JPH0295407A - Device for monitoring filter - Google Patents

Device for monitoring filter

Info

Publication number
JPH0295407A
JPH0295407A JP24432388A JP24432388A JPH0295407A JP H0295407 A JPH0295407 A JP H0295407A JP 24432388 A JP24432388 A JP 24432388A JP 24432388 A JP24432388 A JP 24432388A JP H0295407 A JPH0295407 A JP H0295407A
Authority
JP
Japan
Prior art keywords
filters
filter
function
suction
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24432388A
Other languages
Japanese (ja)
Other versions
JP2595685B2 (en
Inventor
Morimasa Aoki
青木 守正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP63244323A priority Critical patent/JP2595685B2/en
Publication of JPH0295407A publication Critical patent/JPH0295407A/en
Application granted granted Critical
Publication of JP2595685B2 publication Critical patent/JP2595685B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation

Abstract

PURPOSE:To calculate the service life of filters by sampling groups of data on the negative pressures of the filters under suction with a controller at intervals of a certain time, calculating an mth-degree function for the filters from the mean values in the groups and comparing the function with the min. negative pressure of the filters under suction. CONSTITUTION:Groups of data on the negative pressures of n-filters 11 under suction are sampled with a controller 15 at intervals of a certain time, the max. and min. values are excluded and the mean values in the groups are obtd. An mth-degree function showing the change of the purifying performance of the filters 11 is calculated from the mean values and the service life of the filters is calculated by comparing the function with the min. negative pressure of the filters under suction. The accuracy of detected data is enhanced and the service life of the filters can be accurately calculated.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は圧縮機等のフィルタの残存寿命を検知するフ
ィルタの監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a filter monitoring device for detecting the remaining life of a filter of a compressor or the like.

[従来の技術] 圧縮機等のように空気及びガス等の使用流体をプラント
に連続供給する装置にあっては、プラントにクリーンな
流体を連続供給する必要がある。
[Prior Art] In devices such as compressors that continuously supply working fluids such as air and gas to a plant, it is necessary to continuously supply clean fluid to the plant.

このため従来にあっては、プラントの上流に通過流体の
抵抗とならない程度のフィルタを設けて対処していた。
Conventionally, this problem has been dealt with by providing a filter upstream of the plant that does not create resistance to the fluid passing through it.

[発明が解決しようとする課題] L5かし圧縮機等のように連続運転される装置では、運
転中にあってもフィルタの目詰りを検出し。
[Problems to be Solved by the Invention] In devices that are operated continuously, such as an L5 compressor, clogging of the filter is detected even during operation.

てフィルタの寿命を監視し、寿命に至ったフィルタを交
換または11備して一定以上の運転性能を維持させる必
要がある。
It is necessary to monitor the life of the filter and replace or replace the filter that has reached the end of its life in order to maintain operating performance above a certain level.

[課題を解決するための手段] 二の発明は上記課題を解決することを目的とし、この発
明は、一定時間毎にn個のフィルタの吸入負圧データ群
をサンプリングすると共に各群単位で最大・最小値を除
いて平均値を求め、これら平均値から上記フィルタの清
浄性能の変化を示すm次関数を求め、フィルタの限界吸
入負圧と照合するm次関数からフィルタの寿命を算出す
るコントローラからフィルタの監視装置を構成したもの
である。
[Means for Solving the Problems] The second invention aims to solve the above problems, and this invention samples suction negative pressure data groups of n filters at fixed time intervals, and samples the maximum suction pressure data for each group.・A controller that calculates the average value by excluding the minimum value, calculates the m-th function that indicates the change in the cleaning performance of the filter from these average values, and calculates the life of the filter from the m-th function that is checked against the limit suction negative pressure of the filter. A filter monitoring device is constructed from the following.

[作用] コントローラは一定時間毎にn個のフィルタの吸入負圧
データ群をサンプリングされた後各群単位で最大・最小
値を除いて平均値を求めると、これら平均値から上記フ
ィルタのm次関数を求め、求めたm次関数にフィルタの
限界吸入負圧を照合させてフィルタの寿命を算出する。
[Function] The controller samples suction negative pressure data groups of n filters at regular intervals, removes the maximum and minimum values for each group, and calculates the average value. A function is determined, and the filter's limit suction negative pressure is compared with the determined m-th order function to calculate the life of the filter.

