JPH0380133A - Distributed refractive index type optical device and its production - Google Patents

Distributed refractive index type optical device and its production

Info

Publication number
JPH0380133A
JPH0380133A JP21473389A JP21473389A JPH0380133A JP H0380133 A JPH0380133 A JP H0380133A JP 21473389 A JP21473389 A JP 21473389A JP 21473389 A JP21473389 A JP 21473389A JP H0380133 A JPH0380133 A JP H0380133A
Authority
JP
Japan
Prior art keywords
refractive index
glass
base material
distribution
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21473389A
Other languages
Japanese (ja)
Other versions
JP2515889B2 (en
Inventor
Satoshi Noda
聡 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1214733A priority Critical patent/JP2515889B2/en
Priority to DE19904026312 priority patent/DE4026312C2/en
Publication of JPH0380133A publication Critical patent/JPH0380133A/en
Priority to US08/012,785 priority patent/US5356840A/en
Application granted granted Critical
Publication of JP2515889B2 publication Critical patent/JP2515889B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain the optical device capable of permitting a greater latitude in material design and in which refractive indexes can be widely varied by allowing the independent presence of the refractive index distributions due to the concn. gradients of the glass forming oxide constituent elements and glass modifying oxide constituent ions in the same optical device. CONSTITUTION:The concns. of the metallic elements such as Ti and Nb being the glass forming oxide constituents for varying the refractive indexes are distributed in the sol-gel method as the first stage. An univalent ion such as Na<+> and K<+> is then uniformly incorporated into the treated material to obtain a gel, and the gel is dried and sintered to obtain a glass base material. The base material is dipped in a molten salt contg. another univalent ion, and another concn. distribution is imparted by ion exchange. As a result, the desired distributed refractive index type optical element having independently a glass forming oxide constituent element concn. distribution and a glass modifying oxide constituent cation concn. distribution (imparted by ion exchange in second stage) in one glass base material is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、屈折率分布型光学素子及びその製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gradient index optical element and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

屈折率分布型光学素子は、その優れた収差補正能力から
次世代の光学系に欠くことのできない光学素子として注
目されている。
Gradient index optical elements are attracting attention as optical elements indispensable for next-generation optical systems because of their excellent aberration correction ability.

現在すでに市販されている5ELFOC(登録商標)レ
ンズやスラブレンズをはじめ、多くの企業、研究機関で
研究開発されている種々の屈折率分布型光学素子がある
There are various graded refractive index optical elements that are being researched and developed by many companies and research institutes, including 5ELFOC (registered trademark) lenses and slab lenses that are currently on the market.

屈折率分布型光学素子は、その媒質に屈折率分布を付け
ることによって媒質自体にパワー(屈折力)を持たせた
ものである。そのパワーは、屈折率分布によって決定さ
れるものであって、パワーを大きくするためには、屈折
率nの勾配差(以下Δnという。)を大きくすれば良い
。従って、現在このΔnを大きくすることが屈折率分布
型光学素子の研究開発に与えられた大きな課題であり、
多くの研究者によってΔnを大きくするための研究がな
されている。
A refractive index gradient optical element is one in which the medium itself has power (refractive power) by imparting a refractive index distribution to the medium. The power is determined by the refractive index distribution, and in order to increase the power, it is sufficient to increase the difference in slope of the refractive index n (hereinafter referred to as Δn). Therefore, increasing Δn is currently a major challenge in the research and development of gradient index optical elements.
Many researchers are conducting research to increase Δn.

ところで、現在までの屈折率分布型光学素子の開発は、
上述した如く、Δnを大きく、外径を大きくというアプ
ローチが多いが、光学素子の持つ色収差を小さくしよう
とする取組みは遅れている。
By the way, the development of gradient index optical elements to date has been as follows:
As described above, there are many approaches to increasing Δn and increasing the outer diameter, but efforts to reduce the chromatic aberration of optical elements are lagging behind.

而も、屈折率分布型光学素子は、優れた収差補正能ノJ
があるためにレンズの構成枚数を激減させることが可能
であるが、色収差の補正はレンズ枚数が減る程困難にな
るという矛盾かある。従って、屈折率分布型光学素子を
含み且つ色収差をも十分に補正したレンズ系を作るには
、場合によっては、色消し用のレンズを加えるなどの手
段をこうしる必要も出てくるため、屈折率分布型光学素
子を用いることのメリットか半減してしまう。
Moreover, the refractive index gradient optical element has excellent aberration correction ability.
This makes it possible to drastically reduce the number of lenses, but there is a paradox in that the smaller the number of lenses, the more difficult it becomes to correct chromatic aberration. Therefore, in order to create a lens system that includes a gradient index optical element and sufficiently corrects chromatic aberration, it may be necessary to add an achromatic lens or other means. The advantage of using a gradient index optical element is halved.

そこで、少ないレンズ枚数で色収差をも補正されたレン
ズ系を作るためには、レンズ−枚−枚で発生する色収差
自体を小さくすることが大切になる。そのための屈折率
分布型光学素子の媒質に要求される特性は、媒質が高屈
折率−低分散〜低屈折率−高分散に変化することである
。そして、本件と同一の出願人による特願平11112
92号によれば、L i 20を5mo1%以上含み且
つアツベ数が50以上であるガラス母材を、Na”、に
+。
Therefore, in order to create a lens system in which chromatic aberration is also corrected using a small number of lenses, it is important to reduce the chromatic aberration itself that occurs between the lenses. The characteristics required of the medium of the gradient index optical element for this purpose are that the medium changes from high refractive index-low dispersion to low refractive index-high dispersion. And, patent application No. 11112 filed by the same applicant as this case.
According to No. 92, a glass base material containing 5 mo1% or more of L i 20 and having an Atsube number of 50 or more is Na'', +.

Rh+のうちの少なくとも一種以上を含んだ溶弊塩中に
浸漬することが、又は、Na2O+ K2O,Rb2O
のうち少なくとも一種以上を5mo1%以上含み且つア
ツベ数が50以上のガラス母材を、Li+を含んだ溶融
塩中に浸漬することにより、上記特性の屈折率分布型光
学素子が得られることが述べられている。 即ち、L1
+とNa+やに+とのイオン交換によりT1+を利用し
たものより色分散特性の良好な屈折率分布型光学素子が
得られることに注目して、系統的に種々のLi系ガラス
のイオン交換実験を行なった。この実験では、素材の光
学特性としてガラス母材のnd。、ν、。(中心部の値
)と、イオン交換後のndex+  νdex  (最
外周での値)を測定し、Δn、Δνを求めて検討した。
Immersion in a molten salt containing at least one of Rh+, or Na2O+ K2O, Rb2O
It is stated that a gradient index optical element having the above characteristics can be obtained by immersing a glass base material containing 5 mo1% or more of at least one of the above and having an Atsube number of 50 or more in a molten salt containing Li+. It is being That is, L1
Focusing on the fact that a graded index optical element with better chromatic dispersion characteristics than those using T1+ can be obtained by ion exchange between + and Na+ and +, we systematically performed ion exchange experiments on various Li-based glasses. I did this. In this experiment, the nd of the glass base material was used as the optical property of the material. ,ν,. (value at the center) and ndex+vdex (value at the outermost periphery) after ion exchange were measured, and Δn and Δν were determined and studied.

その結果屈折率分布型光学素子として得られる特性にガ
ラス母材の特性が大きく関与しているということを知る
に至った。特に、Δνはガラス母材のアツベ数ν、によ
ってほぼ決定づけられることか明らかになった。
As a result, we have come to know that the properties of the glass base material are greatly involved in the properties obtained as a gradient index optical element. In particular, it has become clear that Δν is almost determined by the Atsube number ν of the glass base material.

この関係をさらに整理することによりLi”!K。By further organizing this relationship, Li”!K.

1i+Q等による等Li+の濃度勾配によって屈折率分
布を得る組成系において、屈折率分布光学特性を上記特
性とするためには、ガラス母材のアツベ数を50以上に
すべきという重大な条件を見い出すことができ、その技
術を完成したのである。
In a composition system in which a refractive index distribution is obtained by an equal concentration gradient of Li+ such as 1i+Q, in order to achieve the above-mentioned refractive index distribution optical properties, an important condition has been discovered that the Atsube number of the glass base material should be 50 or more. The technology was perfected.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、現在開発されている屈折率分布型光学素子にお
いてこの様な特性のものは少なく、実現しているもので
あってもΔnは非常に小さい値にとどまっている。
However, few of the currently developed graded index optical elements have such characteristics, and even in those that do, Δn remains at a very small value.

それは、主に屈折率分布型光学素子の製造方法に起因す
るものである。例えば、イオン交換法では、Δnを大き
くとるためにガラス修飾酸化物(ガラス形成に直接関係
しないもの)を構成するものとしてガラスの中に導入さ
れている1価イオンであるTI+とNa+やに+とのイ
オン交換により濃度勾配を付与しているが、TI+を使
用するとΔnが大きくとれる反面アツベ数の変化特性は
高屈折率−高分散〜低屈折率−低分散となってしまい、
色収差が大きく発生してしまう。又、Ag+とNa+と
の交換によってもΔnは大きくとれるものの、色収差は
大きく発生してしまう。更に、上述の如<、Li+を利
用して色収差を大きく改善した例もあるが、これはその
反面Δnが小さくなり、その効果は充分に発揮されてい
ない。即ち、Li+の含有量を増すことによってΔnの
改善は見られるものの、ガラス母材の耐性や、揮発し易
いアルカリ成分をガラス母材中に安定して溶かし込む技
術の難しさから限度があり、現実に十分な効果を発揮す
るレベルのものは得られていない。イオン交換法では、
二価以上のイオンの交換スピードが極めて遅いことから
実質的に1価の陽イオンでしか濃度勾配を付与すること
ができないため、その分布付与のためのイオン濃度勾配
のバリエーションが極端に限られており、上記の如くΔ
nか大きく且つ色収差発生の小さいものは得られていな
い。
This is mainly due to the method of manufacturing the gradient index optical element. For example, in the ion exchange method, monovalent ions TI+, Na+, and A concentration gradient is imparted by ion exchange with TI+, but while Δn can be large when TI+ is used, the change characteristics of the Atsube number are from high refractive index - high dispersion to low refractive index - low dispersion,
Significant chromatic aberration will occur. Further, although Δn can be increased by replacing Ag+ with Na+, a large chromatic aberration occurs. Furthermore, as mentioned above, there are examples in which chromatic aberration is significantly improved by using Li+, but on the other hand, Δn becomes small, and the effect is not fully exhibited. That is, although it is possible to improve Δn by increasing the Li+ content, there is a limit due to the resistance of the glass base material and the difficulty in stably dissolving the easily volatile alkali component into the glass base material. We have not yet achieved a level that is sufficiently effective in reality. In the ion exchange method,
Since the exchange speed of divalent or higher ions is extremely slow, it is practically possible to create a concentration gradient only with monovalent cations, so variations in the ion concentration gradient for creating the distribution are extremely limited. As above, Δ
It has not been possible to obtain a lens in which n is large and chromatic aberration is small.

又、ゾルゲル法による開発も進められており、TiやG
e、 Zrなど屈折率を高め且つガラス形成酸化物(ガ
ラスを形成するために元から含まれているもの)を構成
する金属元素をウェットゲルから酸などによって溶出さ
せてその濃度勾配を付与する方法があるが、この方法で
はある程度大きなΔnか得られるものの、アラへ数の変
化特性は高屈折率−高分散〜低屈折率−低分散であって
、色収差が大きく発生してしまい、屈折率分布型光学素
子の特性はTI+、:Na+型のイオン交換によるもの
に近いものである。
Also, development using the sol-gel method is progressing, and Ti and G
e. A method in which metal elements such as Zr, which increase the refractive index and constitute glass-forming oxides (those originally included in order to form glass) are eluted from a wet gel with an acid or the like to create a concentration gradient. However, although this method can obtain a somewhat large Δn, the change in the number is from high refractive index - high dispersion to low refractive index - low dispersion, which causes large chromatic aberration and changes the refractive index distribution. The characteristics of the type optical element are close to those obtained by ion exchange of the TI+, :Na+ type.

本発明は、上記問題点に鑑み、Δnか実用的に十分大き
く且つアツベ数の変化特性か高屈折率低分散〜低屈折率
−高分散であって色収差か小さいものを初めとし種々の
特性の屈折率分布型光学素子及びその製造方法を提供す
ることを目的とする。
In view of the above-mentioned problems, the present invention has been developed to have a sufficiently large Δn for practical use, and to have various characteristics such as changes in Abbe number, high refractive index, low dispersion, low refractive index, high dispersion, and small chromatic aberration. An object of the present invention is to provide a gradient index optical element and a method for manufacturing the same.

〔課題を解決するための手段及び作用〕本発明による屈
折率分布型光学素子は、カラス形成酸化物を構成する元
素の濃度勾配による屈折率分布と、ガラス修飾酸化物を
構成する陽イオンの濃度勾配による屈折率分布とが同一
光学素子内に存在し、且つ前記側屈折率分布が互いに独
立的に存在していることを特徴とするものである。
[Means and effects for solving the problem] The refractive index distribution type optical element according to the present invention has a refractive index distribution due to the concentration gradient of elements constituting the glass-forming oxide and a concentration of cations constituting the glass-modifying oxide. The refractive index distribution according to the gradient exists in the same optical element, and the side refractive index distributions exist independently of each other.

又、本発明による屈折率分布型光学素子の製造方法は、
ガラス母材のガラス形成酸化物を構成する元素に濃度勾
配を与えて上記ガラス母材に第1の屈折率分布を持たせ
る第1工程と、上記ガラス母材のガラス修飾酸化物を構
成する陽イオンに濃度勾配を与えて上記カラス母材に第
2の屈折率分布を持たせる第2工程とを備えていること
を特徴としており、更に、前記第2工程が、少なくとも
1価の陽イオンを1種類以上含有した溶融塩中に前記第
1工程によって形成されたガラス母材を浸漬させるイオ
ン交換法によって行なわれることを特徴としている。以
下、これらの点について詳細に説明する。
Further, the method for manufacturing a gradient index optical element according to the present invention includes:
a first step of imparting a concentration gradient to the elements constituting the glass-forming oxide of the glass base material to give the glass base material a first refractive index distribution; and a first step of providing the glass base material with a first refractive index distribution; and a second step of imparting a concentration gradient to the ions to give the glass base material a second refractive index distribution, and further, the second step includes at least monovalent cations. It is characterized in that it is carried out by an ion exchange method in which the glass base material formed in the first step is immersed in a molten salt containing one or more types. These points will be explained in detail below.

本件の発明者は、例えばまずゾルゲル法によって2価の
屈折率に大きく寄与する金属元素の濃度分布を持たせた
ガラス母材を作り且つそのカラス母材に例えばイオン交
換することによってTI″等の1価イオンの濃度分布を
持たせて該2価金属元素の濃度分布とは独立したイオン
濃度分布を持たせることにより、Δnが実用的に十分大
きく且つ色収差特性の良い屈折率分布型光学素子か得ら
れることを見い出した。即ち、これら二つの工程を経て
互いに独立した金属元素又はイオンの濃度分布付与を行
なうにあたっては、個々の工程において濃度分布を持た
せたい金属元素又はイオンのみの濃度を変化させ、他の
金属元素又はイオンの濃度は全く固定されていなければ
ならないが、本件発明者は、種々の検討を重ねた結果、
イオン交換においては1価イオンのみが交換され、2価
以上の金属元素は実質的に固定されたまま何ら影響を受
けないことに着目し、既に1価イオンでないものによっ
て濃度勾配を付与したカラスを1価イオンでイオン交換
する手広を用いることにした。即ち、予め1価イオンで
ない金属元素に濃度勾配を付与でき且つその後の第2工
程であるイオン交換でイオン交換するための1価イオン
をガラス母材中に導入できる工程即ち第1工程としてゾ
ルゲル法を選定した。そして、イオン交換工程で1価イ
オンの交換を阻害しない金属元素であって第1工程で濃
度勾配をもたせる元素としては、ガラス形成酸化物を構
成する元素が良いということがわかってきた。
The inventor of the present invention first creates a glass base material with a concentration distribution of metal elements that greatly contribute to the divalent refractive index by a sol-gel method, and then performs ion exchange on the glass base material to obtain TI'', etc. By providing a concentration distribution of monovalent ions and an ion concentration distribution independent of the concentration distribution of the divalent metal element, it is possible to create a gradient index optical element with a sufficiently large Δn for practical use and good chromatic aberration characteristics. In other words, when imparting concentration distributions of metal elements or ions independent of each other through these two steps, it is necessary to change the concentration of only the metal elements or ions for which the concentration distribution is desired in each step. Although the concentration of other metal elements or ions must be completely fixed, the inventor of the present invention, after various studies, found that
Focusing on the fact that in ion exchange, only monovalent ions are exchanged, and metal elements with a valence of 2 or more remain essentially fixed and unaffected, we developed a method to create a glass with a concentration gradient created by non-monovalent ions. I decided to use a handbag that exchanges ions with monovalent ions. That is, the sol-gel method is used as the first step, which is a process in which a concentration gradient can be imparted to metal elements that are not monovalent ions in advance, and monovalent ions can be introduced into the glass base material for ion exchange in the subsequent second step. was selected. It has also been found that elements constituting glass-forming oxides are suitable as metal elements that do not inhibit the exchange of monovalent ions in the ion exchange step and that provide a concentration gradient in the first step.

これらの研究をふまえ、まず第1工程としてゾルゲル法
によってカラス形成酸化物の構成物であって且つ屈折率
を変化させる金属元素例えばTl。
Based on these studies, first, as a first step, a metal element, such as Tl, which is a constituent of the crow-forming oxide and which changes the refractive index, is prepared using a sol-gel method.

Nb、 Zr、 Geに濃度分布を付与し、Na+、 
K+、 TI”、 Cs+、  Li +、 Rb+、
 Ag+などの1価イオンを均一に含有させたゲル体を
作成して乾燥・焼結を行なってガラス母材を得る。
Add concentration distribution to Nb, Zr, Ge, Na+,
K+, TI", Cs+, Li+, Rb+,
A gel body uniformly containing monovalent ions such as Ag+ is prepared and dried and sintered to obtain a glass base material.

勿論、これだけで充分屈折率分布型光学素子としての能
力はあるが、そのガラス母相をさらに他の1価イオンを
含む溶融塩中に浸漬して即ちイオン交換によって上記1
価イオンに別の濃度分布を与える。この様にして1つの
ガラス母材にガラス形成酸化物を構成する元素の濃度分
布(第1工程のゾルゲル浩により付与)及びガラス修飾
酸化物を構成する陽イオンの濃度分布(第2工程のイオ
ン交換により付与)を独立して有する屈折率分布型光学
素子が得られた。
Of course, this alone is sufficient to function as a gradient index optical element, but the glass matrix is further immersed in a molten salt containing other monovalent ions, that is, by ion exchange, the above-mentioned 1.
Gives a different concentration distribution to valence ions. In this way, one glass base material has a concentration distribution of elements constituting the glass-forming oxide (provided by the sol-gel method in the first step) and a concentration distribution of cations constituting the glass-modifying oxide (the ions in the second step). A gradient index optical element was obtained which independently had a gradient index (applied by exchange).

この屈折率分布型光学素子は濃度分布を付与する成分の
組合せや量的関係を種々変えることによって、多くの性
格を持った屈折率分布型光学素子となる。例えば、第1
図(A)に示したように、第1工程で屈折率に大きく寄
与する金属元素aに濃度分布Aを付け、第2工程で屈折
率に大きく寄与する金属イオンbにAと同方向の濃度分
布Bを付けると、得られた屈折率分布型光学素子の△n
は金属元素aと金属イオンbによるΔnの和となるため
、第1図に示した如く非常に大きな△nが得られる。尚
、図中Cは交換されてきた金属イオンCの濃度分布を、
rは光学素子の半径を示している。
By variously changing the combinations and quantitative relationships of components that provide concentration distribution, this gradient index optical element can have many characteristics. For example, the first
As shown in Figure (A), in the first step, a concentration distribution A is attached to the metal element a that greatly contributes to the refractive index, and in the second step, the concentration distribution A is added to the metal ion b that greatly contributes to the refractive index. When distribution B is attached, △n of the obtained refractive index gradient optical element
Since is the sum of Δn due to metal element a and metal ion b, a very large Δn is obtained as shown in FIG. In addition, C in the figure represents the concentration distribution of the exchanged metal ion C.
r indicates the radius of the optical element.

又、第2図(A)の様に屈折率に大きく寄与する金属元
素a及び金属イオンbの濃度分布A、  B1 が逆方向になる様にすることによって、金属元素aと金
属イオンbの持つ分散特性の差を利用した全く新しい分
散特性を持った屈折率分布型光学素子が得られる。今回
本件発明者は特にこの濃度分布に着目し、色収差の優れ
たまさに理想的な屈折率分布型光学素子が得られること
を見い出した。
In addition, as shown in Figure 2 (A), by making the concentration distributions A and B1 of metal element a and metal ion b, which greatly contribute to the refractive index, to be in opposite directions, the characteristics of metal element a and metal ion b can be A refractive index gradient optical element with completely new dispersion characteristics that utilizes the difference in dispersion characteristics can be obtained. This time, the inventors of the present invention paid particular attention to this density distribution and discovered that an ideal gradient index optical element with excellent chromatic aberration can be obtained.

尚、第2図(A)の濃度分布による屈折率分布は第2図
(B)の如くになる。
The refractive index distribution based on the concentration distribution in FIG. 2(A) is as shown in FIG. 2(B).

更に、濃度分布A、Bが2つの独立した分布であること
を積極的に利用した例として、第2工程でのイオン交換
を短時間で止めると第3図(A)の濃度分布Bのように
なるので、第1工程で付与した屈折率分布の高次成分を
補正して第3図(B)のような屈折率分布にすることが
可能である。
Furthermore, as an example of actively utilizing the fact that concentration distributions A and B are two independent distributions, if ion exchange in the second step is stopped for a short time, concentration distribution B in Figure 3 (A) will be obtained. Therefore, it is possible to correct the higher-order components of the refractive index distribution provided in the first step to obtain a refractive index distribution as shown in FIG. 3(B).

特に、屈折率の高次の項を生かした特性を出したり、又
収差が極端に劣化する場合には高次成分の補正により第
1工程での屈折率分布の誤差を第2工程でうまく補正す
ることも可能である。又、組成や2つの濃度分布の比を
適当に選ぶことによって、全体としてW型やM型と呼ば
れる屈折率分布9 の途中に変曲点を持つ様なものも得ることができる。
In particular, in order to achieve characteristics that take advantage of the higher-order terms of the refractive index, and in cases where aberrations are extremely degraded, errors in the refractive index distribution in the first step can be effectively corrected in the second step by correcting the higher-order components. It is also possible to do so. Furthermore, by appropriately selecting the composition and the ratio of the two concentration distributions, it is possible to obtain a refractive index distribution 9 that has an inflection point in the middle, which is called a W-type or M-type overall.

この様に、1つの光学素子内に全く別個に組成成分やそ
の含有量を調整することにより2つの濃度分布を独立し
て制御して付与してやれば、それら2つの濃度分布の相
互作用によって多くの種類の屈折率分布を付与すること
ができる。
In this way, if two concentration distributions are independently controlled and imparted to one optical element by adjusting the compositional components and their contents completely separately, the interaction of these two concentration distributions will result in many Various types of refractive index distributions can be provided.

尚、第1工程で濃度分布を付与する元素としては非金属
元素でも良いことは言うまでも無い。
It goes without saying that the element imparting the concentration distribution in the first step may be a non-metallic element.

〔実施例〕〔Example〕

以下、図示した実施例に基づき本発明の詳細な説明する
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.

第1実施例 テトラメチキシシラン(7MO3)  19.29ml
とメタノール13.2mlと2N−塩酸2.45m1を
混合して60°Cに加温し、時計器で蓋をしてスターク
ーで攪拌した。約1時間抜ヒータを切り室温に戻してか
ら、テトラチタン酸nブチルl 1.75mlを13.
20m1のメタノールで希釈した溶液をゆっくりと加え
た。さらに攪拌を続け、メタノール13.20m1.純
水17.24m1及び9.78m1のINアンモニア水
と混合した溶液を1滴/1秒のスピードで滴下した。滴
下の終了した液をさらに1時間室温で攪拌してからテフ
ロン管の中に流し込み密閉して一昼夜放置したところ、
すこし白濁したゲルになった。このゲルを熟成の後塩酸
中に浸漬してチタンの濃度分布を付与し、メタノールで
よく洗浄した後、硝酸タリウム、硝酸バリウムの混合溶
液中に再度浸漬し、乾燥・焼結してチタンの濃度分布を
持ち且つタリウムイオン、バリウムイオンを均一に含有
するシリカ系ガラス母材を得た。このガラス母材を硝酸
ナトリウムを主成分とする溶融塩中に浸漬してガラス母
材中のタリウムイオンと塩中のナトリウムイオンを交換
させた。
1st Example Tetramethoxysilane (7MO3) 19.29ml
13.2 ml of methanol and 2.45 ml of 2N hydrochloric acid were mixed, heated to 60°C, covered with a timer, and stirred with a starch. After removing the heater for about 1 hour and returning the temperature to room temperature, 1.75 ml of n-butyl tetratitanate was added to 13.
A solution diluted with 20 ml of methanol was added slowly. Further stirring was continued, and 13.20 ml of methanol was added. A solution mixed with 17.24 ml of pure water and 9.78 ml of IN ammonia water was dropped at a rate of 1 drop/1 second. After stirring the dripped liquid for another hour at room temperature, it was poured into a Teflon tube, sealed, and left overnight.
It turned into a slightly cloudy gel. After aging, this gel is immersed in hydrochloric acid to give a titanium concentration distribution, and after being thoroughly washed with methanol, it is immersed again in a mixed solution of thallium nitrate and barium nitrate, dried and sintered to give a titanium concentration distribution. A silica-based glass base material having a uniform distribution of thallium ions and barium ions was obtained. This glass base material was immersed in a molten salt containing sodium nitrate as a main component to exchange thallium ions in the glass base material with sodium ions in the salt.

こうして得られたガラス母材の屈折率分布を測定したと
ころ、これがΔn=0.13の中央部の屈折率が最も高
い屈折率分布型光学素子になっていることがわかった。
When the refractive index distribution of the glass base material thus obtained was measured, it was found that this was a refractive index distribution type optical element with the highest refractive index at the central portion where Δn=0.13.

そして、この屈折率分布型光学素子の屈折率−分散の関
係は第4図の■の如くであった。イオン交換処理前では
Δn=0.07であったことからイオン交換によりΔn
の値は約2倍に向上したことになる。又、チタンの濃度
分布を持たないガラス母材をイオン交換したところΔn
006であった。この様に2つの濃度分布により大きな
Δnが得られることがわかった。
The relationship between the refractive index and dispersion of this gradient index optical element was as shown in (2) in FIG. Before ion exchange treatment, Δn = 0.07, so by ion exchange, Δn
This means that the value has improved approximately twice. In addition, when a glass base material with no titanium concentration distribution was ion-exchanged, Δn
It was 006. In this way, it was found that a large Δn could be obtained by using two concentration distributions.

第2実施例 テトラメトキシシラン(TMOS)  16.46ml
とイソプロパツール19.1mlと2N−塩酸1.88
m1を混合して600Cに加温し、1時間攪拌した。
Second Example Tetramethoxysilane (TMOS) 16.46ml
and 19.1 ml of isopropanol and 1.88 ml of 2N-hydrochloric acid.
ml was mixed, heated to 600C, and stirred for 1 hour.

室温まで放冷した後、ニオブエトキシド4.375gを
19.]mmのイソプロパツールに溶かした溶l夜を2
滴/1秒位の速さで滴下した。さらに、イソプロパツー
ル19.1 ml、純水13.05m1及び25m1の
1N−アンモニア水を脛合した溶液を1滴/1秒の速さ
を超えない様にゆっくりと滴下した。
After cooling to room temperature, 4.375 g of niobium ethoxide was added to 19. ] mm of isopropanol dissolved in 2
It was dropped at a rate of about 1 drop/1 second. Furthermore, a solution prepared by combining 19.1 ml of isopropanol, 13.05 ml of pure water, and 25 ml of 1N ammonia water was slowly dropped at a rate not exceeding 1 drop/second.

この様にして調整したゾルを直径16mmのテフロン管
の中に分注して密閉して放置してゲル化させた。このゲ
ルに第1実施例と同様にしてニオブの濃度分布付与を行
なってからナトリウムを導入し、そして乾燥・焼結して
直径6 mm弱のガラス母材を得た。そして、このガラ
ス母材を硝酸タリウムを多量に含む溶融塩中に浸漬して
イオン交換処理を行なった。
The sol prepared in this way was dispensed into a Teflon tube with a diameter of 16 mm, and the tube was sealed and allowed to gel. This gel was given a concentration distribution of niobium in the same manner as in the first example, and then sodium was introduced, followed by drying and sintering to obtain a glass base material with a diameter of just under 6 mm. Then, this glass base material was immersed in a molten salt containing a large amount of thallium nitrate to perform ion exchange treatment.

こうして得られたガラス母材の特性を測定したところΔ
n=0.04であり且つアツベ数の変化はΔシー6とい
うものであった。しかし、その方向は、第4図の■の如
く、ガラス中央部が高屈折率低分散で、周辺に向かうに
従って屈折率が低下しなからアツベ数が小さく(分散が
大きく)なるものであった。これは色収差補正上非常に
有効な分布である。
When the properties of the glass base material obtained in this way were measured, Δ
n=0.04, and the change in Atsbe's number was Δc6. However, as shown by ■ in Figure 4, the central part of the glass has a high refractive index and low dispersion, and as it moves toward the periphery, the refractive index does not decrease and the Abbe number decreases (dispersion increases). . This is a very effective distribution for correcting chromatic aberration.

第3実施例 テトラメトキシシラン12.58ml、  n−ブタノ
ール18.31ml、2N−HCll、5mlによって
部分加水分解した溶液に、ジルコニウムn−ブトキシド
5.73 gを18.3mlのn−ブタノールに溶かし
た溶液を滴下し、さらにn−ブタノール13.73m1
.純水16.49ml、 N−Nジメチルホルムアシド
3.9ml及びIN−アンモニア水6m1の脛合液を滴
下してゲル化し熟成の後ジルコニウムの濃度l コ 分布をイ」与し、その後40%ナトリウムメ]・キシド
のメタノール溶液に浸漬してから乾燥・焼結してガラス
母材を得た。このガラス母材を硝酸タリウム冶融塩中で
165 b rイオン交換させたところ第4図の■に示
した如く、Δn=0.02でΔν■0の高屈折率−低分
散〜低屈折率−高分散方向の分散分布特性を持つ屈折率
分布型光学素子であることがわかった。
Third Example In a solution partially hydrolyzed with 12.58 ml of tetramethoxysilane, 18.31 ml of n-butanol, and 5 ml of 2N-HCI, 5.73 g of zirconium n-butoxide was dissolved in 18.3 ml of n-butanol. Add the solution dropwise and add 13.73ml of n-butanol.
.. A mixture of 16.49 ml of pure water, 3.9 ml of N-N dimethylformacide, and 6 ml of IN-ammonia water was added dropwise to form a gel, and after ripening, a concentration distribution of zirconium was given, and then 40% sodium was added. A glass base material was obtained by immersing the glass in a methanol solution of methoxide, then drying and sintering. When this glass base material was subjected to 165 br ion exchange in molten thallium nitrate salt, as shown in ■ in Figure 4, Δn=0.02 and Δν■0 high refractive index - low dispersion to low refractive index - It was found to be a gradient index optical element with dispersion distribution characteristics in the high dispersion direction.

この様に、2つの濃度分布の方向等を選択することによ
ってΔnの極端に大きなものや色収差の優れたものがで
きることかわかった。
In this manner, it has been found that by selecting two directions of density distribution, etc., it is possible to obtain an extremely large Δn and an excellent chromatic aberration.

匙土去夏l 第3実施例において第2工程のイオン交換の時間を15
hrで中止して屈折率分布を測定したところ、第5図に
示した如く外周部のみが放物線状分布から外れて少し屈
折率か高くなった分布になっていることが確認された。
In the third example, the ion exchange time in the second step was 15
When the refractive index distribution was measured after stopping at hr, it was confirmed that only the outer peripheral portion deviated from the parabolic distribution and had a slightly higher refractive index distribution, as shown in FIG.

この様にして高次成分の制御が可能である。2つの濃度
分布は完全に独立しているものであるから、イオン交換
時間や塩の組成を変えることによって、中心部の屈折率
分布形状を全く変えることなく外周部分の屈折率分布形
状を種々変えた屈折率分布型光学素子が作成可能である
In this way, higher order components can be controlled. Since the two concentration distributions are completely independent, by changing the ion exchange time and salt composition, the shape of the refractive index distribution in the outer periphery can be changed in various ways without changing the shape of the refractive index distribution in the center at all. It is possible to create a refractive index gradient optical element.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、ガラス形成酸化物とガ
ラス修飾酸化物を構成する金属イオンとに独立した分布
を持たせることによって、材料設計上の自由度が増し、
多くの屈折率分布のバリエーションが得られた。例えば
、Δnの大きな3ものや高次成分を生かしたものなどが
簡単に得られたが、中でも2つの分布の高屈折率成分の
分布を凹凸反対にし且つガラス修飾酸化物を構成する金
属イオンとしてTI+やAg+を使うことによって色収
差の優れたつまりアラへ数の変化が高屈折率低分散〜低
屈折率−高分散の方向に変化し且つ実用的なΔnを持つ
屈折率分布型光学素子を得ることができた。
As described above, according to the present invention, the degree of freedom in material design is increased by allowing the metal ions constituting the glass-forming oxide and the glass-modifying oxide to have independent distributions.
Many variations of refractive index distribution were obtained. For example, three types with large Δn and those that take advantage of higher-order components were easily obtained, but among them, two distributions of high refractive index components were made opposite to the unevenness, and metal ions constituting the glass modification oxide were obtained. By using TI+ or Ag+, a gradient index optical element with excellent chromatic aberration, in which the number changes from high refractive index and low dispersion to low refractive index and high dispersion, and has a practical Δn can be obtained. I was able to do that.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、CB)乃至第3図(A)、(B)は夫々
本発明の屈折率分布型光学素子の製造方法の各工程によ
り付与される金属元素又は金属イオンの濃度分布とそれ
らにより得られた光学素子の屈折率分布を示す図、第4
図は第1実施例乃至第3実施例の屈折率とアラへ数との
関係を示す図、第5図は第4実施例の屈折率分布を示す
図である。 Oフ 手 続 補 正 書(自発) 特 許 庁 長 官 殿 ■。 事 件 の 表示 特願平1 214733号 2゜ 発 明 の 名 称 屈折率分布型光学素子及びその製造方法4゜ 代 理 人 〒105東京都港区新橋5の19 5、補正の対象 明細書の発明の詳細な説明の欄。 6、補正の内容 (1)明細書第5頁6行目の「K」を「に+」と訂正す
る。 (2)同第5頁7行目のrNaJを[lNa+、iとと
訂正する。 (3)同第■3頁14行目の「テトラメチキンンラン」
を「テトラメトキシシラン」と訂正する。 (4)同第14頁16行目の「これが」を削除する。
1(A), CB) to FIG. 3(A), (B) respectively show the concentration distribution of metal elements or metal ions provided by each step of the method for manufacturing a gradient index optical element of the present invention. Diagram 4 showing the refractive index distribution of the optical element obtained by these methods.
The figure is a diagram showing the relationship between the refractive index and the number of squares in the first to third embodiments, and FIG. 5 is a diagram showing the refractive index distribution in the fourth embodiment. O-procedural amendment (voluntary) Mr. Commissioner of the Patent Office■. Indication of the case Patent Application No. 1999-214733 2゜Name of the invention Gradient index optical element and its manufacturing method 4゜Agent: 5-195 Shinbashi, Minato-ku, Tokyo 105, Details of the invention in the specification subject to amendment Description field. 6. Contents of the amendment (1) "K" on page 5, line 6 of the specification is corrected to "ni+". (2) Correct rNaJ on page 5, line 7 as [lNa+, i. (3) “Tetramethkin run” on page 3, line 14 of the same page
is corrected to "tetramethoxysilane". (4) Delete "This is" on page 14, line 16.

Claims (3)

【特許請求の範囲】[Claims] (1)ガラス形成酸化物を構成する元素の濃度勾配によ
る屈折率分布と、ガラス修飾酸化物を構成する陽イオン
の濃度勾配による屈折率分布とが同一光学素子内に存在
し、且つ前記両屈折率分布が互いに独立的に存在してい
る屈折率分布型光学素子。
(1) A refractive index distribution due to the concentration gradient of the elements constituting the glass-forming oxide and a refractive index distribution due to the concentration gradient of the cations constituting the glass-modifying oxide exist in the same optical element, and A gradient index optical element in which index distributions exist independently of each other.
(2)ガラス母材のガラス形成酸化物を構成する元素に
濃度勾配を与えて上記ガラス母材に第一の屈折率分布を
持たせる第1工程と、上記ガラス母材のガラス修飾酸化
物を構成する陽イオンに濃度勾配を与えて上記ガラス母
材に第2の屈折率分布を持たせる第2工程とを備えてい
る屈折率分布型光学素子の製造方法。
(2) A first step of imparting a concentration gradient to the elements constituting the glass-forming oxide of the glass base material to give the glass base material a first refractive index distribution; and a second step of imparting a concentration gradient to the constituent cations to give the glass base material a second refractive index distribution.
(3)前記第2工程が、少なくとも1価の陽イオンを1
種類以上含有した溶融塩中に前記第1工程によって形成
されたガラス母材を浸漬させるイオン交換法によって行
なわれることを特徴とする請求項(2)に記載の屈折率
分布型光学素子の製造方法。
(3) The second step removes at least one monovalent cation.
The method for manufacturing a gradient index optical element according to claim 2, characterized in that the method is carried out by an ion exchange method in which the glass base material formed in the first step is immersed in a molten salt containing at least one type of molten salt. .
JP1214733A 1989-08-21 1989-08-21 Gradient index type optical element and manufacturing method thereof Expired - Fee Related JP2515889B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1214733A JP2515889B2 (en) 1989-08-21 1989-08-21 Gradient index type optical element and manufacturing method thereof
DE19904026312 DE4026312C2 (en) 1989-08-21 1990-08-20 Method of manufacturing an optical element
US08/012,785 US5356840A (en) 1989-08-21 1993-02-02 Distributed index of refraction type optical element and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214733A JP2515889B2 (en) 1989-08-21 1989-08-21 Gradient index type optical element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0380133A true JPH0380133A (en) 1991-04-04
JP2515889B2 JP2515889B2 (en) 1996-07-10

Family

ID=16660708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214733A Expired - Fee Related JP2515889B2 (en) 1989-08-21 1989-08-21 Gradient index type optical element and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2515889B2 (en)
DE (1) DE4026312C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356840A (en) * 1989-08-21 1994-10-18 Olympus Optical Co., Ltd. Distributed index of refraction type optical element and method of making the same
KR100463586B1 (en) * 2000-08-31 2004-12-29 재단법인 포항산업과학연구원 Method for preparing high refractive index glass bead by ion-exchange

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734502A (en) * 1980-08-11 1982-02-24 Nippon Sheet Glass Co Ltd Near parabolic optical transmission body and its production
EP0287345A1 (en) * 1987-04-16 1988-10-19 Canon Kabushiki Kaisha Glass composition for and method for preparation of gradient index lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356840A (en) * 1989-08-21 1994-10-18 Olympus Optical Co., Ltd. Distributed index of refraction type optical element and method of making the same
KR100463586B1 (en) * 2000-08-31 2004-12-29 재단법인 포항산업과학연구원 Method for preparing high refractive index glass bead by ion-exchange

Also Published As

Publication number Publication date
DE4026312A1 (en) 1991-02-28
DE4026312C2 (en) 1995-06-14
JP2515889B2 (en) 1996-07-10

Similar Documents

Publication Publication Date Title
US3843228A (en) Production of light-conducting glass structures with refractive index distribution
JP2001159702A (en) Distributed index lens
KR100752904B1 (en) High silver borosilicate glasses
US5171344A (en) Method for manufacturing a gradient index optical element
TWI252219B (en) Mother glass composition for graded index lens
JPH0466828B2 (en)
US5356840A (en) Distributed index of refraction type optical element and method of making the same
JPH03141302A (en) Distributed index optical element
JPH0380133A (en) Distributed refractive index type optical device and its production
JPS59146946A (en) Manufacture of slab-shaped lens having refractive index gradient only in thickness direction
JP3193492B2 (en) Glass body with refractive index distribution
JPS58120539A (en) Production of gradient refractive index type lens
JPS62100451A (en) Glass composition suitable to produce glass having refractive index gradient
JPS6212635A (en) Glass composition suitable of producing glass material having refractive index gradient
JPH0729800B2 (en) Method for manufacturing optical glass body
JPS6042239A (en) Manufacture of glass body having refractive index distribution
JPS63190732A (en) Production of distributed-refractive index type glass body
JPS5964547A (en) Preparation of lens having refractive index distribution in axial direction
CN115385576B (en) Cesium-containing glass, polygonal gradient refractive index fiber lens and array preparation method thereof
JP2687569B2 (en) Ion exchange treatment method for optical glass
JPS61261238A (en) Production of lens having refractive index distribution in axial direction
JP2004078001A (en) Refractive index distribution type rod lens
JPH0733481A (en) Ion exchange treatment of rod-shaped glass
JPS6311548A (en) Production of glass having refractive index distribution
JPH0411841B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees