△Pにより変化
する希薄液流量Q1が直線比例で示される。式
(1)により計算したQ1をQ1CALCとする。
(8) 項目(1)で設定したQ1とQ1CALCを比較する。そ
してこの誤差が大きいときは項目(2)に戻りポン
プ吐出圧P0を再仮定して上記項目(2)〜(8)をル
ープにしてくりかえし、Q1とQ1CALCの誤差が小
になるまでくり返す。
こゝでブロツク11で示すように最大の希薄
液流量Q1naxに対応するポンプ1の吐出圧力P01
よりも先に項目(2)で仮定した圧力P0が小さい
範囲でQ1CALC−Q1>0なるときは再仮定のP0を
最初に仮定したP0よりも小さくし、Q1CALC−Q1
<0なるときは再仮定したP0は最初に仮定し
たP0よりも大きくする。
最初に項目(2)で仮定したポンプ1の吐出圧力
P0が希薄液流量Q1naxに対応するポンプ1の吐
出圧力P01よりも大きい範囲でQ1CALC−Q1>0
なるときは再仮定のP0を最初に仮定したP0よ
りも大きくし、Q1CALC−Q1<0なるときは再仮
定のP0を最初に仮定したP0よりも小さくする。
(9) 設定した希薄液流量Q1と項目(2)〜(8)までに
おいて計算したQ1CALCとの差である計算誤差が
許容値以内であれば濃縮液の圧力P2をP2=P0
−PL1−PL2で求める。ただしPL2は半透膜4か
らペルトン水車7のノズル7′までの流路の抵
抗による損失圧力である。このことは制御装置
9のブロツク11と同スケールの縦軸で濃縮液
圧力P2を表わし、横軸にノズル7′からの噴出
速度Vを表わしたノズル7′の特性曲線26を
示すブロツク16間に示されている。特性曲線
26は
V=α√22
ただしαは常数、gは重力の加速度である。
ブロツク16によりVが求まる。
以上の制御装置9は希薄液流量Q1を設定す
るとポンプ1の性能曲線が定まつており、かつ
溶液の種類により濃度と浸透圧の関係も定つて
いるのでポンプ1の吐出圧力P0と希薄液流量
Q1の関係は一義的に決定される。従つて上述
した項目(2)〜(8)の手順は数値表として纒めるこ
とにより省略できる。
又同一の希薄液流量Q1に於いてブロツク1
6で示したように二種類のポンプ1の吐出圧
P0が求まるが
半透膜4の性状から定まる許容回収率
Q1/Q0以下であるべきこと
所要動力の小さい方で選ぶ
を判定条件として決定すればよい。
(10) ブロツク17はノズル7′の弁開度AVを横軸
にとり、縦軸には流量制御弁10のストローク
Sをとつて、弁開度−弁ストロークの特性曲線
27を示している。ブロツク16によりVが求
まると流量制御弁10の弁開度はAV=Q2/V
で求められる。弁開度AVが求まると流量制御
弁10のストロークSが求められる。
このストロークSは制御装置9より信号とし
て出されるのでドライバ18により増幅して流
量制御弁10を動作させる。
以上により所要希薄液流量Q1を得るように流
量制御弁10が調節される。実施例は系内圧力保
持手段としてポンプ吐出側下流端に開度調節可能
なノズルと該ノズルよりの噴出液により動作する
ペルトン水車を用いているが、これに限られるも
のではなく単に流量制御弁あるいは流量制御弁と
逆転ポンプ等他のエネルギ回収手段を配してもよ
い。
本発明の装置では上述の如くして半透膜4の淡
水出力の流量Q1は定まる。今このような運転状
態において半透膜4の性能の低下した場合を第2
図のフローシートにより説明する。
(1) 既にのべたように半透膜の淡水化の能力は
Q1=AMK△Pで表わされ、K=K0・(DW/T)
で示され、半透膜の性能が低下すると係数K0
は小さくなり、同一圧力差△Pで得られる流量
Q1が減少する。従つてブロツク15において
線25の勾配は実線で示されているものが点線
のように大きくなる。給液の温度が一定とすれ
ば希薄液流量Q1は減少し、濃縮液流量Q2は増
加する。変化後の希薄液流量Q′1、濃縮液流量
Q′2とすれば
Q1>Q′1、Q2<Q′2
である。
(2) ノズル7′の開度AVは一定としてあるので濃
縮液流量Q2の増加はノズル7′の噴出速度Vの
増加となりブロツク16で示すように濃縮液圧
力P2はP′2に増加する。即ち
P2<P′2、V<V′
である。
(3) 配管系の圧力損失PL=PL1+PL2の変動は濃縮
液圧力P2の増加に比べ小さいため、ポンプ1
の吐出圧力P0=PL+P2は高くなるので変動後
のポンプ1の吐出圧力P′0は
P0<P′0
となる。従つてブロツク11で示すようにポン
プ1の吐出圧力P0はP′0となり濃縮液のQ−H
曲線22が点線側に移ることで示される。
(4) そこでP2<P′2、P0<P′0の時半透膜4の性能
低下と判断する。従つて圧力検出器2,6によ
り変化前後の圧力を検出すれば膜性能を低下し
たことを知ることができる。そして新たな膜の
種類による定まる係数K′0を算出すれば性能低
下の程度が判明する。
次にK′0の算出についてのべる。
圧力検出器6の検出値P′2よりブロツク1
6のV′=α√2′又は曲線26により変化
後の入口ノズル7′における流速V′を求め
る。
開度AVは一定であるから変化後の濃縮液
流量Q′2を
Q′2=AVV′
により求める。
ブロツク11のポンプ性能曲線21を用い
変化後のポンプ1の吐出圧力P′0から吐出量
Q′0を求める。
希薄液流量はQ′1=Q′0−Q′2である。
管路の圧力損失P′L1は流量の関数として求
めてもよいがポンプ1の吐出圧力に比べて1/
50程度の値でその中での変動であるからこの
場合は定数としてもよい。
半透膜の供給側膜面圧力P′Mは
P′M=P′0−P′L1
に変化する。
濃縮溶液の濃度C′2は
C′2=C0×Q′0/Q′2
で求まる。
そこで半透膜供給側における平均的な溶液
の濃度C′Mは近似的に
C′M=(C0+C′2)/2
で求まる。
濃度C′Mが判明するのでブロツク12の曲
線24により変化後の浸透圧π′Mを求める。
逆浸透圧△P′を式
△P′=(P′M−P1)−(π′M−π1)
ただし希薄液圧力及びその浸透圧P1、π1は
常数により算出する。
K′=Q′1/AM△P′
により半透膜の透過能力を表わす係数K′が
求まるのでKとK′を比較してK′が小さくな
つている程度により半透膜4の劣下の程度が
判明する。
温度変化が大きいときは温度検出器3の検
知した温度Tより(DW/T)を求めK′0=
K/(DW/T)を求めK0、K′0を比較する。
第3図は膜低下度検出装置を示す制御ブロツク
図である。
出力端がポンプ性能曲線の関数発生器11a、
膜面圧力演算器29の入力端に結ばれた膜入口圧
力検出器2と、出力端が濃縮液流量演算器6bの
入力端に結ばれた膜出口圧力検出器6と、一つの
入力端が関数発生器11aの出力端に結ばれ、他
の一つの入力端が濃縮液流量演算器6bの出力端
に結ばれた希薄液流量演算器30と、一つの入力端
が濃縮液流量演算器6bの出力端に結合され、他
の一つの入力端がポンプ性能曲線の関数発生器1
1aの出力端に結ばれ、出力端が浸透圧の関数発
生器12aの入力端に結合された膜面濃度演算器
6cと、その入力端が夫々希薄液流量演算器3
0、膜面圧力演算器29、浸透圧の関数発生器1
2aの出力端に結合され出力端が膜性能低下度表
示器32、膜性能低下度記憶部33の入力端に結
合された膜性能低下度演算器31と、性能低下度
表示器32と、膜性能低下度記憶部33から間隔
をおいて経時変化表示器35に出力する時間を制
御するタイマー34、性能低下度記憶部33、経
時変化表示器35、前述したポンプ性能曲線を表
わす関数発生器11a、浸透圧の関数発生器12
a、濃縮液流量演算器6b等から膜性能低下度検
出装置はなつている。
第3図及び第3図以降の制御ブロツク図におい
て入出力の圧力、流量、濃度、係数等物理量は電
圧として入力し電圧として出力されるか或はデイ
ジタル制御されるものであるが作用の説明におい
ては電気信号又はデイジタル信号名を用いない単
に物理量名のみを示してある。
膜出口圧力検出器6が検出した濃縮液圧力P′2
が入力されると濃縮液流量演算器6bは第2図の
ブロツク17,16,11に従つてQ′2=AVα√
2gP′2を算出しQ′2の信号を出力する。
膜入口の圧力検出器2からポンプ吐出圧力P′0
が入力されるとポンプ性能曲線の関数発生器11
aは第2図のブロツク11を内容として算出しポ
ンプ吐出量Q′0を出力する。
希薄液流量演算器30は加算器となつており入
力Q′0、Q′2を受けてQ′1=Q′0−Q′2を出力する。
膜面濃度演算器6cはポンプ性能関数発生器1
1aの出力信号のポンプ吐出量Q′0及び濃縮液流
量演算器6bからの出力信号の濃縮液流量Q′2を
入力してC′2=C0×Q′0/Q′2からC′M=(C0+
C′2)/2を演算して膜面濃度C′Mを出力し、それ
を受けて浸透圧の関数発生器12aは第2図のブ
ロツク12に示すようにπ′M=f(C′M)から浸透
圧π′Mを発生して膜性能低下度演算器31に向つ
て出力する。
膜面圧力演算器29はポンプ性能関数発生器1
1aからの入力Q′0を受けて
P′L1=a1(Q′0/QR)
ただしa1は流量QRにおけるポンプ1の吐出口
から半透膜4までの管路抵抗係数を算出し、膜面
圧力検出器2からの信号P′0を受けてP′M=P′0−
P′L1を算出して膜面圧力P′Mを出力する。
性能低下演算器31は入力の膜面圧力P′M、浸
透圧π′Mから
△P′=(P′M−P′1)−(π′M−π1)
を算出し、その結果と入力の希薄液流量Q′1から
K′=Q′1/AM△P′を求め、温度検出器3からの入
力変化が大きいときはK′0=K′/(DW/T)を算
出し、K′0もしくは性能低下度K′0/K0を求めて
出力する。
性能低下度表示器32は膜の透過能力を表わす
係数K′0もしくは低下度K′0/K0を入力して表示
し、性能低下度記憶部33は順次タイマー34に
より間隔をおいて係数K0もしくは低下度K′0/K0
を記憶し、タイマー34の制御により記憶してい
る過去のK0もしくはK′0/K0を取り出し出力し、
経時変化表示器35にて表示する。
以上のようにして膜分離装置の出力が変化した
場合に膜性能の低下の程度が判明する。次に流路
の閉塞に基く装置の性能低下についてのべる。
第4図は流路に起因する装置の性能低下の程度
の判断を下す制御装置の内容を示すフローシート
である。系内の流路の閉塞が生ずるとポンプ1の
吐出圧力P0は増加し、吐出量Q0は減少する。流
路の閉塞後のポンプ1の吐出圧をP′0、吐出量を
Q′0とするとブロツク11のポンプ性能曲線21
より
P0<P′0、Q0>Q′0
である。
希薄液の流量Q1はポンプ吐出量Q0の減少によ
り半透膜近傍の供給液の膜面濃度CM=C0/2・
(2Q0−Q1)/(Q0−Q1)であるのでCMは増加し
C′Mとなる。従つてブロツク12の曲線24に沿
つて浸透圧πMは増加し、逆浸透圧△Pは下り、
ブロツク15に示すように希薄液流量Q1と逆浸
透圧△Pの関係を示す線25は点線側に移り希薄
液流量Q1は減少しQ′1となる。一方ポンプ吐出圧
P0の増加は一般に希薄液流量Q1を増加させる。
そのため、半透膜4の途中の流路のつまる場所に
より異なるが上記二つの流量Q1を変動させる要
因は相殺され流量Q1は若干の減少に留るか若干
の増加をし変動幅は小さい。即ちQ1Q′1であり
Q′2=Q′0−Q′1であるからQ2>Q′2となり濃縮液流
量Q2は大幅に減少する。そこでノズル開度AVは
一定で流量Q′2となるため、ブロツク16で示す
ように濃縮液流量V′、圧力P′2となりP2>P′2、V
>V′となる。
そこで、P0<P′0、P2>P′2の時流路の閉塞と判
断する。
流路閉塞後の管路の圧力損失P′L1は
P′L1=a′1(Q′0/QR)2
ただし抵抗係数a′1は流量QRにおける流路が閉
塞したときの圧力損失である。この式からa′1を
求めa1(既述)と比較すれば流路の閉塞の程度が
判明する。
次に抵抗係数a′1を求め方をのべる。先ず既に
のべたようにしてP′2よりV′を求め、AV一定であ
るからQ′2が求まる。ブロツク11のポンプ性能
曲線21を用いてP′0よりQ′0を求めてQ′1=Q′0−
Q′2により希薄液流量Q′1を得る。
逆浸透圧を△P′=Q′1/AM・Kにより求める。
次に既にのべたようにC′2=C0×Q0/Q′2により流
路閉塞後の濃縮液濃度C′2を求め、膜面濃度C′M=
(C0+C′2)/2を計算する。ブロツク12から流
路閉塞後の浸透圧π′Mを求める。これより膜面圧
力P′M=△P′+(π′M−π1)+P1を求める。そして
P′L1=P′0−P′Mを求め、
a′1=P′L1/(Q′0/QR)
によりa′1が求まる。
第5図は流路閉塞度検出装置を示す制御ブロツ
ク図である。
膜入口圧力検出器2、膜出力圧力検出器6、ポ
ンプ性能曲線の関数発生器11a、濃縮液流量演
算器6b、希薄液流量演算器30、膜面濃度演算
器6c、浸透圧の関数発生器12aの関連構成は
第3図の膜性能低下度検出装置の制御ブロツク図
と同じである。閉塞度演算器37は入力端が膜入
口圧力検出器2、ポンプ性能曲線の関数発生器1
1a、希薄液流量演算器30、濃度と浸透圧の関
数発生器12aの出力端に結ばれている。閉塞度
表示器38の入力端は閉塞度演算器37の出力端
に結ばれ、閉塞度記憶部39は入力端が閉塞度演
算器37の出力端に結ばれ、タイマー41により
制御されて出力端より出力を経時変化表示器42
の入力端に加えるようになつている。
閉塞度演算器37への入力の吐出圧力P′0、吐
出量Q′、希薄液流量Q′1、浸透圧π′Mは第3図にお
いて説明した処と同様である。閉塞度演算器37
は入力した希薄液流量Q′1から逆浸透圧
△P′=Q′1/AM・K
を求め、濃度と浸透圧の関数発生器12aより浸
透圧π′Mを入力して半透膜4近傍の供給液体の膜
面圧力P′Mを
P′M=△P′+(π′M−π1)+P1
から求め、変化後の流路の圧力損失P′L1を購入口
圧力検出器2から吐出圧力P′0を入力して
P′L1=P′0−P′M
により求める。そしてポンプ性能曲線の関数発生
器11aからの入力Q′0を用いて
a′1=P′L1/(Q′0/QR)2
が求まる。そこでa1−a′1とかa′1/a1とかの変化
前後の係数の差、もしくは比を閉塞度演算器37
から出力して閉塞度表示器38により表示し、一
方タイマーにより一定間隔で閉塞度記憶部39に
記憶させ経時変化表示器42に出力して期間をお
いて流路閉塞の状態を知ることができる。
次にポンプの性能低下についてのべる。第6図
はポンプ性能低下についてのフローシートであ
る。ポンプ1の性能が低下するとブロツク11の
ポンプ性能曲線21は点線のように低下する。そ
してポンプ1の吐出圧P0、吐出量Q0は曲線43
に従つて変化し、性能低下後P′0、Q′0となり
P0>P′0、Q0>Q′0
そして希薄液流量Q1は供給液の圧力P0、流量Q0
から圧力P′0、流量Q′0への減少により
Q1>Q′1
ただしQ1はポンプ性能低下後の希薄液流量と
なり、濃縮液流量Q2は主に供給液の減少により
Q2>Q′2
ただし、Q′2はポンプ性能低下後の濃縮液流量
となる。
ノズル開度AVは一定であるから
V=Q2/AV
により変化後のノズル出口流速V′は減少してV
>V′となりブロツク17で示すようにポンプ性
能低下後の濃縮液圧力P′2は
P2>P′2
となる。以上よりP0>P′0、P2>P′2の時ポンプ1
の性能低下と判断する。
ポンプ性能低下の判断を指標の一例として
Q′0/Q0を算出する場合を考えてみる。ポンプ性
能低下の表現は定まつたものがないので上記は例
示である。ポンプ性能が低下するとQ−H曲線自
身が変るので正常な性能のときのQ−H曲線から
は求められない。従つてポンプ性能低下後の流量
Q′0を仮定して圧力P′0に対応するかどうかを求め
チエツクするものである。次にその方法をのべ
る。
濃縮液圧力P′2より流速V′を式
V′=α√2′2
もしくはブロツク17の曲線26を用いて求め
る。ノズル開度は一定であるから
Q′=AVV′
により変化後の濃縮液流量Q′2が求まる。ポンプ
1の性能低下後の吐出量Q′0を仮定する。
ポンプ性能低下後の流路の圧力損失は流量Q0
の関数もしくは定数として求める。この圧力損失
P′L1は例えばポンプ吐出圧力50Kg/cm2に対し1
Kg/cm2位の大きさであり、その中での変化である
から定数としても実用上差支えがない。
膜面圧力はP′M=P′0−P′L1に変化する。ポンプ
性能低下後の濃縮液の濃度C′2は
C′2=C0×Q′0/Q′2
で求め、供給側の膜近傍の供給液の膜面濃度は
C′M=(C0+C′2)/2で求める。ブロツク12の
濃度〜浸透圧の関係を表わす曲線24からポンプ
性能低下後の浸透圧π′Mを求める。かくして逆浸
透圧△P′を
△P′=(P′M−P1)−(π′M−π1)
から算出する。
供給液の温度変化が大きいときは温度検出器3
より供給液温度Tを知りDW/Tを求め、膜の種
類により定まる係数K′0を
K′0=K/(DW/T)
により求める。
Q′0CALC=Q′1+Q′2=AMK△P′+Q′2
を算出しQ′0とQ′0CALCを比較して誤差が大きいと
Q′0を再仮定し再びくり返しQ0′とQ′0CALCの誤差が
許容値以内であれば
Q′0/Q0
を算出してポンプ性能低下の程度を判別する。
第7図はポンプ性能低下度検出装置を示す制御
ブロツク図である。膜出口圧力検出器6、濃縮液
流量演算器6b、膜面濃度演算器6c、浸透圧の
関数発生器12aが順次に出力端と入力端が連結
されている部分は第3図、第5図に示した制御ブ
ロツク図と同構成であり、構成の説明は省略され
る。
一つの入力端が膜入口圧力検出器2の出力端に
結ばれ、他の一つの入力端が給液流量設定器46
の一つの出力端に結ばれた膜面圧力演算器44
と、入力端の一つが浸透圧の関数発生器12aの
出力端に結合され、他の一つの入力端が膜面圧力
演算器44の出力端に結合された希薄液流量演算
器45と、入力端が濃縮液流量演算器6b、希薄
液流量演算器45、給液流量設定器46の出力端
に夫々結合された給液流量比較器48と、入力端
が給液流量比較器48の出力端に連結された給液
流量演算器47と、仮定的に給液流量Q′0を設定
され、給液流量演算器47の出力端にその入力端
が結合され、給液流量比較器48、膜面圧力演算
器44、膜面濃度演算器6cの入力端に夫々出力
端が結合された給液流量設定器46と、給液流量
比較器48の出力端に入力端が夫々結合されたポ
ンプ性能低下度表示器49、タイマー51により
経時的に動作するポンプ性能低下度記憶部50と
性能低下度記憶部50の出力端にその入力端が結
合されたポンプ性能経時変化表示器52と、膜入
口圧力検出器2、膜出口圧力検出器6、濃縮液流
量演算器6b、膜面濃度演算器6c、浸透圧の関
数発生器12aとからポンプ性能低下度検出装置
は構成されている。
膜出口圧力検出器6、濃縮液流量演算器6b、
膜面濃度演算器6c、関数発生器12aとつづく
制御動作は第3図、第5図に示した処と同じであ
り説明は省略される。
ポンプ1の性能低下であると判断されると次に
給液流量比較器48は濃縮液流量比較器6bより
出力された濃縮液流量Q′2を入力され、給液流量
設定器46に仮定した吐出量Q′0が設定されてそ
の設定値を入力されている。
膜面圧力演算器44は膜入口圧力検出器2から
入力された吐出量P′0及び仮定した吐出量Q′0から
流路の圧力損失P′L1=a1(Q′0/QR)2を求め、膜面
圧力P′Mを出力する。希薄液流量演算器45は膜
面圧力演算器44からの膜面圧力P′M及び浸透圧
の関数発生器12aからの浸透圧π′Mを入力され
て
△P′=(P′M−P1)−(π′M−π1)
を算出する。そして
Q′1=AMK△P′から希薄液流量Q′1を算出して
給液流量比較器48に出力する。
給液流量比較器48はかゝる仮定した吐出量
Q′0に基づいて計算された希薄液流量Q′1と濃縮液
流量演算器6bで演算された濃縮液流量Q′2との
和
Q′0CALC=Q′1+Q′2を計算し、
△Q0=|Q′0−Q′0CALC|を求める。
△Q0が予め定められた許容値βと比較し、
△Q0>β
なるときは△Q0、Q′0CALCを給液流量演算器47
に送り、給液流量演算器47では再設定値Q′0を
求め、Q′0の仮定がQ′0>Q′0CALCであればQ′0を小
さく再設定し、Q′0の仮定がQ′0<Q′0CALCであれば
Q′0を大きく再設定する。
給液流量設定器46に送り、同様にして再設定
値のQ′0に対するQ′0CALCを求めて△Q0をβと比較
する。
△Q0≦β
になると、、Q′0/Q0の演算が行われてその値は
出力され、ポンプ性能低下度表示器49入力して
表示され、又ポンプ性能低下度記憶部50にてタ
イマー51により周期的に記憶され、ポンプ性能
経時変化表示器52にはポンプ1の性能の経時的
な変化が示される。
第8図は膜分離装置の異常要因判別装置の制御
ブロツク図である。以上において夫々説明したよ
うに膜入口圧力検出器2の検出圧力P′0、膜出口
圧力検出器6の検出圧力P′2と、装置の正常時に
設定したポンプ1の吐出圧P0、濃縮液の圧力P2
との比較において夫々異常要因が判別できること
をのべた。ここで異常要因別判別装置についての
べる。膜入口圧力検出器2並びに膜出入口圧力演
算部54の出力端夫々にその入力端が結合され、
入力されたポンプ1の吐出圧力P′0と膜入口圧力
の正常値P0がP0>P′0のときに〔1〕を出力し、
P0≦P′0のときに
The present invention relates to an abnormality detection device that distinguishes various abnormalities in a membrane separation device for each factor and calculates the degree of the abnormality. Conventionally, in a membrane separation device, the required flow rate of a diluted or concentrated solution was monitored, and abnormalities in the device were determined based on changes in this value over time. However, it is impossible to distinguish between each factor from the decrease in flow rate, and since the flow rate of dilute or concentrated solution is a function of the pressure, flow rate, concentration, and temperature supplied to the membrane, comparisons under different operating conditions are difficult. It was extremely difficult. It is an object of the present invention to eliminate this drawback regarding abnormality detection in membrane separation devices, and to provide an abnormality detection device that distinguishes various abnormalities for each factor and calculates the degree of the abnormality. The present invention calculates the theoretical pressure (or the flow rate corresponding to the theoretical pressure) on the inlet side and outlet side (concentration side) before and after the membrane calculated using the performance curve of the pump, the relationship between solute concentration and osmotic pressure, and the flow rate characteristics of the pressure holding means. ) value P 0 ,
By comparing P 2 and the readings P′ 0 and P′ 2 of these pressure meters, we can determine the pressure condition in the right column from the pressure condition on the membrane inlet side in the left column and the pressure condition on the membrane outlet side in the middle column in the following table. It detects an abnormality by making a judgment as follows, and calculates the degree of abnormality. Membrane inlet side Membrane outlet side Judgment P 0 <P′ 0 P 2 <P′ 2 Deterioration of membrane performance P 0 <P′ 0 P 2 >P′ 2 Blockage of flow path P 0 >P′ 0 P 2 >P′ 2 Deterioration of Pump Performance Examples of the present invention will be described below with reference to the drawings. FIG. 1 is a flow sheet including a control block diagram. Seawater taken by a seawater intake pump (not shown) is sucked into a centrifugal pump (hereinafter simply referred to as pump) 1 through a pretreatment process. Seawater pumped up and discharged by the pump 1 has a pressure P 0 , a flow rate Q 0 and a concentration C 0 detected by the pressure detector 2, and a temperature T 0 detected by the temperature detector 3. Seawater in this state applies reverse osmosis pressure that is higher than osmotic pressure to the semipermeable membrane 4, resulting in pressure P 1 ,
Flow rate Q 1 measured by flow meter 5, fresh water of concentration C 1 is output, and pressure detected by pressure detector 6
Concentrated seawater with a flow rate of P 2 , a flow rate of Q 2 , and a concentration of C 2 is supplied to the Pelton turbine 7 to recover energy and assist the motor 8 . The control device 9 includes a flow control valve 10 whose output end includes a valve drive device 10' and a turbine inlet nozzle 7' whose stroke is adjusted by the valve drive device 10'.
is connected to the control input terminal of the The contents of the control device 9 will be described. The flow rate Q 1 on the dilute side of the semipermeable membrane is Q 1 = A M K△P ……(1) However, the area of the A M semipermeable membrane △P≒P M −π M ……(2) K Type of membrane and Coefficient determined by temperature P M Supply seawater pressure near the semipermeable membrane π M This is the osmotic pressure of the supply seawater near the semipermeable membrane. The control device 9 performs the following calculations. (1) Diluent flow rate Q 1 is input for setting. (2) A discharge pressure P 0 of pump 1 is assumed. Since this assumed discharge pressure P 0 is a calculated value, it may be set constant in advance when the device is started. Further, during operation of the device, the pump discharge pressure P 0 before the setting change of the lean side flow rate Q 1 may be used as an assumed value. Block 11 of the control device 9 shows the water head on the vertical axis and the flow rate on the horizontal axis. In the figure, curve 21
shows the performance curve (Q-H curve) of pump 1,
Curve 22 shows the input characteristic curve to the water wheel 7 at the turbine inlet nozzle 7', and curve 23 shows the dilute liquid flow rate Q 1 of the semipermeable membrane 4. Assuming pump discharge pressure P 0 , pump discharge amount Q 0 can be found. (3) Concentrate flow rate Q 2 = Q 0 - Q 1 , so it can be found by subtracting the set value Q 1 from Q 0 obtained in item (2). (4) Block 12 shows the osmotic pressure π on the vertical axis and the concentration C M of the solution on the horizontal axis. Curve 24 shows the relationship between solute concentration and osmotic pressure. The liquid concentration C M on the supply side of the semipermeable membrane 4 is approximately determined by C M ≈(C 0 +C 2 )/2. The concentrations C 0 and C 2 may be determined by the above approximate formula unless the recovery rate Q 1 /Q 0 changes significantly. From this relationship, the osmotic pressure π M can be found. (5) When the temperature of the supplied seawater changes significantly , a temperature detector 3 is installed to detect the temperature of the supplied liquid in the supply piping. The coefficient K is calculated from the diffusion coefficient T of water in the membrane and the temperature D W /T of the supplied liquid. If the temperature change of the supplied liquid is small, it may be set as a constant. The relationship between T and D W /T is shown in block 13 by curve 28. (6) The vertical axes of blocks 11 and 12 are shown on the same scale, and the membrane surface pressure P M on the supply side of the semipermeable membrane 4 is calculated from the discharge pressure P 0 of the pump 1 assumed in item (2) to the semipermeable membrane 4. It is calculated by reducing the pressure loss P L1 due to the fluid pipeline of the supply side piping up to. The dilute solution pressure P 1 of the semipermeable membrane 4 is almost constant, and the dilute solution concentration can be considered to be constant, so the osmotic pressure π 1 of the dilute solution can be assumed to be constant. Therefore, reverse osmotic pressure ΔP=(P M −P 1 )−(π M −π 1 ) (3) is calculated. This relationship is illustrated between blocks 11 and 12. (7) Block 15 has the same vertical axis scale as blocks 11 and 12, and the vertical axis shows the pressure ΔP exceeding the osmotic pressure π, and the horizontal axis shows the dilute solution flow rate Q1 . The line 25 represents Q 1 =A M K△P (1), and the dilute liquid flow rate Q 1 that changes due to the pressure △P exceeding the osmotic pressure is shown in linear proportion. formula
Let Q 1 calculated by (1) be Q 1CALC . (8) Compare Q 1 and Q 1CALC set in item (1). If this error is large, return to item (2), reassume pump discharge pressure P 0 , and repeat items (2) to (8) above in a loop until the error between Q 1 and Q 1CALC becomes small. Repeat. Here, as shown in block 11, the discharge pressure of pump 1 corresponding to the maximum dilute liquid flow rate Q 1nax is P 01
If the pressure P 0 assumed in item (2) before becomes Q 1CALC −Q 1 > 0 in a small range, make the re-assumed P 0 smaller than the initially assumed P 0 and Q 1CALC −Q 1
When <0, the re-assumed P 0 is made larger than the initially assumed P 0 . First, the discharge pressure of pump 1 assumed in item (2)
Q 1CALC −Q 1 > 0 in the range where P 0 is greater than the discharge pressure P 01 of pump 1 corresponding to the dilute liquid flow rate Q 1nax
When Q1CALC - Q1 <0, the re-assumed P0 is made smaller than the initially assumed P0 . (9) If the calculation error, which is the difference between the set diluted liquid flow rate Q 1 and the Q 1 CALC calculated in items (2) to (8), is within the allowable value, set the concentrated liquid pressure P 2 to P 2 = P 0
−P L1 −P L2 . However, P L2 is the pressure loss due to resistance in the flow path from the semipermeable membrane 4 to the nozzle 7' of the Pelton turbine 7. This means that the characteristic curve 26 of the nozzle 7', on the same scale as block 11 of the control device 9, shows the concentrate pressure P 2 on the vertical axis and the jet velocity V from the nozzle 7' on the horizontal axis. is shown. The characteristic curve 26 is V=α√2 2 where α is a constant and g is the acceleration of gravity.
Block 16 determines V. In the above control device 9, when the dilute solution flow rate Q 1 is set, the performance curve of the pump 1 is determined, and the relationship between concentration and osmotic pressure is also determined depending on the type of solution, so the discharge pressure P 0 of the pump 1 and dilution liquid flow rate
The relationship in Q 1 is uniquely determined. Therefore, the procedures of items (2) to (8) described above can be omitted by compiling them as a numerical table. Also, at the same dilute solution flow rate Q1 , block 1
As shown in 6, the discharge pressure of two types of pump 1
P 0 is determined, but the allowable recovery rate is determined by the properties of the semipermeable membrane 4.
Q 1 /Q should be less than or equal to 0. Choose the one with the smaller required power as the judgment condition. (10) Block 17 shows a valve opening-valve stroke characteristic curve 27, with the horizontal axis representing the valve opening A V of the nozzle 7' and the vertical axis representing the stroke S of the flow rate control valve 10. When V is determined by block 16, the valve opening of the flow rate control valve 10 is A V =Q 2 /V.
is required. Once the valve opening A V is determined, the stroke S of the flow rate control valve 10 is determined. Since this stroke S is output as a signal from the control device 9, it is amplified by the driver 18 to operate the flow rate control valve 10. As described above, the flow rate control valve 10 is adjusted to obtain the required diluted liquid flow rate Q1 . In the embodiment, a nozzle whose opening degree can be adjusted at the downstream end of the pump discharge side and a Pelton water wheel operated by the liquid ejected from the nozzle are used as a system pressure holding means, but the present invention is not limited to this, and a simple flow control valve is used. Alternatively, other energy recovery means such as a flow control valve and a reversing pump may be provided. In the device of the present invention, the flow rate Q 1 of fresh water output from the semipermeable membrane 4 is determined as described above. Now, in the second case, the performance of the semipermeable membrane 4 deteriorates under such operating conditions.
This will be explained using the flow sheet shown in the figure. (1) As already mentioned, the desalination capacity of semipermeable membranes is
Q 1 = A M K△P, K = K 0・(D W /T)
When the performance of the semipermeable membrane decreases, the coefficient K 0
becomes smaller, and the flow rate obtained with the same pressure difference △P
Q 1 decreases. Therefore, in block 15, the slope of the line 25, which is shown as a solid line, increases as shown in a dotted line. If the temperature of the feed liquid is constant, the dilute liquid flow rate Q 1 decreases and the concentrated liquid flow rate Q 2 increases. Dilute liquid flow rate Q′ 1 after change, concentrate liquid flow rate
If Q′ 2 , then Q 1 >Q′ 1 and Q 2 <Q′ 2 . (2) Since the opening degree A V of the nozzle 7' is constant, an increase in the concentrate flow rate Q 2 causes an increase in the ejection velocity V of the nozzle 7', and as shown in block 16, the concentrate pressure P 2 becomes P' 2. To increase. That is, P 2 <P′ 2 and V<V′. (3) Since the fluctuation in pressure loss P L = P L1 + P L2 in the piping system is small compared to the increase in concentrate pressure P 2 , pump 1
Since the discharge pressure P 0 =P L +P 2 becomes higher, the discharge pressure P' 0 of the pump 1 after fluctuation becomes P 0 <P' 0 . Therefore, as shown in block 11, the discharge pressure P 0 of the pump 1 becomes P′ 0 and the concentration Q−H
This is indicated by the curve 22 shifting to the dotted line side. (4) Therefore, it is determined that the performance of the half-permeable membrane 4 is degraded when P 2 <P' 2 and P 0 <P' 0 . Therefore, by detecting the pressure before and after the change using the pressure detectors 2 and 6, it is possible to know that the membrane performance has deteriorated. Then, by calculating the coefficient K′ 0 determined by the new film type, the degree of performance deterioration can be determined. Next, we will discuss the calculation of K′ 0 . Block 1 from the detected value P' 2 of pressure detector 6
The flow velocity V' at the inlet nozzle 7' after the change is determined by V'=α√2' or the curve 26 of 6. Since the opening degree A V is constant, the concentrated liquid flow rate Q' 2 after the change is determined by Q' 2 = A V V'. Using the pump performance curve 21 of block 11, calculate the discharge amount from the changed discharge pressure P′ 0 of pump 1.
Find Q′ 0 . The diluent flow rate is Q′ 1 =Q′ 0 −Q′ 2 . The pressure loss P′ L1 in the pipeline can be calculated as a function of the flow rate, but it is 1/1 compared to the discharge pressure of pump 1.
Since it is a value of about 50 and the fluctuation is within that range, it may be a constant in this case. The supply side membrane pressure P′ M of the semipermeable membrane changes to P′ M = P′ 0 − P′ L1 . The concentration C′ 2 of the concentrated solution is determined by C′ 2 =C 0 ×Q′ 0 /Q′ 2 . Therefore, the average solution concentration C' M on the semipermeable membrane supply side can be approximately found as C' M = (C 0 + C' 2 )/2. Since the concentration C'M is known, the osmotic pressure π'M after change is determined from the curve 24 of block 12. The reverse osmotic pressure △P' is expressed by the formula △P'=(P' M - P 1 ) - (π' M - π 1 ) However, the dilute solution pressure and its osmotic pressures P 1 and π 1 are calculated using constants. K' = Q' 1 /A M △P' calculates the coefficient K' that represents the permeation ability of the semipermeable membrane, so by comparing K and K', the degree to which K' is smaller determines the deterioration of the semipermeable membrane 4. The lower degree becomes clear. When the temperature change is large, calculate (D W /T) from the temperature T detected by temperature detector 3 and find K' 0 =
Find K/(D W /T) and compare K 0 and K' 0 . FIG. 3 is a control block diagram showing the film deterioration degree detection device. a function generator 11a whose output end has a pump performance curve;
A membrane inlet pressure detector 2 whose output end is connected to the input end of the membrane surface pressure calculator 29, a membrane outlet pressure detector 6 whose output end is connected to the input end of the concentrate flow rate calculator 6b, and one input end of which is connected to the input end of the membrane surface pressure calculator 29. A dilute liquid flow rate calculator 30 is connected to the output end of the function generator 11a, and one input end is connected to the output end of the concentrate flow rate calculator 6b, and one input end is connected to the concentrate flow rate calculator 6b. and the other input terminal is connected to the output terminal of the pump performance curve function generator 1.
1a, and the output end is connected to the input end of the osmotic pressure function generator 12a, and the input end thereof is connected to the dilute solution flow rate calculator 3.
0, membrane surface pressure calculator 29, osmotic pressure function generator 1
2a, the membrane performance deterioration degree calculator 31 whose output end is connected to the membrane performance deterioration degree indicator 32 and the input end of the membrane performance deterioration degree storage section 33; A timer 34 that controls the output time from the performance deterioration degree storage section 33 to the temporal change indicator 35 at intervals, a performance deterioration degree storage section 33, a temporal change indicator 35, and a function generator 11a that represents the pump performance curve described above. , osmotic pressure function generator 12
A, a membrane performance deterioration detecting device is connected to the concentrate flow rate calculator 6b and the like. In the control block diagrams shown in Fig. 3 and after Fig. 3, physical quantities such as input/output pressure, flow rate, concentration, coefficient, etc. are input as voltages and output as voltages, or are digitally controlled. only physical quantity names are shown without using electrical or digital signal names. Concentrate pressure P′ 2 detected by membrane outlet pressure detector 6
When inputted, the concentrate flow rate calculator 6b calculates Q' 2 =A V α√ according to blocks 17, 16, and 11 in FIG.
2gP′ 2 is calculated and a signal of Q′ 2 is output. Pump discharge pressure P′ 0 from pressure detector 2 at membrane inlet
When input, the pump performance curve function generator 11
A is calculated based on block 11 in FIG. 2 and outputs the pump discharge amount Q'0 . The diluted liquid flow rate calculator 30 serves as an adder and receives inputs Q' 0 and Q' 2 and outputs Q' 1 =Q' 0 -Q' 2 . The membrane surface concentration calculator 6c is the pump performance function generator 1.
By inputting the pump discharge amount Q' 0 of the output signal 1a and the concentrate flow rate Q' 2 of the output signal from the concentrate flow rate calculator 6b, C' 2 = C 0 ×Q' 0 /Q' 2 to C' M = (C 0 +
C′ 2 )/2 and outputs the membrane surface concentration C′ M. In response to this, the osmotic pressure function generator 12a calculates π′ M = f(C′ The osmotic pressure π' M is generated from M ) and outputted to the membrane performance deterioration degree calculator 31. The membrane surface pressure calculator 29 is the pump performance function generator 1
In response to the input Q′ 0 from 1a, P′ L1 = a 1 (Q′ 0 /Q R ) where a 1 is the coefficient of resistance of the pipe from the discharge port of pump 1 to the semipermeable membrane 4 at the flow rate Q R Then, upon receiving the signal P′ 0 from the membrane surface pressure detector 2, P′ M =P′ 0 −
P′ L1 is calculated and the membrane surface pressure P′ M is output. The performance degradation calculator 31 calculates △P' = (P' M - P' 1 ) - (π' M - π 1 ) from the input membrane surface pressure P' M and osmotic pressure π' M , and uses the result and From the input diluent flow rate Q′ 1
Calculate K' = Q' 1 / A M △P', and if the input change from temperature detector 3 is large, calculate K' 0 = K' / (D W /T), and determine whether K' 0 or performance has deteriorated. Calculate and output the degree K′ 0 /K 0 . The performance deterioration degree display 32 inputs and displays the coefficient K' 0 or deterioration degree K' 0 /K 0 representing the permeability of the membrane, and the performance deterioration degree storage section 33 sequentially displays the coefficient K at intervals by the timer 34. 0 or degree of decrease K′ 0 /K 0
, and extracts and outputs the past K 0 or K′ 0 /K 0 stored under the control of the timer 34,
The change over time is displayed on the display 35. As described above, when the output of the membrane separation device changes, the degree of decline in membrane performance becomes clear. Next, we will discuss the deterioration in performance of the device due to blockage of the flow path. FIG. 4 is a flow sheet showing the contents of a control device that determines the degree of deterioration in performance of the device due to the flow path. When a flow path in the system is blocked, the discharge pressure P 0 of the pump 1 increases and the discharge amount Q 0 decreases. The discharge pressure of pump 1 after the flow path is blocked is P′ 0 , and the discharge amount is
When Q′ 0 , pump performance curve 21 of block 11
Therefore, P 0 <P′ 0 and Q 0 >Q′ 0 . The flow rate Q 1 of the diluted liquid decreases as the pump discharge amount Q 0 decreases so that the membrane surface concentration of the feed liquid near the semipermeable membrane C M = C 0 /2・
(2Q 0 −Q 1 )/(Q 0 −Q 1 ), so CM increases.
It becomes C′ M. Therefore, along the curve 24 of block 12, the osmotic pressure π M increases, the reverse osmotic pressure ΔP decreases,
As shown in block 15, a line 25 showing the relationship between the dilute solution flow rate Q1 and the reverse osmosis pressure ΔP shifts to the dotted line side, and the dilute solution flow rate Q1 decreases to Q'1 . On the other hand, pump discharge pressure
An increase in P 0 generally increases the diluent flow rate Q 1 .
Therefore, although it differs depending on where the flow path in the semipermeable membrane 4 is clogged, the above two factors that fluctuate the flow rate Q 1 cancel each other out, and the flow rate Q 1 either decreases slightly or increases slightly, and the fluctuation range is small. . That is, Q 1 Q′ 1
Since Q′ 2 =Q′ 0 −Q′ 1 , Q 2 >Q′ 2 and the concentrate flow rate Q 2 decreases significantly. Therefore, since the nozzle opening degree A V is constant and the flow rate is Q' 2 , as shown in block 16, the concentrate flow rate V' and the pressure P' 2 become P 2 >P' 2 , V
>V′. Therefore, when P 0 <P′ 0 and P 2 >P′ 2 , it is determined that the flow path is blocked. The pressure loss P′ L1 in the pipe after the flow path is blocked is P′ L1 = a′ 1 (Q′ 0 /Q R ) 2However , the resistance coefficient a′ 1 is the pressure loss when the flow path is blocked at the flow rate Q R It is. By calculating a′ 1 from this equation and comparing it with a 1 (described above), the degree of blockage of the flow path can be determined. Next, we will explain how to find the resistance coefficient a′ 1 . First, find V′ from P′ 2 as described above, and since A V is constant, Q′ 2 is found. Using the pump performance curve 21 of block 11, find Q' 0 from P' 0 and get Q' 1 = Q' 0 -
The dilute liquid flow rate Q′ 1 is obtained from Q′ 2 . Reverse osmotic pressure is determined by ΔP′=Q′ 1 /A M ·K.
Next, as already mentioned, the concentrate concentration C' 2 after the channel is blocked is determined by C' 2 = C 0 ×Q 0 /Q' 2 , and the membrane surface concentration C ' M =
Calculate (C 0 +C′ 2 )/2. From block 12, the osmotic pressure π' M after the channel is blocked is determined. From this, find the membrane surface pressure P′ M =△P′+(π′ M −π 1 )+P 1 . and
Find P′ L1 = P′ 0 −P′ M , and find a′ 1 by a′ 1 = P′ L1 /(Q′ 0 /Q R ). FIG. 5 is a control block diagram showing the flow path blockage degree detection device. Membrane inlet pressure detector 2, membrane output pressure detector 6, pump performance curve function generator 11a, concentrated liquid flow rate calculator 6b, diluted liquid flow rate calculator 30, membrane surface concentration calculator 6c, osmotic pressure function generator The related structure of 12a is the same as the control block diagram of the membrane performance deterioration detection device shown in FIG. The occlusion degree calculator 37 has input terminals as a membrane inlet pressure detector 2 and a pump performance curve function generator 1.
1a, the diluted liquid flow rate calculator 30 is connected to the output end of the concentration and osmotic pressure function generator 12a. The input end of the occlusion degree indicator 38 is connected to the output end of the occlusion degree calculator 37, and the input end of the occlusion degree storage unit 39 is connected to the output end of the occlusion degree calculator 37, and the output end is controlled by the timer 41. The output changes over time indicator 42
It is designed to be added to the input end of . The discharge pressure P' 0 , discharge amount Q', dilute solution flow rate Q' 1 , and osmotic pressure π' M input to the occlusion degree calculator 37 are the same as those explained in FIG. 3. Occlusion degree calculator 37
calculates the reverse osmotic pressure △P'=Q' 1 /A M・K from the input diluted liquid flow rate Q' 1 , inputs the osmotic pressure π' M from the concentration and osmotic pressure function generator 12a, and calculates the semipermeable membrane. 4. Find the membrane surface pressure P' M of the supplied liquid in the vicinity from P' M = △P' + (π' M - π 1 ) + P 1 , and detect the pressure loss P' L1 in the flow path after the change at the purchase port pressure. Input the discharge pressure P' 0 from the device 2 and find it by P' L1 = P' 0 - P' M. Then, a' 1 =P' L1 /(Q' 0 /Q R ) 2 is determined using the input Q' 0 from the pump performance curve function generator 11a. Therefore, the difference or ratio of the coefficients before and after the change, such as a 1 −a′ 1 or a′ 1 /a 1 , is calculated by the occlusion degree calculator 37.
The flow path occlusion state can be known by outputting the data from the timer and displaying it on the occlusion degree indicator 38, while storing it in the occlusion degree storage unit 39 at regular intervals using a timer and outputting it to the time change indicator 42. . Next, let's talk about the drop in pump performance. FIG. 6 is a flow sheet regarding pump performance degradation. When the performance of the pump 1 decreases, the pump performance curve 21 of the block 11 decreases as shown by the dotted line. And the discharge pressure P 0 and discharge amount Q 0 of pump 1 are curve 43
After the performance decreases, P′ 0 and Q′ 0 become P 0 > P′ 0 , Q 0 > Q′ 0 and the dilute liquid flow rate Q 1 is the pressure of the supply liquid P 0 and the flow rate Q 0
Due to the decrease from pressure P' 0 to flow rate Q' 0 , Q 1 >Q' 1 However, Q 1 is the dilute liquid flow rate after the pump performance has deteriorated, and the concentrated liquid flow rate Q 2 is mainly due to the decrease in the feed liquid, Q 2 > Q′ 2 However, Q′ 2 is the concentrate flow rate after the pump performance deteriorates. Since the nozzle opening degree A V is constant, V = Q 2 / A V after changing the nozzle outlet flow velocity V' decreases to V
>V', and as shown in block 17, the concentrate pressure P'2 after the pump performance has decreased becomes P2 >P'2 . From the above, when P 0 >P' 0 and P 2 >P' 2 , pump 1
It is judged that the performance has deteriorated. Judgment of pump performance deterioration as an example of an indicator
Let us consider the case of calculating Q′ 0 /Q 0 . Since there is no fixed expression for pump performance deterioration, the above is just an example. If the pump performance deteriorates, the Q-H curve itself changes, so it cannot be determined from the Q-H curve when the pump performance is normal. Therefore, the flow rate after pump performance decreases
Assuming Q′ 0 , it is checked to determine whether it corresponds to pressure P′ 0 . Next, I will explain the method. The flow rate V' is determined from the concentrate pressure P' 2 using the formula V'=α√2' 2 or the curve 26 of block 17. Since the nozzle opening is constant, the changed concentrated liquid flow rate Q'2 can be found from Q'=A V V'. Assume that the discharge amount Q′ 0 after the performance of the pump 1 has decreased. The pressure loss in the flow path after pump performance decreases is the flow rate Q 0
Find it as a function or constant. This pressure loss
For example, P′ L1 is 1 for pump discharge pressure 50Kg/cm 2
It has a magnitude of about 2 kg/cm, and since it is a change within that range, there is no practical problem in using it as a constant. The membrane surface pressure changes to P′ M = P′ 0 − P′ L1 . The concentration C′ 2 of the concentrated liquid after the pump performance has deteriorated is determined by C′ 2 = C 0 ×Q′ 0 /Q′ 2 , and the membrane surface concentration of the feed liquid near the membrane on the supply side is
Calculate by C' M = (C 0 + C' 2 )/2. The osmotic pressure π' M after the pump performance is reduced is determined from the curve 24 representing the relationship between concentration and osmotic pressure in block 12. Thus, reverse osmosis pressure △P' is calculated from △P' = (P' M - P 1 ) - (π' M - π 1 ). When the temperature change of the supply liquid is large, use temperature detector 3.
Knowing the supply liquid temperature T, find D W /T, and find the coefficient K' 0 determined by the type of membrane from K' 0 =K/(D W /T). Calculate Q′ 0CALC =Q′ 1 +Q′ 2 =A M K△P′+Q′ 2 , compare Q′ 0 and Q′ 0CALC , and if the error is large,
Reassume Q′ 0 and repeat the process again. If the error between Q 0 ′ and Q′ 0CALC is within the allowable value, calculate Q′ 0 /Q 0 and determine the degree of pump performance degradation. FIG. 7 is a control block diagram showing the pump performance deterioration detection device. The parts where the output end and input end of the membrane outlet pressure detector 6, concentrate flow rate calculator 6b, membrane surface concentration calculator 6c, and osmotic pressure function generator 12a are sequentially connected are shown in FIGS. 3 and 5. It has the same configuration as the control block diagram shown in FIG. 1, and the explanation of the configuration will be omitted. One input end is connected to the output end of the membrane inlet pressure detector 2, and the other input end is connected to the feed liquid flow rate setting device 46.
membrane pressure calculator 44 connected to one output end of
and a dilute liquid flow rate calculator 45, one of whose input ends is connected to the output end of the osmotic pressure function generator 12a, and the other input end is connected to the output end of the membrane surface pressure calculator 44; A feed liquid flow rate comparator 48 whose ends are respectively coupled to the output ends of the concentrated liquid flow rate calculator 6b, the dilute liquid flow rate calculator 45, and the feed liquid flow rate setting device 46, and whose input end is the output end of the feed liquid flow rate comparator 48. A feed liquid flow rate calculator 47 is connected to a feed liquid flow rate calculator 47, which is hypothetically set to a feed liquid flow rate Q' 0 , an input end of which is connected to an output end of the feed liquid flow rate calculator 47, a feed liquid flow rate comparator 48, a membrane A pump performance controller 46 whose output ends are connected to the input ends of the surface pressure calculator 44 and the membrane surface concentration calculator 6c, respectively, and whose input ends are connected to the output ends of the feed liquid flow rate comparator 48, respectively. A deterioration degree indicator 49, a pump performance deterioration degree storage section 50 which is operated over time by a timer 51, a pump performance change over time indicator 52 whose input end is connected to the output end of the performance deterioration degree storage section 50, and a membrane inlet. The pump performance deterioration detection device is composed of a pressure detector 2, a membrane outlet pressure detector 6, a concentrate flow rate calculator 6b, a membrane surface concentration calculator 6c, and an osmotic pressure function generator 12a. Membrane outlet pressure detector 6, concentrate flow rate calculator 6b,
The control operations following the film surface concentration calculator 6c and the function generator 12a are the same as those shown in FIGS. 3 and 5, and their explanation will be omitted. When it is determined that the performance of the pump 1 has deteriorated, the feed liquid flow rate comparator 48 receives the concentrated liquid flow rate Q'2 outputted from the concentrated liquid flow rate comparator 6b, and inputs the concentrated liquid flow rate Q' 2 outputted from the concentrated liquid flow rate comparator 6b, The discharge amount Q′ 0 has been set and the set value has been input. The membrane surface pressure calculator 44 calculates the flow path pressure loss P' L1 = a 1 (Q' 0 /QR) 2 from the discharge amount P' 0 inputted from the membrane inlet pressure detector 2 and the assumed discharge amount Q' 0 . is calculated, and the membrane surface pressure P′ M is output. The dilute liquid flow rate calculator 45 receives the membrane surface pressure P' M from the membrane surface pressure calculator 44 and the osmotic pressure π' M from the osmotic pressure function generator 12a, and calculates △P' = (P' M - P 1 ) − (π′ M −π 1 ) is calculated. Then, the dilute liquid flow rate Q' 1 is calculated from Q' 1 =A M KΔP' and outputted to the supply liquid flow rate comparator 48 . The liquid supply flow rate comparator 48 calculates the assumed discharge amount.
Calculate the sum of the diluted liquid flow rate Q' 1 calculated based on Q' 0 and the concentrated liquid flow rate Q' 2 calculated by the concentrated liquid flow rate calculator 6b, Q' 0 CALC = Q' 1 + Q' 2 , and △ Find Q 0 = |Q′ 0 −Q′ 0CALC |. Compare △Q 0 with a predetermined allowable value β, and if △Q 0 > β, calculate △Q 0 and Q′ 0CALC to the liquid supply flow rate calculator 47.
The feed liquid flow rate calculator 47 calculates the reset value Q' 0 , and if the assumption of Q' 0 is Q' 0 >Q' 0CALC , it resets Q' 0 to a smaller value, and the assumption of Q' 0 is If Q′ 0 <Q′ 0CALC
Reset Q′ 0 to a large value. The liquid is sent to the supply liquid flow rate setting device 46, and in the same manner, Q' 0 CALC for the reset value Q' 0 is determined and ΔQ 0 is compared with β. When △Q 0 ≦β, the calculation of Q′ 0 /Q 0 is performed and the value is output, inputted and displayed on the pump performance deterioration degree display 49, and also stored in the pump performance deterioration degree storage unit 50. The timer 51 periodically stores the data, and the pump performance change indicator 52 shows changes in the performance of the pump 1 over time. FIG. 8 is a control block diagram of an abnormality factor determination device for a membrane separation device. As explained above, the detected pressure P'0 of the membrane inlet pressure detector 2, the detected pressure P'2 of the membrane outlet pressure detector 6, the discharge pressure P0 of the pump 1 set when the device is normal, and the concentrated liquid The pressure of P 2
It was stated that the abnormal factors can be identified in comparison with the above. Here, we will talk about the abnormality factor discrimination device. The input end thereof is coupled to each of the output ends of the membrane inlet pressure detector 2 and the membrane inlet/outlet pressure calculation section 54,
When the input discharge pressure P′ 0 of pump 1 and normal value P 0 of membrane inlet pressure are P 0 > P′ 0 , output [1],
When P 0 ≦P′ 0
〔0〕を出力する一つの出力端
53Aを備え、P0<P′0のときに〔1〕を出力し、
P′0≧P′0のときにIt has one output end 53A that outputs [0], and outputs [1] when P 0 <P' 0 ,
When P′ 0 ≧P′ 0
〔0〕を出力する他の一つの出
力端53Bを備えた例えばオペアンプを用いたコ
ンパレータ又は差動増幅回路を有する膜入口圧力
比較器53と、膜出口圧力検出器6並びに膜出入
口圧力演算部54の出力端夫々にその入力端が結
合され、入力された濃縮液の圧力P′2と膜出口圧
力の正常値P2がP2>P′2のとき〔1〕を出力し、
P2≦P′2のときA membrane inlet pressure comparator 53 having another output terminal 53B that outputs [0] and having a comparator or differential amplifier circuit using, for example, an operational amplifier, a membrane outlet pressure detector 6, and a membrane inlet/outlet pressure calculation unit 54. Its input terminal is connected to each of the output terminals of
When P 2 ≦P′ 2
〔0〕を出力する一つの出力端5
5Aを備え、P2<P′2のとき〔1〕を出力し、P2
≧P′2のときにOne output terminal 5 that outputs [0]
5A, outputs [1] when P 2 <P' 2 , and P 2
When ≧P′ 2
〔0〕を出力する他の一つの出力
端55Bを備えた例えばオペアンプを用いたコン
パレータもしくは差動増幅回路等を有する膜出口
圧力比較器55と、希薄溶液流量設定器56と、
該希薄溶液流量設定器56の出力端にその入力端
が結合された膜出入口圧力演算部54と、膜入口
圧力検出器2、膜出口圧力検出器6と、その一つ
の入力端が膜入口圧力比較器53の一つの出力端
53Aに結合され、他の一つの入力端が膜出口圧
力比較器55の一つの出力端55Aに結合された
アンドゲート57と、その一つの入力端が膜入口
圧力比較器53の他の一つの出力端53Bに結合
され、他の一つの入力端が膜出口圧力検出器の一
つの出力端55Aに結合されたアンドゲート58
と、その一つの入力端が膜入口圧力比較器の他の
一つの出力端53Bに結合され、他の一つの入力
端が膜出口圧力比較器の他一つの出力端55Bに
結合されたアンドゲート59と、アンドゲート5
7,58,59の夫々の出力端に結合され、夫々
内部に信号電圧増幅回路と電力制御回路及び出力
ドライバを備えて表示手段を動作させるポンプ性
能低下警報器61、流路閉塞警報器62、膜性能
低下警報器63(夫々を併せてのべるときは以下
単に警報器61,62,63と称す)とから膜分
離装置の異常要因判別装置は構成されている。
膜出入口圧力演算部54は例示すると第9図の
如き内容を有する。第9図は縦座標に希薄液流量
Q1を横座標に圧力を示し、曲線64はQ1−P0曲
線を曲線65はQ1−P2曲線を示している。これ
らは何れも膜分離装置が正常である場合を示すも
のである。図に示すように水平に希薄液流量Q1
を設定するとそのQ1に対応して膜入口圧力P0、
膜出口圧力P2が求まる。以上の曲線64,65
は関数発生器を用いて実現すればよい。
希薄溶液流量設定器56で流量Q1に設定して
運転していると膜出入口圧力演算部54は装置の
正常時に対応するポンプ1の吐出圧力P0、濃縮
液の圧力P2を出力して夫々膜入口圧力比較器5
3、膜出口圧力比較器55に夫々入力する。
膜入口圧力検出器2により検出した圧力P′0は
膜入口圧力比較器53に入力され、圧力P0とP′0
が比較される。そしてP0=P′0であれば膜入口圧
力比較器53の出力端53A,53Bは夫々
A membrane outlet pressure comparator 55 having another output terminal 55B that outputs [0], for example, a comparator using an operational amplifier or a differential amplifier circuit, and a dilute solution flow rate setting device 56.
A membrane inlet/outlet pressure calculation unit 54 whose input end is connected to the output end of the dilute solution flow rate setting device 56, a membrane inlet pressure detector 2, a membrane outlet pressure detector 6, and one input end of which is connected to the membrane inlet pressure an AND gate 57 connected to one output end 53A of the comparator 53 and whose other input end is connected to one output end 55A of the membrane outlet pressure comparator 55; AND gate 58 coupled to one other output terminal 53B of the comparator 53 and one other input terminal coupled to one output terminal 55A of the membrane outlet pressure detector.
and an AND gate whose one input end is coupled to another output end 53B of the membrane inlet pressure comparator, and whose other input end is coupled to another output end 55B of the membrane outlet pressure comparator. 59 and and gate 5
a pump performance deterioration alarm 61 and a flow path blockage alarm 62 connected to the respective output ends of the pumps 7, 58, and 59, each having a signal voltage amplification circuit, a power control circuit, and an output driver therein and operating a display means; An abnormality factor determination device for a membrane separation apparatus is constituted by a membrane performance deterioration alarm 63 (hereinafter simply referred to as alarms 61, 62, and 63 when referred to individually). The membrane inlet/outlet pressure calculating section 54 has contents as shown in FIG. 9, for example. Figure 9 shows the diluent flow rate on the ordinate.
The pressure is shown on the abscissa with Q 1 , curve 64 shows the Q 1 -P 0 curve, and curve 65 shows the Q 1 -P 2 curve. All of these indicate cases where the membrane separation device is normal. Horizontal diluent flow rate Q 1 as shown in the figure
If we set the membrane inlet pressure P 0 corresponding to that Q 1 ,
The membrane outlet pressure P 2 is determined. The above curves 64, 65
can be realized using a function generator. When operating with the dilute solution flow rate setter 56 set to flow rate Q 1 , the membrane inlet/outlet pressure calculation section 54 outputs the discharge pressure P 0 of the pump 1 and the pressure P 2 of the concentrated liquid, which correspond to the normal state of the device. Membrane inlet pressure comparator 5
3. Input each to the membrane outlet pressure comparator 55. The pressure P′ 0 detected by the membrane inlet pressure detector 2 is input to the membrane inlet pressure comparator 53, and the pressures P 0 and P′ 0 are
are compared. If P 0 = P' 0 , the output ends 53A and 53B of the membrane inlet pressure comparator 53 are
〔0〕を出力するのでアンドゲート57,58,
59は何れもSince it outputs [0], AND gates 57, 58,
59 is all
〔0〕を出力するので各警報器6
1,62,63は動作しない。
膜出口圧力検出器6により検出した圧力P′2は
膜出口圧力比較器55に入力され、圧力P2とP′2
が比較される。そしてP2=P′2であれば膜出口圧
力比較器55の出力端55A,55BはEach alarm 6 outputs [0].
1, 62, and 63 do not work. The pressure P' 2 detected by the membrane outlet pressure detector 6 is input to the membrane outlet pressure comparator 55, and the pressures P 2 and P' 2 are
are compared. If P 2 = P' 2 , the output ends 55A and 55B of the membrane outlet pressure comparator 55 are
〔0〕を
出力するのでアンドゲート57,58,59は何
れもSince it outputs [0], AND gates 57, 58, and 59 all
〔0〕を出力するので各警報器59,60,
61は動作しない。
膜入口圧力比較器53でP0>P′0である場合に
その一つの出力端53Aは〔1〕を出力し、膜出
口圧力比較器55はP2>P′2である場合にその一
つの出力端55Aに〔1〕を出力するからアンド
ゲート57は〔1〕を出力しポンプ性能低下警報
器61を動作してポンプ性能低下であることを知
らせる。尚この場合アンドゲート58,59は
夫々膜入力圧力比較器の他の一つの出力端53B
からSince it outputs [0], each alarm device 59, 60,
61 does not work. When P 0 >P' 0 in the membrane inlet pressure comparator 53, one output terminal 53A outputs [1], and the membrane outlet pressure comparator 55 outputs [1] in the case that P 2 >P' 2 . Since [1] is output to the two output terminals 55A, the AND gate 57 outputs [1] and activates the pump performance deterioration alarm 61 to notify that the pump performance has deteriorated. In this case, the AND gates 58 and 59 are connected to the other output terminal 53B of the membrane input pressure comparator.
from
〔0〕が入つているのでアンドゲート58,
59出力Since [0] is included, the AND gate 58,
59 outputs
〔0〕で流路閉塞警報器62、膜性能低
下警報器63は動作しない。
膜入口圧力比較器53でP0<P′0である場合に
それの他の一つの出力端53Bは〔1〕を出力
し、膜出口圧力比較器55でP2>P′2である場合
にその一つの出力端55Aは〔1〕を出力するか
らアンドゲート58は〔1〕を出力し、流路閉塞
警報器62を動作させて流路閉塞を知らせる。尚
この場合アンドゲート57は膜入口圧力比較器の
一つの出力端53AからAt [0], the channel blockage alarm 62 and membrane performance deterioration alarm 63 do not operate. When the membrane inlet pressure comparator 53 has P 0 <P' 0 , its other output terminal 53B outputs [1], and when the membrane outlet pressure comparator 55 has P 2 >P' 2 Since one of the output terminals 55A outputs [1], the AND gate 58 outputs [1] and operates the flow path blockage alarm 62 to notify the flow path blockage. In this case, the AND gate 57 is connected to one output terminal 53A of the membrane inlet pressure comparator.
〔0〕を入力しており、
アンドゲート59は膜出口圧力比較器の他の一つ
の出力端55Bから[0] is entered,
AND gate 59 is connected to the other output end 55B of the membrane outlet pressure comparator.
〔0〕を入力しているのでア
ンドゲート57,59はSince [0] is input, AND gates 57 and 59 are
〔0〕を出力しており、
ポンプ性能低下警報器61、膜性能低下警報器6
3は動作しない。
膜入口圧力比較器53でP0<P′0である場合に
それの他の一つの出力端53Bは〔1〕を出力
し、膜出口圧力比較器55でP2<P′2である場合
にそれの他の一つの出力端55Bに〔1〕を出力
するからアンドゲート59は〔1〕を出力し膜性
能低下警報器63を動作させ膜性能低下を知らせ
る。尚この場合にアンドゲート57,58には膜
出口圧力比較器の一つの出力端55Aの出力信号
[0] is output,
Pump performance reduction alarm 61, membrane performance reduction alarm 6
3 does not work. When the membrane inlet pressure comparator 53 has P 0 <P' 0 , its other output terminal 53B outputs [1], and when the membrane outlet pressure comparator 55 has P 2 <P' 2 Since it outputs [1] to the other output terminal 55B, the AND gate 59 outputs [1] and activates the membrane performance deterioration alarm 63 to notify the membrane performance deterioration. In this case, the AND gates 57 and 58 receive the output signal of one output terminal 55A of the membrane outlet pressure comparator.
〔0〕が入力されているからアンドゲート57,
58は夫々Since [0] is input, AND gate 57,
58 are each
〔0〕を出力しポンプ性能低下警報器
61、流路閉塞警報器62は動作しない。
ポンプ吐出圧力P0、濃縮液圧力P2それらの変
化値P′0、P′2はばらつきなく定まるものとして説
明してあるが実際には正常時においても例えばポ
ンプ吐出圧力P0の膜入力圧力検出器2が検出す
る数値は小範囲で変化する。濃縮液圧力P2につ
いても同じである。以上の説明のポンプ吐出圧力
P0とP′0、濃縮液圧力P2とP′2間の等号、不等号は
本発明の要点をのべるために用いてあるのであ
り、実際の装置では例えばP0−P′0=△P0Cで定ま
る装置が正常なときの変動幅△P0Cをmとし△P0C
>mを越えたときに始めてP0−m>P′0により信
号を出力するように構成する必要がある。
かくして膜の性能低下、流路の閉塞、ポンプの
性能低下等の異常原因及び程度が判明する。これ
らの結果希薄液流量Q1は一般に減少する。そこ
で希薄液流量Q1は第1図において説明したよう
にしてノズル開度AVを求めて補正する。ただし
膜の種類により定まる係数K0、抵抗係数a1、ポ
ンプ1の吐出量Q0は膜分離装置の異常時には補
正値を使用する。
本発明は遠心ポンプを加圧手段として半透膜に
液体を供給し、濃縮液の排出側に供給液側の圧力
保持手段を備えたものにおいて、ポンプ吐出側圧
力及び濃縮液の圧力の検出手段を備え、これらの
圧力の検出手段の検出した信号を比較する制御回
路を備えたから、膜分離装置の異常と異常の要因
を併せて判別できる。本発明は更に前記の異常要
因が判別した場合、半透膜4の性能低下の場合は
半透膜の種類により定まる係数K0の膜能力低下
後の値K′0を逆算し、K0とK′0を比較する制御回
路を備え、流路の閉塞の場合は流路の抵抗係数a1
の流路の閉塞の場合のa′1を逆算し、a1とa′を比較
する回路を備え、ポンプの性能低下の場合ポンプ
吐出量Q0に対応するポンプ性能低下時のポンプ
吐出量Q′0を逆算する制御回路を備えたから、異
常要因毎に異常の程度を知ることができる。従つ
て保守修理の時期、規模が装置を分解することな
く判明する。そして異常を検出した後に係数K′0、
a′1、膜面圧力P′Mを求めることにより圧力保持手
段への信号を補正して希薄液流量を維持すること
ができる。
なお、以上の説明ではすべて圧力を用いて判断
しているが、これにかえて流量を用いてもよい。
ポンプ吐出圧の上昇は流量の減少に、タービン入
口圧の上昇は流量の増加に対応するからである。
流量を用いた場合に膜劣化はQ0>Q′0かつQ2<
Q′2であり、管路の閉塞あるいはポンプの性能の
低下はQ0>Q′0かつQ2>Q′2で判断される。
以上のとおり、本発明は簡便な装置で
(1) 異なる操作条件に於いても膜の性能低下、流
路の閉塞、ポンプの性能低下を検出でき装置の
信頼性を向上させた。
(2) 上記異常の程度を検出でき異常の定量的把握
が可能となつた。
(3) 上記異常の程度を経時変化として検出でき装
置交換時期の設定等運転管理上きわめて有効で
ある。
(4) 異常発生後も圧力保持手段は補正された出力
で制御される為運転操作性の良い装置を提供す
ることが出来た。[0] is output, and the pump performance deterioration alarm 61 and flow path blockage alarm 62 do not operate. Pump discharge pressure P 0 , concentrate pressure P 2 The change values P′ 0 , P′ 2 are explained as being determined without variation, but in reality, even under normal conditions, for example, the membrane input pressure of pump discharge pressure P 0 The numerical value detected by the detector 2 varies within a small range. The same applies to the concentrate pressure P2 . Pump discharge pressure in the above explanation
The equality and inequality signs between P 0 and P′ 0 and concentrated liquid pressure P 2 and P′ 2 are used to express the main points of the present invention, and in actual equipment, for example, P 0 −P′ 0 =△ The fluctuation range when the device is normal, which is determined by P 0C △P 0C is m, and △P 0C
It is necessary to configure the structure so that a signal is output only when P 0 -m>P′ 0 exceeds P 0 −m>P′ 0. In this way, the cause and extent of abnormalities such as membrane performance deterioration, channel blockage, pump performance deterioration, etc. can be determined. As a result of these, the diluent flow rate Q 1 generally decreases. Therefore, the dilute liquid flow rate Q 1 is corrected by determining the nozzle opening degree A V as explained in FIG. However, for the coefficient K 0 , the resistance coefficient a 1 , and the discharge amount Q 0 of the pump 1, which are determined depending on the type of membrane, corrected values are used when the membrane separator is abnormal. The present invention supplies a liquid to a semipermeable membrane using a centrifugal pump as a pressurizing means, and is equipped with a supply liquid side pressure holding means on the concentrated liquid discharge side, wherein the pump discharge side pressure and the concentrated liquid pressure are detected. Since it is equipped with a control circuit that compares the signals detected by these pressure detection means, it is possible to determine both the abnormality of the membrane separation apparatus and the cause of the abnormality. The present invention further provides that when the above-mentioned abnormality factor is determined, when the performance of the semipermeable membrane 4 is decreased, the value K′ 0 after the membrane performance decrease of the coefficient K 0 determined by the type of semipermeable membrane is calculated backwards, and K 0 and Equipped with a control circuit that compares K′ 0 , and in case of blockage of the flow path, the resistance coefficient of the flow path a 1
It is equipped with a circuit that calculates a′ 1 in the case of blockage of the flow path and compares a 1 and a′, and calculates the pump discharge amount Q when the pump performance decreases, which corresponds to the pump discharge amount Q 0 when the pump performance decreases. Since it is equipped with a control circuit that back-calculates 0 , it is possible to know the degree of abnormality for each abnormality factor. Therefore, the timing and scale of maintenance and repair can be determined without disassembling the device. After detecting the abnormality, the coefficient K′ 0 ,
By determining a′ 1 and membrane surface pressure P′ M , the signal to the pressure holding means can be corrected to maintain the dilute liquid flow rate. Note that in the above explanation, all determinations are made using pressure, but flow rate may be used instead.
This is because an increase in pump discharge pressure corresponds to a decrease in flow rate, and an increase in turbine inlet pressure corresponds to an increase in flow rate.
When using a flow rate, membrane deterioration is Q 0 > Q′ 0 and Q 2 <
Q′ 2 , and blockage of the pipeline or deterioration of pump performance is determined by Q 0 >Q′ 0 and Q 2 >Q′ 2 . As described above, the present invention is a simple device that (1) can detect a decrease in membrane performance, blockage of a flow path, and a decrease in pump performance even under different operating conditions, improving the reliability of the device. (2) It has become possible to detect the degree of the abnormality mentioned above and to understand the abnormality quantitatively. (3) The degree of the abnormality mentioned above can be detected as a change over time, which is extremely effective for operation management such as setting the timing for equipment replacement. (4) Even after an abnormality occurs, the pressure holding means is controlled with the corrected output, making it possible to provide a device with good operability.
図面は何れも本発明の実施例を示すもので第1
図は膜分離装置のフローシート、第2図は半透膜
の性能低下をした場合を示すフローシート、第3
図は膜性能低下度検出装置の制御ブロツク図、第
4図は流路の性能低下の程度の判断を示すフロー
シート、第5図は流路閉塞度検出装置の制御ブロ
ツク図、第6図はポンプ性能低下についてのフロ
ーシート、第7図はポンプ性能低下度検出装置の
制御ブロツク図、第8図は膜分離装置の異常要因
別判別装置の制御ブロツク図、第9図は膜入口圧
力演算部のブロツク図である。
1……ポンプ、2……圧力検出器、3……温度
検出器、4……半透膜、5……流量計、6……圧
力検出器、7……水車、7′……入口ノズル、8
……モータ、9……制御装置、10……流量制御
弁、11,12,13,15,16,17……ブ
ロツク、18……ドライバ、21,22,23,
24,26,28……曲線、25……線、27…
…特性曲線、29……膜面圧力演算器、30……
希薄液流量演算器、31……膜性能低下度演算
器、32……膜性能低下度表示器、33……膜性
能低下度記憶部、34……タイマー、35……経
時変化表示器、37……閉塞度演算器、38……
閉塞度表示器、39……閉塞度記憶部、41……
タイマー、42……経時変化表示器、43……曲
線、44……膜面圧力演算器、45……希薄液流
量演算器、46……給液流量設定器、47……給
液流量演算器、48……給液流量比較器、49…
…性能低下度表示器、50……性能低下度記憶
部、51……タイマー、52……経時変化表示
器、53……膜入口圧力比較器、53A,53B
……出力端、54……膜出入口圧力演算部、55
……膜出口圧力比較器、55A,55B……出力
端、56……希薄溶液流量設定器、57,58,
59……アンドゲート、61,62,63……警
報器、64,65……曲線。
All drawings show embodiments of the present invention.
The figure is a flow sheet of the membrane separation device, Figure 2 is a flow sheet showing the case where the performance of the semipermeable membrane is degraded, and Figure 3 is a flow sheet showing the case where the performance of the semipermeable membrane is decreased.
The figure is a control block diagram of the membrane performance deterioration degree detection device, FIG. 4 is a flow sheet showing the determination of the degree of flow path performance deterioration, FIG. Flow sheet regarding pump performance deterioration, Fig. 7 is a control block diagram of the pump performance deterioration detection device, Fig. 8 is a control block diagram of the abnormality factor discrimination device of the membrane separation device, and Fig. 9 is the membrane inlet pressure calculation unit. FIG. 1... Pump, 2... Pressure detector, 3... Temperature detector, 4... Semipermeable membrane, 5... Flow meter, 6... Pressure detector, 7... Water turbine, 7'... Inlet nozzle , 8
... Motor, 9 ... Control device, 10 ... Flow control valve, 11, 12, 13, 15, 16, 17 ... Block, 18 ... Driver, 21, 22, 23,
24, 26, 28...Curve, 25...Line, 27...
...Characteristic curve, 29...Membrane surface pressure calculator, 30...
Dilute liquid flow rate calculator, 31... Membrane performance deterioration degree calculator, 32... Membrane performance deterioration degree indicator, 33... Membrane performance deterioration degree storage section, 34... Timer, 35... Time change indicator, 37 ...occlusion degree calculator, 38...
Occlusion degree indicator, 39... Occlusion degree storage section, 41...
Timer, 42... Time change indicator, 43... Curve, 44... Membrane surface pressure calculator, 45... Diluted liquid flow rate calculator, 46... Liquid supply flow rate setting device, 47... Liquid supply flow rate calculator , 48... liquid supply flow rate comparator, 49...
... Performance deterioration degree indicator, 50 ... Performance deterioration degree storage unit, 51 ... Timer, 52 ... Time change indicator, 53 ... Membrane inlet pressure comparator, 53A, 53B
... Output end, 54 ... Membrane inlet/outlet pressure calculation section, 55
... Membrane outlet pressure comparator, 55A, 55B ... Output end, 56 ... Dilute solution flow rate setting device, 57, 58,
59...and gate, 61,62,63...alarm, 64,65...curve.
Claims (1)
透膜と、半透膜より濃縮溶液側下流に配した系内
圧力保持手段、及び系内圧力保持手段の制御装置
を備えた溶液中の溶質を分離し希薄溶液と濃縮溶
液を得る膜分離装置において、ポンプ吐出圧側の
溶液の圧力P0を検出する手段と濃縮溶液の圧力
P2を検出する手段を備え、該圧力P0、P2の膜分
離装置の正常時の値と検出値P′0、P′2を夫々比較
することにより膜分離装置の異常を要因別に判断
する制御回路を備えたことを特徴とする膜分離装
置。 2 正常時の圧力P0、P2と検出された圧力P′0、
P′2が P0<P′0 で且つ P2<P′2 の場合に膜の性能低下を示す信号を出力し、 P0<P′0 で且つ P2>P′2 の場合に流路の閉塞を示す信号を出力し、 P0>P′0 で且つ P2>P′2 の場合にポンプの性能低下を示す信号を出力する
特許請求の範囲第1項記載の異常判別装置を備え
た膜分離装置。 3 供給溶液の加圧動作をする遠心力ポンプと、
半透膜と、半透膜より濃縮溶液側下流に配した系
内圧力保持手段、及び系内圧力保持手段の制御装
置を備えた溶液中の溶質を分離し希薄溶液と濃縮
溶液を得る膜分離装置において、ポンプ吐出圧側
の溶液の圧力P0を検出する手段と濃縮溶液の圧
力P2を検出する手段を備え、該圧力P0、P2の正
常時の値と検出値P′0、P′2を夫々比較することに
より、夫々ポンプ吐出側圧力P′0及び濃縮液圧力
P′2を入力して膜の性能低下した場合は膜の種類
により定まる膜の能力を表わす係数K0もしくは
Kの変化後の係数K′0もしくはK′を逆算し、流路
の閉塞をした場合は抵抗係数a1の変化後の係数
a′1を逆算し、ポンプの性能低下の場合はポンプ
吐出量Q0の変化後の吐出量Q′0を算出し、夫々の
場合において変化前後の値K0もしくはK、K′0も
しくはK′、a1、a′1、Q0、Q′0を夫々比較すること
により膜分離装置の要因別異常の程度を計算する
装置を備えた膜分離装置の異常度検出装置。 4 特許請求の範囲第3項記載の異常度検出装置
が夫々要因別の異常度を検出した場合に夫々膜の
種類により定まる係数K′0、抵抗係数a′1、半透膜
供給側圧力P′Mを夫々用いて圧力保持手段開度を
指示する信号を補正する制御回路を備えた膜分離
装置の異常度検出装置。[Scope of Claims] 1. A centrifugal pump that pressurizes the supplied solution, a semipermeable membrane, a system pressure holding means disposed downstream of the semipermeable membrane on the concentrated solution side, and a control device for the system pressure holding means. In a membrane separation device that separates solutes in a solution and obtains a dilute solution and a concentrated solution, it is equipped with a means for detecting the pressure P 0 of the solution on the pump discharge pressure side and a means for detecting the pressure of the concentrated solution.
Equipped with a means for detecting P 2 , abnormalities in the membrane separation device can be determined based on factors by comparing the normal values of the pressures P 0 and P 2 of the membrane separation device with the detected values P′ 0 and P′ 2 , respectively. A membrane separation device characterized by being equipped with a control circuit that performs the following steps. 2 Normal pressure P 0 , P 2 and detected pressure P′ 0 ,
When P′ 2 is P 0 < P′ 0 and P 2 < P′ 2 , a signal indicating the performance degradation of the membrane is output, and when P 0 < P′ 0 and P 2 > P′ 2 , a signal is output. The abnormality determining device according to claim 1, which outputs a signal indicating a blockage of the passage, and outputs a signal indicating a decrease in pump performance when P 0 >P' 0 and P 2 >P' 2 . Equipped with a membrane separation device. 3 a centrifugal pump that pressurizes the supply solution;
Membrane separation that separates solutes in a solution and obtains a dilute solution and a concentrated solution, which is equipped with a semipermeable membrane, an internal pressure holding means disposed downstream of the semipermeable membrane on the concentrated solution side, and a control device for the internal pressure holding means. The device includes means for detecting the pressure P 0 of the solution on the pump discharge pressure side and means for detecting the pressure P 2 of the concentrated solution, and the normal values of the pressures P 0 and P 2 and the detected values P′ 0 and P ′ 2 , the pump discharge side pressure P′ 0 and concentrate pressure
If the performance of the membrane deteriorates after inputting P'2 , the coefficient K0 or the coefficient K'0 or K' after the change in K, which represents the membrane capacity determined by the type of membrane, is calculated backwards and the flow path is blocked. If the resistance coefficient a is the coefficient after the change of 1
a′ 1 is calculated backwards, and in the case of a decrease in pump performance, the discharge amount Q′ 0 after the change in the pump discharge amount Q 0 is calculated, and in each case, the value K 0 or K before and after the change, K′ 0 or K 1. An abnormality degree detection device for a membrane separation device, comprising a device for calculating the degree of abnormality by factor in the membrane separation device by comparing ′, a 1 , a′ 1 , Q 0 , and Q′ 0 . 4 When the abnormality degree detection device recited in claim 3 detects the abnormality degree for each factor, the coefficient K'0 , the resistance coefficient a'1 , and the semipermeable membrane supply side pressure P, which are determined by the type of membrane, respectively. An abnormality detection device for a membrane separation device, which is equipped with a control circuit that corrects a signal indicating the opening degree of a pressure holding means using M.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6438683A JPS59189911A (en) | 1983-04-11 | 1983-04-11 | Membrane separation apparatus equipped with abnormality discriminating apparatus and abnormality detecting apparatus |
EP84901424A EP0142567B1 (en) | 1983-04-11 | 1984-04-10 | Control apparatus for reverse osmosis process system |
US06/668,521 US4772385A (en) | 1983-04-11 | 1984-04-10 | Control for use with reverse osmotic treatment system |
PCT/JP1984/000180 WO1984004049A1 (en) | 1983-04-11 | 1984-04-10 | Control apparatus for reverse osmosis process system |
GB08426165A GB2146263B (en) | 1983-04-11 | 1984-04-10 | Control apparatus for reverse osmosis process system |
DE3490181A DE3490181C2 (en) | 1983-04-11 | 1984-04-10 | |
DE19843490181 DE3490181T1 (en) | 1983-04-11 | 1984-04-10 | Control for use in a reverse osmotic treatment system |
CA000451806A CA1233128A (en) | 1983-04-11 | 1984-04-11 | Control for use with reverse osmotic treatment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6438683A JPS59189911A (en) | 1983-04-11 | 1983-04-11 | Membrane separation apparatus equipped with abnormality discriminating apparatus and abnormality detecting apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59189911A JPS59189911A (en) | 1984-10-27 |
JPH0380527B2 true JPH0380527B2 (en) | 1991-12-25 |
Family
ID=13256822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6438683A Granted JPS59189911A (en) | 1983-04-11 | 1983-04-11 | Membrane separation apparatus equipped with abnormality discriminating apparatus and abnormality detecting apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59189911A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8524972D0 (en) * | 1985-10-10 | 1985-11-13 | Atomic Energy Authority Uk | Liquid treatment |
JP2018161608A (en) * | 2017-03-24 | 2018-10-18 | 栗田工業株式会社 | Membrane fouling detection method and device of membrane separator |
-
1983
- 1983-04-11 JP JP6438683A patent/JPS59189911A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59189911A (en) | 1984-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SE513524C2 (en) | Systems and method for calculating and / or monitoring a fluid flow in a dialysis apparatus | |
JP5395451B2 (en) | Flow controller | |
US9314742B2 (en) | Method and system for reverse osmosis predictive maintenance using normalization data | |
US6530262B1 (en) | Method and device for determining the existence of leaks in a system with flowing fluid | |
CA1318151C (en) | Flow measurement system | |
US20110138936A1 (en) | Means for testing filter integrity in a liquid purification system | |
US20090314695A1 (en) | Tangential filtration device | |
US4680109A (en) | Membrane separator | |
WO1993013389A1 (en) | Pump station flowmeter with high frequency detector | |
JP2008080193A (en) | Filtration system and filtration method | |
JP3311139B2 (en) | Membrane module system | |
JPH0380527B2 (en) | ||
JP2010089036A (en) | Membrane separation apparatus, and operation management method of membrane separation apparatus | |
JPS59199004A (en) | Material separation apparatus by semipermeable membrane | |
JP2022171929A (en) | Control method of water purification apparatus | |
JPS60235604A (en) | Reverse osmotic membrane separation device | |
JP2510736B2 (en) | Water removal control monitoring system for dialysis equipment | |
JP2017221877A (en) | Reverse osmosis membrane separation device | |
JPH0797983A (en) | Diagnostic device for abnormal discharge of pump | |
JPH0568710A (en) | Ultrafiltration control and supervision system of dialyzator | |
JPH0350572B2 (en) | ||
JPH0295407A (en) | Device for monitoring filter | |
HU197953B (en) | Method for utilizing the static gain of head of liquid medium | |
JP2001349800A (en) | Leak detector for pipe | |
CN114072612B (en) | Method for detecting blockage in gas pipe network under pressure or vacuum and gas pipe network |