[実施例] 以下にこの発明の好適一実施例を添付図面に基づいて説
明する。
[Embodiment] A preferred embodiment of the present invention will be described below based on the accompanying drawings.

まずこの発明の吸入フィルタの監視装置を取付は例とし
、て遠心圧縮機の概略構成を第2図のフローシートに基
づいて説明する。
First, the installation of the suction filter monitoring device of the present invention will be taken as an example, and the schematic structure of a centrifugal compressor will be explained based on the flow sheet shown in FIG.

図示されるように、遠心圧縮allの吸込み側には、ア
クチュエータ(図示せず)で駆動されて遠心圧ff1l
ilの羽根車に対する吸込み空気の流入角度を変えて遠
心圧縮I11の吸込空気流量を変え、遠心圧aaiiの
圧力曲線を変えるガイドベーン2が設けられ、遠心圧1
m機1の吐出部に接続した圧力流体搬送路3の下流に圧
縮空気の一部を遠心圧縮Illの吸込み側4に戻すか或
いは大気開放させてサージングを防止する放風制御弁5
が設けられている。実施例にあってこの遠心圧縮機1は
空気を吸い込みつつ圧縮して吐出する圧縮部を吐出方向
に直列に3段連結して構成されており、各圧縮部はそれ
ぞれインペラと、それらインペラをそれぞれ回転自在に
収容する圧縮部ケーシング(いずれも図示せず)から成
る。但しインペラの駆動軸(図示せず)はそれぞれギヤ
1へレーンまたは駆動ベルト等の駆動力伝達m構(図示
せず)で連結され、これら駆動軸が1つの駆動モータ6
で連動するように梢成しである。3段より下流に設けた
逆止弁25の上流を放風制御弁5で大気解放できるよう
に構成し、1段側のインペラの前にガイドベーン2を設
けることによって遠心圧aiiの流量を調節できるよう
に構成することで遠心圧MJR1の負荷・無負荷切換運
転を可能にしている。遠心圧縮機1の吸い込み側に吸入
フィルタ11が設けられる。
As shown in the figure, the centrifugal pressure ff1l is driven by an actuator (not shown) on the suction side of the centrifugal compressor all.
A guide vane 2 is provided to change the inflow angle of the suction air to the impeller of il to change the suction air flow rate of the centrifugal compression I11, and to change the pressure curve of the centrifugal pressure aaii.
An air discharge control valve 5 that prevents surging by returning a part of the compressed air to the suction side 4 of the centrifugal compression Ill downstream of the pressure fluid conveyance path 3 connected to the discharge part of the m machine 1 or releasing it to the atmosphere.
is provided. In this embodiment, the centrifugal compressor 1 is constructed by connecting three compression sections in series in the discharge direction, each of which sucks in air, compresses it, and then discharges it. It consists of a compressor casing (none of which is shown) that rotatably accommodates the compressor. However, the drive shafts (not shown) of the impellers are each connected to the gear 1 by a drive power transmission mechanism (not shown) such as a lane or a drive belt, and these drive shafts are connected to one drive motor 6.
The tops are arranged in such a way that they interlock with each other. The upstream side of the check valve 25 provided downstream from the third stage is configured so that it can be released to the atmosphere by the air discharge control valve 5, and the flow rate of the centrifugal pressure aii is adjusted by providing a guide vane 2 in front of the impeller on the first stage side. By configuring it so that it can do so, the centrifugal pressure MJR1 can be operated in a load/no-load mode. A suction filter 11 is provided on the suction side of the centrifugal compressor 1.

実施例にあってコントローラ15は、第1図に示しであ
るようにCPU (中央演算処理装置:以下単にCPU
という)16と、上記遠心式圧縮機1のアナログ運転デ
ータをデジタル運転データに変換し、てCPU16に入
力するA、/D(アナログ、/デジタル信号:以下A 
、/ Dという)変換器18と、(:’、PU16との
間でデータを入出力するPIO(プロセス入出力装置二
以下PIOという)17、CPU16が読み込む遠心圧
縮機1の運転を記憶させたマツプ20とから構成されて
いる。
In the embodiment, the controller 15 is a CPU (central processing unit: hereinafter simply referred to as a CPU) as shown in FIG.
A, /D (analog, /digital signal: hereinafter referred to as A
, /D) converter 18 and (:', PIO (process input/output device 2 or below, referred to as PIO) 17 that inputs and outputs data between the PU 16 and the CPU 16 stores the operation of the centrifugal compressor 1. It is composed of a map 20.

A/D変換器18には電流変換器19を介して入力され
る上記駆動モータ6の電流値、圧力変換器23を介し、
て入力される遠心圧縮機1の吐出圧が入力される。28
はレシーバタンタである。
The current value of the drive motor 6 is inputted to the A/D converter 18 via the current converter 19, and the current value of the drive motor 6 is inputted to the A/D converter 18 via the pressure converter 23.
The discharge pressure of the centrifugal compressor 1 is input. 28
is the receiver tanta.

さてこの実施例にあって吸入フィルタ11の下流には吸
入フィルタ11の吸入負圧を電圧の変化として検出する
検出手段とし、て圧力変換器13が設置される。圧力検
出器13の検出電圧をA/D変換器18を通じてコント
ローラ15に入力するように構成しである。一方A/D
変換器18は設定された一定時間のサンプリング周期T
毎に検出電圧をサンプリングし、て順次量子化し、符号
化信号をコントローラ15に入力するように構成しであ
る。
In this embodiment, a pressure transducer 13 is installed downstream of the suction filter 11 as a detection means for detecting the suction negative pressure of the suction filter 11 as a change in voltage. The configuration is such that the detected voltage of the pressure detector 13 is input to the controller 15 through the A/D converter 18. On the other hand A/D
The converter 18 has a sampling period T of a set constant time.
The configuration is such that the detected voltage is sampled each time, sequentially quantized, and an encoded signal is input to the controller 15.

他方CPU16は以下の制御を実行するように構成され
る。
On the other hand, the CPU 16 is configured to execute the following control.

CPU16は第1図のフローチャートに示すようにスタ
ート40を経て先ず判断41で放風制御弁5が励磁され
て放風制御弁5を閉じ遠心圧縮器1が負荷運転している
かどうかを判断し、YESの場合、負荷運転の経過時間
を積算すると共に判断42で一定時間経過するとカウン
ター43でサブルーチン44に入る。このサブルーチン
44では先ずステップ45で圧力検出器13の出力電圧
PF+ 、負荷運転時間TH及び電流値AをCPU16
に読み込み、判断46で電流値Aが遠心圧縮機1の駆動
モータの下限負荷を設定するMIN・AMPの設定電流
値を越えるとき、即ち負荷運転を継続しているときにス
テップ47で読み込んだ差圧PFに遠心圧縮機1の駆動
モータの上限負荷を設定するMAX −AMPに基づく
補正係数f1を掛けて負荷率に対する差圧DPEを求め
る。サブルーチン44ではこの差圧DPEを10個サン
プリングする。サブルーチン44をぬけるとCPU16
はステップ48で10個単位のデータ群から最大・最小
側の差圧DPEをそれぞれ2個取除き中間の6個の平均
値DPIを求め、判断49でこの平均値DPIと上記吸
入フィルタ11の許容限界吸入負圧(例えば600II
IIAq)との比較を実行する0判断49の判定が許容
限界吸入負圧を越えるとき、CPU16はデイスプレィ
等の表示手段に出力して、“吸入フィルタ圧損大” (
ステップ50)、“軽故障” (ステップ51)を実行
する。
As shown in the flowchart of FIG. 1, the CPU 16 goes through a start 40 and first determines in a judgment 41 whether or not the blow-off control valve 5 is energized and closes, and the centrifugal compressor 1 is operating under load. If YES, the elapsed time of the load operation is integrated, and when a certain period of time has elapsed in judgment 42, a subroutine 44 is entered in counter 43. In this subroutine 44, first, in step 45, the output voltage PF+ of the pressure detector 13, the load operating time TH, and the current value A are sent to the CPU 16.
When the current value A exceeds the set current value of MIN・AMP that sets the lower limit load of the drive motor of the centrifugal compressor 1 in judgment 46, that is, when the load operation is continued, the difference read in step 47 The pressure PF is multiplied by a correction coefficient f1 based on MAX-AMP, which sets the upper limit load of the drive motor of the centrifugal compressor 1, to obtain the differential pressure DPE with respect to the load factor. In subroutine 44, ten differential pressures DPE are sampled. After exiting subroutine 44, CPU 16
In step 48, two maximum and minimum differential pressure DPEs are removed from the 10-piece data group to obtain the average value DPI of six intermediate values, and in judgment 49, this average value DPI and the tolerance of the above-mentioned suction filter 11 are determined. Limit suction negative pressure (e.g. 600 II
When the judgment of 0 judgment 49, which executes the comparison with IIAq), exceeds the permissible limit suction negative pressure, the CPU 16 outputs to a display means such as a display, and displays "Large suction filter pressure loss" (
Step 50) and "minor failure" (step 51) are executed.

サブルーチン50は5個の平均値DPIをサンプリング
するものである。次いでC,P U 16はステップ5
2でサンプリングし、た平均値DPIから最大・最小の
2個を取除き中間の3個の平均値DPを求める9判断5
3はリセット後に事前の平均値DPが記憶されているか
否かの判定を実行しNOの時はこのDPをDPSとする
1判断54でDP<DPI十f2を判定する、即ち最新
の平均値DPがフィルター交換しリセット後の値DPS
にf2を加えた値を越える関係にあるときステップ55
で予防保全呼出を表示、ステップ56で吸入フィルタ整
備を表示させる。ステップ57はこれまでのデータのサ
ンプリング時間をTnとしてステップ58に進み、平均
値DPをFIFO(ファーストイン・ファーストアウト
)のメモリに順次、符号化信号として入力し、ステップ
59でサンプリング時間Tnを他のFIFOのメモリに
順次、符号化信号として入力する。この後CPU18は
判17i60で平均値DPのサンプリング数が3個ある
かを確認し1、次の判断61でDPIが増加しているか
を判定する。即ち、DPI <DP2 <DP3の関係
が成立するとき、ステップ62〜65で寿命関数ΔP=
AT2+BT+C(第3図参照)を求める計算を行い、
次いでステップ66でフィルターの寿命TLを計算する
。第1図の例ではフィルタの差圧が600111AQに
なるまでの時間を計算し。
Subroutine 50 samples five average DPI values. Then C, P U 16 goes to step 5
9 Judgment 5: Remove the maximum and minimum two values from the average value DPI sampled in step 2 to obtain the average value DP of the three intermediate values.
3, after resetting, it is determined whether or not the previous average value DP is stored; if NO, this DP is set as DPS; 1, in determination 54, it is determined that DP<DPI+f2, that is, the latest average value DP is the value after replacing the filter and resetting DPS
If the relationship exceeds the value obtained by adding f2 to
In step 56, preventive maintenance call is displayed, and in step 56, intake filter maintenance is displayed. In step 57, the sampling time of the data up to now is set as Tn, and the process proceeds to step 58, where the average value DP is sequentially input into a FIFO (first-in, first-out) memory as an encoded signal, and in step 59, the sampling time Tn is set as The signals are sequentially input to the FIFO memory as encoded signals. Thereafter, the CPU 18 checks in step 17i60 whether the number of samples of the average value DP is three (1), and in the next judgment 61 judges whether the DPI is increasing. That is, when the relationship of DPI < DP2 < DP3 holds, the life function ΔP=
Perform calculations to obtain AT2+BT+C (see Figure 3),
Then, in step 66, the filter life TL is calculated. In the example shown in Figure 1, the time required for the differential pressure across the filter to reach 600111AQ is calculated.

ている、そしてステップ67で寿命時間TLから最新の
サンプリング時間T3までの経過時間をひいて残存寿命
時間TRを求める。ステップ70で吸入フィルタ11の
残存か金時間TRを表示させる。
Then, in step 67, the remaining life time TR is obtained by subtracting the elapsed time from the life time TL to the latest sampling time T3. At step 70, the amount of time TR remaining in the suction filter 11 is displayed.

以上のように、吸入フィルタの残存寿命を高精度に検出
し1、表示できるから吸入フィルタ11の速やかな清浄
、交換が可能になる 尚実施例にあっては本発明を遠心圧a機の吸入フィルタ
に適用した説明をしたが、遠心圧縮機の吸入フィルタに
限るものでなく、また使用流体も空気に限るものでない
、また、寿命関数は二次に限らず一次以上の関数とする
ことができる。
As described above, since the remaining life of the suction filter 11 can be detected and displayed with high precision, the suction filter 11 can be quickly cleaned and replaced. Although the explanation is applied to filters, the application is not limited to centrifugal compressor suction filters, and the fluid used is not limited to air.Also, the life function is not limited to quadratic, but can be a linear or higher order function. .

[発明の効果] 以上説明したことから明らかなようにこの発明によれば
次の如く優れた効果を発揮する。
[Effects of the Invention] As is clear from the above explanation, the present invention exhibits the following excellent effects.

一定時間毎にn個のフィルタの吸入負圧データ群をサン
プリングすると共に各群単位で最大・最小値を除いて平
均値を求め、これら平均値から上記フィルタの清浄性能
を示すm次関数を求め、フィルタの限界吸入負圧と照合
するm次関数からフィルタの寿命を算出するコントロー
ラを有して吸入フィルタの監視装置を構成したから検出
データの精度を向上し正確なフィルタの寿命時間を求め
ることができる。
Sample the suction negative pressure data groups of n filters at regular intervals, remove the maximum and minimum values for each group, and find the average value, and from these average values, find the m-th order function that indicates the cleaning performance of the filter. Since the suction filter monitoring device is configured with a controller that calculates the filter life from an m-order function that is checked against the limit suction negative pressure of the filter, it is possible to improve the accuracy of detection data and obtain accurate filter life time. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の好適一実施例を示すフローシート、
第2図はこの発明に係る遠心圧縮器の概略図、第3図は
フィルタの時間に対する吸入負圧のサンプリングデータ
とフィルタのm次残存寿命性能との関係を示す概略図で
ある、図中、11は吸入フィルタ、15はコントローラ
である。 特許出願人  石川島播磨重工業株式会社代理人弁理士
 絹  谷  信  雄
FIG. 1 is a flow sheet showing a preferred embodiment of the present invention;
FIG. 2 is a schematic diagram of a centrifugal compressor according to the present invention, and FIG. 3 is a schematic diagram showing the relationship between sampling data of suction negative pressure with respect to filter time and m-th order remaining life performance of the filter. 11 is a suction filter, and 15 is a controller. Patent applicant Nobuo Kinuya, patent attorney representing Ishikawajima-Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、一定時間毎にn個のフィルタの吸入負圧データ群を
サンプリングすると共に各群単位で最大・最小値を除い
て平均値を求め、これら平均値から上記フィルタの清浄
性能の変化を示すm次関数を求め、フィルタの限界吸入
負圧と照合するm次関数からフィルタの寿命を算出する
コントローラを備えたことを特徴とするフィルタの監視
装置。
1. Sample the suction negative pressure data groups of n filters at regular intervals, and calculate the average value excluding the maximum and minimum values for each group, and use these average values to show the change in the cleaning performance of the filter. A filter monitoring device comprising: a controller that calculates the life of the filter from the m-th function, which calculates the m-th function and compares it with the filter's limit suction negative pressure.
JP63244323A 1988-09-30 1988-09-30 Filter life prediction method Expired - Fee Related JP2595685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63244323A JP2595685B2 (en) 1988-09-30 1988-09-30 Filter life prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63244323A JP2595685B2 (en) 1988-09-30 1988-09-30 Filter life prediction method

Publications (2)

Publication Number Publication Date
JPH0295407A true JPH0295407A (en) 1990-04-06
JP2595685B2 JP2595685B2 (en) 1997-04-02

Family

ID=17117009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63244323A Expired - Fee Related JP2595685B2 (en) 1988-09-30 1988-09-30 Filter life prediction method

Country Status (1)

Country Link
JP (1) JP2595685B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298376A (en) * 2004-04-08 2005-10-27 Mitsubishi Chemicals Corp Method for producing acrolein and acrylic acid
JP2006046762A (en) * 2004-08-03 2006-02-16 Toho Gas Co Ltd Failure prediction and diagnostic method and device for ghp
JP2007501193A (en) * 2003-08-06 2007-01-25 ビーエーエスエフ アクチェンゲゼルシャフト Method for continuously gas phase partial oxidation of at least one organic compound with heterogeneous catalyst
JP2010084736A (en) * 2008-10-02 2010-04-15 Hokuetsu Kogyo Co Ltd Drain discharge method and mechanism for air compressor
JP2010227899A (en) * 2009-03-30 2010-10-14 Metawater Co Ltd Life prediction system of ceramic filter for dust collection
EP3009218A1 (en) 2014-10-06 2016-04-20 Fanuc Corporation Wire electric discharge machine having estimation function for filter replacement timing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101221A (en) * 1984-10-23 1986-05-20 Nippon Donarudoson Kk Apparatus for detecting clogging of filter element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61101221A (en) * 1984-10-23 1986-05-20 Nippon Donarudoson Kk Apparatus for detecting clogging of filter element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501193A (en) * 2003-08-06 2007-01-25 ビーエーエスエフ アクチェンゲゼルシャフト Method for continuously gas phase partial oxidation of at least one organic compound with heterogeneous catalyst
JP2005298376A (en) * 2004-04-08 2005-10-27 Mitsubishi Chemicals Corp Method for producing acrolein and acrylic acid
JP2006046762A (en) * 2004-08-03 2006-02-16 Toho Gas Co Ltd Failure prediction and diagnostic method and device for ghp
JP2010084736A (en) * 2008-10-02 2010-04-15 Hokuetsu Kogyo Co Ltd Drain discharge method and mechanism for air compressor
JP2010227899A (en) * 2009-03-30 2010-10-14 Metawater Co Ltd Life prediction system of ceramic filter for dust collection
EP3009218A1 (en) 2014-10-06 2016-04-20 Fanuc Corporation Wire electric discharge machine having estimation function for filter replacement timing
US10179368B2 (en) 2014-10-06 2019-01-15 Fanuc Corporation Wire electric discharge machine having estimation function for filter replacement timing

Also Published As

Publication number Publication date
JP2595685B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US5477731A (en) Method and apparatus for detecting a fouled fluid filter
US4971516A (en) Surge control in compressors
KR100386179B1 (en) Surge detection device
US4502833A (en) Monitoring system for screw compressor
US20030133808A1 (en) Centrifugal pump performance degradation detection
EP3249236A1 (en) Fume extraction
JPH0650268A (en) Device and method of controlling main driving machine for compressor
JPH0295407A (en) Device for monitoring filter
CN106678069A (en) Detection method for preventing surge of centrifugal compressor from occurring
EP0352469A2 (en) Method and apparatus for determining surge conditions in a compressor
US10378536B2 (en) Air compressor discharge system
US6599094B2 (en) Screw compressor system and operating method thereof
JP6742509B2 (en) Liquid supply type gas compressor
EP2386762A1 (en) Method of anti-surge protection for a dynamic compressor using a surge parameter
JP2501656Y2 (en) Heat exchanger monitoring equipment
KR101802839B1 (en) Turbo compressor and driving method of thereof
US20130045076A1 (en) Compressor control method and system
JPH0816479B2 (en) Surge prevention device for compressor
JP2655431B2 (en) Constant flow control device for centrifugal compressor
JPS5941732A (en) Minute indoor pressure difference control type air conditioning equipment
JPH03107599A (en) Control system of axial-flow pump device
KR101937221B1 (en) Turbo compressor
JP3581139B2 (en) Flow control method for fluid machinery
US6494672B1 (en) Method and apparatus for antisurge control of turbocompressors having complex and changing surge limit lines
JP2000234598A (en) Trouble deciding method for multistage centrifugal compressor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees