JPH03796B2 - - Google Patents
Info
- Publication number
- JPH03796B2 JPH03796B2 JP13378482A JP13378482A JPH03796B2 JP H03796 B2 JPH03796 B2 JP H03796B2 JP 13378482 A JP13378482 A JP 13378482A JP 13378482 A JP13378482 A JP 13378482A JP H03796 B2 JPH03796 B2 JP H03796B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- active layer
- cladding layer
- type inp
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005253 cladding Methods 0.000 claims description 43
- 238000005530 etching Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000000873 masking effect Effects 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 11
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
- H01S5/2275—Buried mesa structure ; Striped active layer mesa created by etching
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】
この発明は埋込み型半導体レーザの製造方法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a buried semiconductor laser.
従来の埋込み型半導体レーザを、p型InP基板
を用いた場合を例にとり第1図に示す。第1図に
おいて、1はプラス電極、2はp型InP基板結
晶、3はp型InPクラッド層、4はInGaAsP活性
層、5はn型InPクラツド層、6はn型InPブロ
ツク層、7はP型InP閉じ込め層、8はマイナス
電極である。 FIG. 1 shows a conventional buried semiconductor laser using a p-type InP substrate as an example. In Fig. 1, 1 is a positive electrode, 2 is a p-type InP substrate crystal, 3 is a p-type InP cladding layer, 4 is an InGaAsP active layer, 5 is an n-type InP cladding layer, 6 is an n-type InP block layer, and 7 is a P-type InP confinement layer, 8 is a negative electrode.
このような従来の埋込み型半導体レーザにおい
て、活性層4およびクラツド層3,5からなる埋
込まれ層の作成には通常化学エツチングが用いら
れるが、活性層4の幅の制御は、各面方位へのエ
ツチングレートにより自動的に決定されるエツチ
ングマスク幅の設定によつている。 In such conventional buried semiconductor lasers, chemical etching is usually used to create the buried layer consisting of the active layer 4 and the cladding layers 3 and 5, but the width of the active layer 4 can be controlled by adjusting the width of each plane. This depends on the setting of the etching mask width, which is automatically determined based on the etching rate.
しかしながら、その方法は、ウエハー表面とマ
スクとの密着性の悪さに起因する設定外のサイド
エツチングや、エツチング液の濃度、温度の制御
の困難さなどにより、活性層4の幅を再現性よく
制御することが難しいという欠点を有していた。
また、発振閾値を低減するために活性層4の幅を
狭くすると、埋込まれ層全体の幅が小さくなり、
オーミツクがとりにくいという欠点も有してい
た。 However, this method cannot control the width of the active layer 4 with good reproducibility due to side etching outside the specified settings due to poor adhesion between the wafer surface and the mask, and difficulty in controlling the concentration and temperature of the etching solution. It had the disadvantage that it was difficult to do so.
Furthermore, when the width of the active layer 4 is narrowed in order to reduce the oscillation threshold, the width of the entire buried layer becomes smaller.
It also had the disadvantage of being difficult to remove.
この発明は上記の点に鑑みなされたもので、活
性層幅を再現性よく制御することができ、しかも
活性層幅を狭くしても上部クラツド層の幅は狭く
ならず、したがつて電極とのオーミツクも容易に
とることができる埋込み型半導体レーザの製造方
法を提供することを目的とする。 This invention was made in view of the above points, and it is possible to control the width of the active layer with good reproducibility, and even if the width of the active layer is narrowed, the width of the upper cladding layer is not narrowed, so that the width of the upper cladding layer is not narrowed. It is an object of the present invention to provide a method for manufacturing an embedded semiconductor laser, which can easily achieve ohmic control.
以下この発明の実施例を図面を参照して説明す
るが、この前にこの発明の第1の実施例により製
造された埋込み型半導体レーザを第2図に示す。
第2図において、11はプラス電極、12はP型
InP基板結晶、13はP型InPクラツド層、14
はInGaAsP活性層、15はn型InPクラツド層、
16はn型InPブロツク層、17はP型InP閉じ
込め層、18はマイナス電極である。ここで、活
性層14は従来に比較し非常に狭い幅に形成され
ている。しかし、クラツド層15は、その活性層
14上に逆台形状に形成されて、上面においては
比較的広い幅を維持している。一方、クラツド層
13は、活性層14の下に垂直部19を有するよ
うに形成されている。 Embodiments of the present invention will be described below with reference to the drawings. First, a buried semiconductor laser manufactured according to the first embodiment of the present invention is shown in FIG.
In Figure 2, 11 is a positive electrode, 12 is a P type
InP substrate crystal, 13 is P-type InP cladding layer, 14
15 is the InGaAsP active layer, 15 is the n-type InP cladding layer,
16 is an n-type InP block layer, 17 is a p-type InP confinement layer, and 18 is a negative electrode. Here, the active layer 14 is formed to have a much narrower width than conventional ones. However, the cladding layer 15 is formed on the active layer 14 in an inverted trapezoidal shape and maintains a relatively wide width at the top surface. On the other hand, the cladding layer 13 is formed to have a vertical portion 19 below the active layer 14.
以上のような埋込み型半導体レーザは第3図に
示すこの発明の第1の実施例により製造される。 The buried semiconductor laser as described above is manufactured according to the first embodiment of the present invention shown in FIG.
第3図Aにおいて、12はp型InP基板結晶で
あり、まずこの基板結晶12上に1回目のLPE
(Liquid Phase Epitaxial:液相成長法)により
p型InPクラツド層13、InGaAsP活性層14、
n型InPクラツド層15を順次成形する。そし
て、クラツド層15上には適当な幅の絶縁体エツ
チングマスク20を設ける。 In FIG. 3A, 12 is a p-type InP substrate crystal, and first, the first LPE is applied on this substrate crystal 12.
(Liquid Phase Epitaxial: liquid phase growth method) p-type InP cladding layer 13, InGaAsP active layer 14,
The n-type InP cladding layer 15 is sequentially molded. Then, an insulator etching mask 20 of an appropriate width is provided on the cladding layer 15.
しかる後、InPには活性であるがInGaAsPには
不活性である塩酸系(4HCl+1H2O)エツチヤン
トにより、絶縁体エツチングマスク20をマスク
としてn型InPクラツド層15をエツチングし、
第3図Bに示すように残存クラツド層15の両側
で活性層14を露出させる。 Thereafter, the n-type InP cladding layer 15 is etched using the insulator etching mask 20 as a mask using a hydrochloric acid-based (4HCl + 1H 2 O) etchant that is active on InP but inactive on InGaAsP.
The active layer 14 is exposed on both sides of the remaining cladding layer 15, as shown in FIG. 3B.
続いて、InGaAsPには活性であるがInPには不
活性である硫酸系(3H2SO4+1H2O2+1H2O)ま
たはフエリシアン化加系(K3Fe(CN)6+KOH+
H2O)のエツチヤントにより、InGaAsP活性層
14の露出部のエツチング、さらには活性層14
のサイドエツチングを行う。このサイドエツチン
グにより、活性層14は最終的には第3図Cに示
すように、クラツド層15の中央部下のみに幅狭
に残される。 This was followed by a sulfuric acid system (3H 2 SO 4 + 1H 2 O 2 + 1H 2 O) or a ferricyanidation system (K 3 Fe(CN) 6 + KOH+), which is active on InGaAsP but inactive on InP.
The exposed portion of the InGaAsP active layer 14 is etched by the etchant (H 2 O), and the active layer 14 is etched.
Perform side etching. As a result of this side etching, the active layer 14 is ultimately left with a narrow width only under the center of the cladding layer 15, as shown in FIG. 3C.
しかる後、前記した塩酸系のエツチヤントによ
り残存活性層14をマスクとしてP型InPクラツ
ド層13およびp型InP基板結晶12の厚さ方向
のエツチングを行う。このエツチングを行うと、
第3図Dに示すように、まずクラツド層13が活
性層14の下に垂直部19として残るようにエツ
チングされ、しかる後、クラツド層13の下部側
および基板結晶12表面側が台形状となるように
エツチングされる。この時同時に、n型InPクラ
ツド層15に対しても活性層14をマスクとして
下方から厚さ方向にエツチングが行われる。ただ
し、n型InPクラツド層15に関しては、垂直部
を経ることなく、即、逆台形状にエツチングされ
る。このように、2つのクラツド層13,15で
エツチング形状が異なる点はその理由が不明であ
る。しかし、実験をくり返したところ、いずれも
上記のようなエツチング形状となつた。 Thereafter, using the remaining active layer 14 as a mask, the p-type InP cladding layer 13 and the p-type InP substrate crystal 12 are etched in the thickness direction using the hydrochloric acid-based etchant described above. When this etching is done,
As shown in FIG. 3D, the cladding layer 13 is first etched so as to remain under the active layer 14 as a vertical portion 19, and then the lower side of the cladding layer 13 and the surface side of the substrate crystal 12 are etched so as to have a trapezoidal shape. Etched by. At the same time, the n-type InP cladding layer 15 is also etched from below in the thickness direction using the active layer 14 as a mask. However, the n-type InP cladding layer 15 is immediately etched into an inverted trapezoidal shape without passing through the vertical portion. The reason why the etching shapes of the two cladding layers 13 and 15 are different in this way is unknown. However, after repeated experiments, the etched shapes shown above were obtained in all cases.
しかる後、基板結晶12上に、クラツド層1
3,15および活性層14の側方を覆うように、
第2図で示したn型InPブロツク層16およびp
型InP閉じ込め層17(埋込み層)を2回目の
LPEにより成長させる。 After that, a cladding layer 1 is formed on the substrate crystal 12.
3, 15 and the sides of the active layer 14,
The n-type InP block layer 16 and p
Type InP confinement layer 17 (buried layer) for the second time
Grow by LPE.
以上の説明から明らかなように、第1の実施例
では、InPには不活性のエツチヤントを用いた活
性層14のエツチングにより、マスク20の幅や
クラツド層15の厚みなどに無関係に、活性層1
4の幅を再現性よく自由に制御できる。したがつ
て、半導体レーザ素子間の特性の均一化を図るこ
とができるとともに、活性層14の幅を狭くして
発振閾値の低減を図ることができる。 As is clear from the above description, in the first embodiment, the active layer 14 is etched using an etchant that is inert to InP, so that the active layer 14 can be etched regardless of the width of the mask 20 or the thickness of the cladding layer 15. 1
The width of 4 can be freely controlled with good reproducibility. Therefore, it is possible to make the characteristics of the semiconductor laser elements uniform, and also to reduce the oscillation threshold by narrowing the width of the active layer 14.
また、活性層14をマスクとしてクラツド層1
3と基板結晶12をエツチングする際、同時にク
ラツド層もエツチングされるが、上記エツチング
を厚さ方向にのみ行うことによりクラツド層15
は逆台形状にエツチングされる。したがつて、た
とえ活性層14の幅を狭くしても、クラツド層1
5の上面は、マスク20の幅で決まる広い幅を維
持するようになり、その結果として電極とのオー
ミツクを容易にとることができる。 Further, the cladding layer 1 is formed using the active layer 14 as a mask.
3 and the substrate crystal 12, the cladding layer 15 is also etched at the same time, but by performing the above etching only in the thickness direction, the cladding layer 15 is etched.
is etched into an inverted trapezoidal shape. Therefore, even if the width of the active layer 14 is narrowed, the width of the cladding layer 1
The upper surface of the mask 5 maintains a wide width determined by the width of the mask 20, and as a result, it is possible to easily establish ohmic contact with the electrode.
また、活性層14をマスクとしてクラツド層1
3および基板結晶12を厚さ方向にエツチングす
ることでクラツド層13の垂直部19を形成して
おり、これにより活性層14と基板結晶12との
間に急峻な段差を大きくとることができる。した
がって、p型InP基板を用いた半導体レーザにお
いては、ブロツク層16を成長させた際に、その
ブロツク層16の反り上がりを活性層14より下
の位置で止める必要があるが、それを容易に行う
ことができる。 Further, the cladding layer 1 is formed using the active layer 14 as a mask.
The vertical portion 19 of the cladding layer 13 is formed by etching the active layer 14 and the substrate crystal 12 in the thickness direction, thereby making it possible to create a large steep step between the active layer 14 and the substrate crystal 12. Therefore, in a semiconductor laser using a p-type InP substrate, when the block layer 16 is grown, it is necessary to stop the warpage of the block layer 16 at a position below the active layer 14, but this can be easily prevented. It can be carried out.
以上の説明から明らかなように、この発明の製
造方法では、活性層とクラツド層とを独立にエツ
チングし、しかも残存活性層をマスクとしてクラ
ツド層をエツチングする際、厚さ方向にエツチン
グし、下部クラツド層には残存活性層の下に垂直
部を形成する。したがつて、この発明の方法によ
れば、活性層の幅を再現性よく自由に制御でき
て、半導体レーザ素子間の特性の均一化を図るこ
とができるとともに、活性層の幅を狭くして発振
閾値の低減を図ることができ、さらには、活性層
の幅を狭くしても上部クラツド層の幅を広くとつ
て電極とのオーミツクを容易にとることができ
る。また、p型InP基板を用いた半導体レーザに
おいては、ブロツク層を成長させた際に、そのブ
ロツク層の反り上がりを活性層より下の位置で止
める必要があるが、前記クラツド層の垂直部の存
在により、それを容易に行うことができるもので
ある。 As is clear from the above description, in the manufacturing method of the present invention, the active layer and the cladding layer are etched independently, and when etching the cladding layer using the remaining active layer as a mask, etching is performed in the thickness direction, and the lower part is etched. A vertical portion of the cladding layer is formed below the remaining active layer. Therefore, according to the method of the present invention, the width of the active layer can be freely controlled with good reproducibility, and the characteristics between semiconductor laser devices can be made uniform, and the width of the active layer can be narrowed. The oscillation threshold can be reduced, and furthermore, even if the width of the active layer is narrowed, the width of the upper cladding layer can be widened to easily establish ohmic contact with the electrodes. Furthermore, in a semiconductor laser using a p-type InP substrate, when a block layer is grown, it is necessary to stop the warping of the block layer at a position below the active layer. Its existence makes it easy to do so.
第1図は従来の埋込み型半導体レーザを示す断
面図、第2図はこの発明の第1の実施例により製
造された埋込み型半導体レーザを示す断面図、第
3図はこの発明の埋込み型半導体レーザの製造方
法の第1の実施例を示す断面図である。
12……p型InP基板結晶、13……p型InP
クラツド層、14……InGaAsP活性層、15…
…n型InPクラツド層、16……n型InPブロツ
ク層、17……p型InP閉じ込め層、19……垂
直部。
FIG. 1 is a cross-sectional view of a conventional buried semiconductor laser, FIG. 2 is a cross-sectional view of a buried semiconductor laser manufactured according to a first embodiment of the present invention, and FIG. 3 is a cross-sectional view of a buried semiconductor laser of the present invention. 1 is a cross-sectional view showing a first example of a method for manufacturing a laser; FIG. 12... p-type InP substrate crystal, 13... p-type InP
Cladding layer, 14... InGaAsP active layer, 15...
... n-type InP cladding layer, 16 ... n-type InP block layer, 17 ... p-type InP confinement layer, 19 ... vertical portion.
Claims (1)
クラツド層を順次形成した後、第2のクラツド層
のみを選択的にエツチングして、残在第2のクラ
ツド層の両側で活性層を露出させる工程と、この
活性層の露出部をエツチングするとともに活性層
のサイドエツチングを行い、前記残存第2のクラ
ツド層の下に活性層を幅狭に残す工程と、この残
存活性層をマスクとしてクラツド層を厚さ方向に
エツチングし、残存活性層の下に第1のクラツド
層の垂直部を形成する工程と、残存クラツド層お
よび残存活性層の側方を覆うように埋込み層を形
成する工程とを具備することを特徴とする埋込み
型半導体レーザーの製造方法。1 After sequentially forming a first cladding layer, an active layer, and a second cladding layer on a substrate, only the second cladding layer is selectively etched to form an active layer on both sides of the remaining second cladding layer. a step of exposing the exposed portion of the active layer and performing side etching of the active layer to leave a narrow width of the active layer under the remaining second cladding layer; and a step of masking the remaining active layer. etching the cladding layer in the thickness direction to form a vertical portion of the first cladding layer under the remaining active layer; and forming a buried layer to cover the sides of the remaining cladding layer and the remaining active layer. A method for manufacturing an embedded semiconductor laser, comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13378482A JPS5925290A (en) | 1982-08-02 | 1982-08-02 | Manufacture of buried type semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13378482A JPS5925290A (en) | 1982-08-02 | 1982-08-02 | Manufacture of buried type semiconductor laser |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5925290A JPS5925290A (en) | 1984-02-09 |
JPH03796B2 true JPH03796B2 (en) | 1991-01-08 |
Family
ID=15112913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13378482A Granted JPS5925290A (en) | 1982-08-02 | 1982-08-02 | Manufacture of buried type semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5925290A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0810779B2 (en) * | 1987-02-23 | 1996-01-31 | アンリツ株式会社 | Semiconductor laser |
JPH088391B2 (en) * | 1987-02-23 | 1996-01-29 | アンリツ株式会社 | Semiconductor laser |
-
1982
- 1982-08-02 JP JP13378482A patent/JPS5925290A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5925290A (en) | 1984-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1127282A (en) | Semiconductor laser and method of making the same | |
JPH0770508B2 (en) | Device manufacturing method | |
JPH03796B2 (en) | ||
JPS5811111B2 (en) | Manufacturing method of semiconductor laser device | |
JPH0552676B2 (en) | ||
JPS60147119A (en) | Manufacture of semiconductor element | |
JP2804197B2 (en) | Manufacturing method of semiconductor laser | |
JPS6223191A (en) | Manufacture of ridge type semiconductor laser device | |
JPH04340284A (en) | Semiconductor laser and manufacture thereof | |
KR100281917B1 (en) | Laser diode manufacturing method | |
JPH06350197A (en) | Method of manufacture semiconductor device | |
JPS6146995B2 (en) | ||
JPH06283816A (en) | Semiconductor laser of embedded structure and fabrication thereof | |
JPH0213944B2 (en) | ||
KR20010056977A (en) | Fabrication method of self aligned planar buried heterostructure semiconductor laser | |
JPH04133315A (en) | Manufacture of semiconductor device | |
JPH04137686A (en) | Manufacture of semiconductor laser device | |
JPS63198393A (en) | Manufacture of semiconductor device | |
JPH0537079A (en) | Manufacture of semiconductor laser diode | |
JPH04293286A (en) | Manufacture of semiconductor laser element | |
JPH05167178A (en) | Manufacture of semiconductor device | |
JPH0837338A (en) | Double channel planar buried structure semiconductor laser and its manufacture | |
JPH05283438A (en) | Manufacture of two-step recess type fet | |
JPH03165086A (en) | Manufacture of ridge laser | |
JPH0697569A (en) | Manufacture method of semiconductor laser |