JPH0379320B2 - - Google Patents

Info

Publication number
JPH0379320B2
JPH0379320B2 JP4560285A JP4560285A JPH0379320B2 JP H0379320 B2 JPH0379320 B2 JP H0379320B2 JP 4560285 A JP4560285 A JP 4560285A JP 4560285 A JP4560285 A JP 4560285A JP H0379320 B2 JPH0379320 B2 JP H0379320B2
Authority
JP
Japan
Prior art keywords
single crystal
melt
crucible
pulling
segregation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4560285A
Other languages
Japanese (ja)
Other versions
JPS61205691A (en
Inventor
Sumio Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4560285A priority Critical patent/JPS61205691A/en
Publication of JPS61205691A publication Critical patent/JPS61205691A/en
Publication of JPH0379320B2 publication Critical patent/JPH0379320B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば半導体装置の材料として使用さ
れるシリコン単結晶等の結晶を偏析の発生を防止
して成長させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for growing crystals such as silicon single crystals used as materials for semiconductor devices, for example, while preventing the occurrence of segregation.

〔従来技術〕[Prior art]

単結晶を成長させるには種々の方法があるが、
その1つに回転引上法がある。この方法は第7図
に示すようにるつぼ13内に挿入した材料を全部
溶融させた後、その溶融液14を引上げ棒17に
より上方に引上げていくことにより、溶融液が凝
固してなる単結晶を成長させる方法である。しか
しながら、この方法にて成長せしめられた単結晶
15は、半導体結晶の抵抗率、伝導性等を調整す
べく、例えば引上げ前に前記溶融液に一括して添
加した不純物が引上方向に沿つて偏析するという
現象が生じている。
There are various methods to grow single crystals, but
One of them is the rotational pulling method. As shown in FIG. 7, this method involves melting all of the material inserted into a crucible 13, and then pulling the molten liquid 14 upwards with a pulling rod 17, thereby solidifying the molten liquid into a single crystal. It is a way to grow. However, in the single crystal 15 grown by this method, in order to adjust the resistivity, conductivity, etc. of the semiconductor crystal, for example, impurities added to the melt at once before pulling are added along the pulling direction. A phenomenon of segregation is occurring.

この偏析は、単結晶のある点での凝固開始時の
不純物濃度と凝固終了時の不純物濃度との比、つ
まり結晶成長の際に溶融液・単結晶界面に実際に
生じる単結晶中の不純物濃度Csと溶融液中の不
純物濃度Clとの比Cs/Cl、即ち実効偏析係数Ke
に起因して生じる。これを詳述すると、例えば
Ke<1の場合には単結晶が成長せしめられるに
伴つて溶融液中に不純物濃度が自ずと高くなつて
いき、単結晶に偏析が生じるのである。
This segregation is the ratio of the impurity concentration at the start of solidification to the impurity concentration at the end of solidification at a certain point in the single crystal, that is, the impurity concentration in the single crystal that actually occurs at the melt/single crystal interface during crystal growth. The ratio of Cs to the impurity concentration Cl in the melt, Cs/Cl, that is, the effective segregation coefficient Ke
arises due to. To elaborate on this, for example
When Ke<1, as the single crystal grows, the concentration of impurities in the melt naturally increases, causing segregation in the single crystal.

上記偏析の発生を抑制して単結晶を成長させる
方法として溶融層法がある。この方法はるつぼ内
に挿入した材料を上側から下側へ向けて溶融して
いき、成長せしめられた単結晶量に拘わらず、る
つぼ内の溶融液量を一定に維持させて偏析を抑制
する方法である。
There is a fused layer method as a method of growing a single crystal while suppressing the occurrence of the above-mentioned segregation. In this method, the material inserted into the crucible is melted from the top to the bottom, and regardless of the amount of single crystal grown, the amount of molten liquid in the crucible is maintained constant to suppress segregation. It is.

この方法による場合には、実効偏析係数Keの
値にかかわらず、単結晶の成長に伴つて新たに生
成された溶融液により不純物濃度が低減されるた
め、この不純物の低減に基づくるつぼ内の溶融液
中での不純物濃度変化を抑制すべく、一般にるつ
ぼ内の溶融液量に対して不純物を連続的に添加す
ることにより偏析を抑制できる。
When using this method, regardless of the value of the effective segregation coefficient Ke, the impurity concentration is reduced by the newly generated melt as the single crystal grows, so the melt in the crucible is In order to suppress changes in impurity concentration in the liquid, segregation can generally be suppressed by continuously adding impurities to the amount of the melt in the crucible.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

そして、前記2法を含むるつぼを使用する全成
長方法において、例えば石英(SiO2)製るつぼ
を使用してシリコン単結晶を成長させる場合は、
石英製るつぼが溶解して酸素(O2)が溶出し、
単結晶中に酸素が含有される。このようにして酸
素を含有するシリコン単結晶を半導体装置用材料
として用いるべく、これをスライスして得たシリ
コンウエハを熱処理した場合には、含有酸素に起
因して結晶欠陥が発生する。
In all growth methods using a crucible including the above two methods, for example, when growing a silicon single crystal using a quartz (SiO 2 ) crucible,
The quartz crucible melts and oxygen (O 2 ) is eluted,
Oxygen is contained in the single crystal. When a silicon wafer obtained by slicing a silicon single crystal containing oxygen in this way is heat-treated in order to use it as a material for a semiconductor device, crystal defects occur due to the oxygen content.

このようにシリコン単結晶に悪影響を及ぼす酸
素を低減せしめるためには、一般に鉛直軸回りに
回転させて使用するるつぼの回転数を低下させ、
或いはるつぼ内溶融液に磁場を印加してるつぼ内
溶融液に生じる対流を抑上する方法がとられてい
る。
In order to reduce oxygen, which has a negative effect on silicon single crystals, the rotation speed of the crucible, which is generally rotated around a vertical axis, is lowered.
Alternatively, a method has been adopted in which a magnetic field is applied to the molten liquid in the crucible to suppress the convection that occurs in the molten liquid in the crucible.

しかしながら偏析発生の抑制が可能な前記溶融
層法においては、単結晶成長中に溶融液内へ不純
物元素(一般に粉体)を添加し、更に偏析を十分
に抑制する上でその不純物元素を溶融液内にて拡
散させて均一にする必要があり、このため酸素を
低減させる場合とは逆に溶融液の対流を十分に行
わせるのが望ましい。
However, in the fused layer method, which can suppress the occurrence of segregation, impurity elements (generally powder) are added to the melt during single crystal growth, and in order to sufficiently suppress segregation, the impurity elements are added to the melt. It is necessary to diffuse the melt uniformly within the melt, and therefore it is desirable to have sufficient convection of the melt, contrary to the case where oxygen is reduced.

このように偏析防止と酸素の低減とは相反する
要求となつていて、従つて低酸素化を目的とする
対流抑制の条件下で溶融層法にて単結晶を成長さ
せる場合には不純物元素が拡散されず、このため
単結晶に不純物元素の偏析が生じるという難点が
あつた。
In this way, prevention of segregation and reduction of oxygen are contradictory requirements, and therefore, when growing single crystals by the fused layer method under convection suppression conditions for the purpose of reducing oxygen, impurity elements must be There was a problem that the impurity elements were not diffused, and therefore segregation of impurity elements occurred in the single crystal.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は斯かる事情に鑑みてなされたものであ
り、例えばKe<1の場合において、凝固に伴う
結晶・溶融液界面での偏析現象に基づき溶融液側
で生ずる不純物の濃化分を補償するだけの溶融液
量を新たに溶融させることにより、結晶を成長さ
せていく間、常に溶融液中の不純物濃度を一定に
して結晶内の不純物濃度を一定に維持し、低酸素
化を目的として撹拌を行わない場合にも引上げ方
向に生じる偏析の発生を防止して結晶を成長させ
得る結晶成長方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is intended to compensate for the concentration of impurities that occurs on the melt side based on the segregation phenomenon at the crystal/melt interface due to solidification, for example in the case of Ke<1. By newly melting the amount of molten liquid, the impurity concentration in the molten liquid is kept constant while the crystal is growing, and the impurity concentration in the crystal is maintained constant, and stirring is performed for the purpose of lowering oxygen. An object of the present invention is to provide a crystal growth method that can grow crystals while preventing the occurrence of segregation in the pulling direction even when the above steps are not performed.

本発明に係る結晶成長方法は、るつぼ内に挿入
した結晶用材料を上側から下側へ向けて溶融して
いき、またその溶融液を上方に引上げて凝固させ
ていくことにより結晶を成長させる方法におい
て、前記材料を一部溶融させた段階でその溶融液
に不純物を添加したのち溶融液の引上げを開始
し、その引上げ中、結晶の成長に伴つてるつぼ内
の溶融液量を減少させることを特徴とする。
The crystal growth method according to the present invention is a method of growing crystals by melting a crystal material inserted into a crucible from the upper side to the lower side, and then pulling the molten liquid upward and solidifying it. In this method, impurities are added to the melt at the stage where the material is partially melted, and then the melt is pulled up, and during the pulling, the amount of the melt in the crucible is reduced as the crystals grow. Features.

〔発明の原理〕[Principle of the invention]

まず本発明の原理につき以下に説明する。第1
図は本発明原理説明図であり、るつぼ3内に挿入
した単結晶用材料10を図示しないヒータにより
その上部をある厚さ分だけ溶融して不純物を添加
し、然る後、材料10を上側から下側へ向けて溶
融させつつ引上げ用チヤツク7にて溶融液4を上
方に引上げてこれを凝固させ、単結晶5を成長さ
せている状態を示す模式図である。
First, the principle of the present invention will be explained below. 1st
The figure is an explanatory diagram of the principle of the present invention, in which the upper part of a single crystal material 10 inserted into a crucible 3 is melted by a certain thickness by a heater (not shown) to add impurities, and then the material 10 is placed on the upper side. 2 is a schematic diagram showing a state in which a single crystal 5 is grown by pulling up the melt 4 upward by a pulling chuck 7 and solidifying it while melting it downward. FIG.

このような状態における不純物の質量バランス
に関して、単結晶5内での不純物の拡散を無視す
ると下記(1)式が成立する。
Regarding the mass balance of impurities in such a state, the following equation (1) holds true if diffusion of impurities within the single crystal 5 is ignored.

gs 0Cs(g)dg+Cl(gs)・gl(gs)=A ……(1) 但し、 gs:単結晶用材料及び不純物の全挿入重量Wに対
する単結晶引上総重量の比率 Cs(g):比率gのときの単結晶中の溶融液と接す
る界面における不純物濃度 Cl(gs):比率がgsのときの溶融液中の不純物濃度 gl(gs):比率がgsのときのWに対するるつぼ内の
溶融液重量の比率 A:定数 上記(1)式をgsにて微分すると、 Cs(gs)+dCl/dgs・gl+Cl・dgl/dgs=0 ……(2) 但し、 Cs(gs):比率がgsのときの単結晶中の不純物濃
度 Cl:溶融液中の不純物濃度 gl:Wに対する溶融液重量の比率 となるが、単結晶・溶融液界面(以下固液界面と
いう)では、 Cs(gs)=Ke・Cl(gs) ……(3) 但し、Ke:実効偏析係数 が成立するので、上記(2)式は次式のようになる。
gs 0 Cs(g)dg+Cl(gs)・gl(gs)=A ……(1) However, gs: Ratio of the total weight of single crystal pulled to the total weight W of single crystal materials and impurities inserted Cs(g) : Impurity concentration Cl (gs) in the single crystal at the interface in contact with the melt when the ratio is g: Impurity concentration in the melt when the ratio is gs GL (gs): Inside the crucible for W when the ratio is gs Ratio of melt weight A: constant Differentiating equation (1) above with respect to gs, Cs(gs) + dCl/dgs・gl+Cl・dgl/dgs=0...(2) However, Cs(gs): Ratio is Impurity concentration in the single crystal when gs Cl: Impurity concentration in the melt gl: The ratio of the weight of the melt to W, but at the single crystal/melt interface (hereinafter referred to as the solid-liquid interface), Cs (gs) =Ke・Cl(gs)...(3) However, since Ke: effective segregation coefficient holds, the above equation (2) becomes the following equation.

(1+1/Ke・dgl/dgs)・Cs+gl/Ke・dCs/dgs=
0 ……(4) この(4)式において、左辺第1項中のdgl/dgs
を、 dgl/dgs=−Ke ……(5) とすると、単結晶中の成長を完了するまでglをゼ
ロとするような結晶成長を実質的に行わないた
め、左辺第2項中のgl/Keは結晶成長中ゼロと
ならず、結果として dCs/dgs=0 ……(6) となる。
(1+1/Ke・dgl/dgs)・Cs+gl/Ke・dCs/dgs=
0...(4) In this equation (4), dgl/dgs in the first term on the left side
If dgl/dgs=-Ke...(5), then gl/dgs in the second term on the left side is Ke does not become zero during crystal growth, and as a result, dCs/dgs=0...(6).

従つて上記(5)、(6)式より単結晶成長途中のある
時点でのgs(Wに対する単結晶引上総重量の比率)
の変化量に対するgl(Wに対するるつぼ内の溶融
液重量の比率)の変化量の比を−Ke(実効偏析係
数の負の値)に一致させることにより、gs変化量
に対するCs(単結晶中の不純物濃度)変化量がゼ
ロとなり偏析を防止できる。これぼ実効偏析係数
Keに基づいて固液界面で不純物濃度に差が生じ、
仮に溶融液量が単結晶の生成開始〜終了までの間
で一定とすると溶融液中の不純物濃度は徐々に高
くなるが、gsの変化量に対するglの変化量の比が
−Keとなるように溶融液下の未溶融材料を溶融
させることとすることにより溶融液中の不純物濃
度が常に一定に保たれ、またこれにより単結晶中
の不純物濃度がその成長程度に拘わらず、常に一
定に維持されるからである。
Therefore, from equations (5) and (6) above, gs (ratio of total weight of single crystal pulled to W) at a certain point during single crystal growth
By matching the ratio of the change in gl (the ratio of the weight of the melt in the crucible to W) to the change in -Ke (the negative value of the effective segregation coefficient), the ratio of Cs (in the single crystal) to the change in gs The amount of change (impurity concentration) is zero, and segregation can be prevented. This is the effective segregation coefficient
There is a difference in impurity concentration at the solid-liquid interface based on Ke,
If the amount of melt is constant from the start to the end of single crystal formation, the impurity concentration in the melt will gradually increase, but the ratio of the change in gl to the change in gs will be -Ke. By melting the unmelted material under the melt, the impurity concentration in the melt is always kept constant, and as a result, the impurity concentration in the single crystal is always kept constant regardless of its growth level. This is because that.

さて、溶融させつつ単結晶を成長せしめるため
には、 gs+gl<1 ……(7) とする必要がある。ちなみに、gs+gl=1となる
場合が前述の回転引上法に相当する。
Now, in order to grow a single crystal while melting it, it is necessary to satisfy gs+gl<1...(7). Incidentally, the case where gs+gl=1 corresponds to the above-mentioned rotational pulling method.

上記(7)式を満足して、つまり偏析の発生を防止
して挿入した単結晶用材料をすべて単結晶として
成長させるためには、結晶成長終了時つまり引上
げが停止されたときにgs→1、gl→0とするのが
よく、その結晶成長のための条件を以下に説明す
る。
In order to satisfy the above equation (7), that is, to prevent the occurrence of segregation and to grow all the inserted single crystal material as a single crystal, at the end of crystal growth, that is, when pulling is stopped, gs → 1 , gl→0, and the conditions for the crystal growth will be explained below.

まず不純物を添加するときのWに対する初期溶
融液重量の比gl0は gl0=Ke(<1) ……(8) とする。この理由は(5)式のdgl/dgs=−Keを維
持して引上げ及び溶融を行うので、gl、gs間の関
係は gl=−Ke・gs+C ……(9) 但し、C:定数 1次関数として表わされる。この(9)式でgs→1
のときにgl→0とするにはCを、 C=Ke ……(10) とする必要があるからである。
First, when adding impurities, the ratio gl 0 of the weight of the initial melt to W is gl 0 =Ke (<1) (8). The reason for this is that pulling and melting are performed while maintaining dgl/dgs=-Ke in equation (5), so the relationship between gl and gs is gl=-Ke・gs+C...(9) However, C: constant linear expressed as a function. In this equation (9), gs → 1
This is because in order to make gl→0 when , it is necessary to set C as C=Ke...(10).

そして引上げを開始した後の引上げ量、溶融液
量についてはgl、gsが(9)、(10)両式を満足するよう
に行う。つまり第2図の線B(gl=−Ke・gs+
Ke)上となるようにgl、gsを管理する。
The amount of pulling and the amount of melt after starting the pulling are performed so that gl and gs satisfy both equations (9) and (10). In other words, line B in Figure 2 (gl=-Ke・gs+
Ke) Manage gl and gs so that they are above.

これによりるつぼ内に挿入した単結晶用材料を
すべて低酸素化の条件下であつても偏析を防止し
て単結晶化できる。
As a result, all the single crystal materials inserted into the crucible can be made into single crystals while preventing segregation even under low oxygen conditions.

〔実施例〕〔Example〕

以下に本発明を図面に基づき具体的に説明す
る。第3図は本発明の実施状態を示す模式的側断
面図であり、図中1はチヤンバーを示す。チヤン
バー1は軸長方向を垂直とした略円筒状の真空容
器であり、上面中央部には矢符方向に所定速度で
回転する引上げチヤツク7の回転軸7′がエアシ
ールドされて貫通されている。引上げチヤツク7
にはシード(結晶成長の核となる単結晶)5′が
取付けられている。
The present invention will be specifically explained below based on the drawings. FIG. 3 is a schematic side sectional view showing the implementation state of the present invention, and 1 in the figure indicates a chamber. The chamber 1 is a substantially cylindrical vacuum container with its axial direction perpendicular, and a rotation shaft 7' of a lifting chuck 7 that rotates at a predetermined speed in the direction of the arrow is passed through the center of the upper surface with an air shield. . Lifting chuck 7
A seed (single crystal serving as a nucleus for crystal growth) 5' is attached to the.

チヤンバー1の底面中央部には、前記引上げチ
ヤツク7とは同一軸心で逆方向に所定速度で回転
するるつぼ3の支持軸6がエアシールドされて貫
通している。支持軸6の先端には黒鉛製るつぼ
3′がその内側に石英(SiO2)製るつぼ3を嵌合
する状態で取り付けられている。るつぼ3の上方
のチヤンバー1内には不純物を貯留する図示しな
い貯留箱が設けられており、その底蓋を図示しな
い開閉手段にて開けるとるつぼ3内に不純物を添
加できるようになつている。
A support shaft 6 for a crucible 3, which rotates at a predetermined speed in the opposite direction on the same axis as the pulling chuck 7, passes through the center of the bottom surface of the chamber 1 in an air-shielded manner. A crucible 3' made of graphite is attached to the tip of the support shaft 6 with a crucible 3 made of quartz (SiO 2 ) fitted inside the crucible 3'. A storage box (not shown) for storing impurities is provided in the chamber 1 above the crucible 3, and the impurities can be added into the crucible 3 by opening the bottom cover using an opening/closing means (not shown).

るつぼ3の回転域のやや外側位置には抵抗加熱
式のヒータ2が、その更に外側のチヤンバー1と
の間の位置には熱遮蔽体8が夫々同心円筒状に配
設されている。ヒータ2はその軸長方向長さがる
つぼ3のそれよりも適当に短く、図示しない昇降
装置により昇降可能に支持されており、るつぼ3
をその軸長方向長さよりも短い長さ領域で部分加
熱できるようになつている。
A resistance heating type heater 2 is disposed at a position slightly outside the rotation range of the crucible 3, and a heat shield 8 is disposed in a concentric cylindrical shape at a position further outside the crucible 3 between the heater 2 and the chamber 1. The heater 2 has an axial length that is appropriately shorter than that of the crucible 3, and is supported so that it can be raised and lowered by a lifting device (not shown).
can be partially heated in a length region shorter than its axial length.

このように構成された装置による本発明方法を
次に説明する。るつぼ3内に固形の単結晶用材料
10を所要量挿入固定したのちヒータ2にてその
上層部を、後に添加する不純物と材料10との全
重量Wに対する初期溶融液重量の比がgl0となる
ように溶融する。なお、不純物の添加量が材料1
0の挿入量に比べて極めて小さい場合は材料10
の挿入量をWとしても差し支えない。そしてその
溶融液4の重量がgl0を満足する時点でKe<1の
不純物が所要量貯留されている貯留箱(図示ぜ
す)の底蓋を開けてこれを溶融液4に添加し、不
純物が拡散して溶融液4内で均一に分布する期間
が経過すると、前述したチヤツクに取り付けられ
たシード5′を溶融液4の表面に接触させて回転
させつつ又は回転させずに引上げ、また溶融液4
の下の単結晶用材料10を上方側より溶融させ
る。この引上げ及び溶融は、前述した如く単結晶
用材料10をすべて単結晶として成長させるため
には、第2図の線B上となるようにgl、gsを管理
する必要がある。glの管理はヒータ2にて行い、
例えばヒータ2への投入電力を一定とし、単結晶
用材料10とヒータ2との相対位置をるつぼ固
定・ヒータ降下方式、ヒータ固定・るつぼ上昇方
式或いはるつぼとヒータとを同時に昇降させる方
式等にて単結晶の成長に伴つて変化させる。
The method of the present invention using the apparatus configured as described above will be explained next. After inserting and fixing the required amount of solid single crystal material 10 into the crucible 3, the upper layer is heated by the heater 2 so that the ratio of the weight of the initial melt to the total weight W of impurities and material 10 to be added later is gl 0 . Melt so that Note that the amount of impurities added is
If it is extremely small compared to the insertion amount of 0, use material 10.
There is no problem even if the insertion amount is W. Then, when the weight of the melt 4 satisfies gl 0 , the bottom cover of the storage box (shown) in which the required amount of impurities with Ke<1 is stored is opened and this is added to the melt 4, and the impurities are removed. After a period of time for the seeds to diffuse and be uniformly distributed in the melt 4, the seed 5' attached to the chuck mentioned above is brought into contact with the surface of the melt 4 and pulled up with or without rotation, and the melt is liquid 4
The single crystal material 10 below is melted from above. During this pulling and melting, in order to grow all of the single crystal material 10 as a single crystal as described above, it is necessary to control gl and gs so that they are on line B in FIG. GL is managed by heater 2,
For example, the power input to the heater 2 is kept constant, and the relative position of the single crystal material 10 and the heater 2 is determined by a method such as fixing the crucible and lowering the heater, fixing the heater and raising the crucible, or raising and lowering the crucible and the heater at the same time. Change as the single crystal grows.

しかし、gl、gsが極めて小さくなり、夫々の管
理を行うことが困難となる場合には、第4図に示
すようにgl0をKeとせずに、それよりも少し多い
溶融液量とし、引上げ後はgl/gsを第2図の線B
と同じ傾きとなるように管理し、gl、gsが小さく
なるとgl/gsを小さく(gs/glを大きく)、つま
り線Bの傾きよりも大きい傾きとなるように管理
する。
However, if gl and gs become extremely small and it becomes difficult to manage them, as shown in Figure 4, instead of setting gl 0 as Ke, set a slightly larger amount of melt and After that, connect gl/gs to line B in Figure 2.
When gl and gs become smaller, gl/gs is made smaller (gs/gl is made larger), that is, it is managed so that the slope is larger than the slope of line B.

このように管理した場合にも挿入した単結晶用
材料10をすべて単結晶に成長させることがで
き、また成長した単結晶に殆ど偏析がない。また
溶融液の下部温度が上部温度に比べて低いので溶
融液の対流は回転引上法に比較して弱く、石英製
るつぼを使用していても成長した単結晶はその中
の酸素が低レベルに維持されている。
Even when managed in this manner, all of the inserted single crystal material 10 can be grown into a single crystal, and there is almost no segregation in the grown single crystal. In addition, since the temperature at the bottom of the melt is lower than the temperature at the top, the convection of the melt is weaker than in the rotary pulling method, and even if a quartz crucible is used, the grown single crystal has a low oxygen level. is maintained.

なお、上記説明では単結晶を成長させている
が、本発明はこれに限らず例えば多結晶の金属材
を成長させる場合等にも適用できることは勿論で
ある。
In the above description, a single crystal is grown, but the present invention is of course not limited to this, and can of course be applied to, for example, growing a polycrystalline metal material.

また、上記実施例では抵抗加熱式ヒータを使用
しているが、本発明はこれらに限らず誘導加熱コ
イルを使用して加熱溶融してもよいことは勿論で
ある。
Further, although a resistance heating type heater is used in the above embodiment, the present invention is not limited to this, and it goes without saying that an induction heating coil may be used for heating and melting.

〔効果〕〔effect〕

内径300mmの石英製るつぼを使用し、これにシ
リコン単結晶用材料を挿入した後これを初期溶融
液の高さが200mmとなるまで溶融してこれにシリ
コンに対するKeが0.35である不純物リンを添加
し、るつぼを0.5rpmの速度で回転させ、また引
上げチヤツクをるつぼの回転方向とは逆方向に
15rpmの速度で回転させて、glにて材料、不純物
を溶融しつつgsにて溶融液を引上げ、径が100mm
の単結晶に成長させた。なお、この結晶成長の場
合にはgl、gsの管理は、第4図に示した線上とな
るように行い、また初期溶融液量gl0はKeよりも
大きい値0.4とした。
A quartz crucible with an inner diameter of 300 mm is used, and after inserting the silicon single crystal material into it, it is melted until the height of the initial melt reaches 200 mm, and an impurity, phosphorus, whose Ke value relative to silicon is 0.35 is added. Then, rotate the crucible at a speed of 0.5 rpm, and turn the lifting chuck in the opposite direction to the crucible rotation direction.
Rotate at a speed of 15 rpm, melt the material and impurities with the GL, and pull up the molten liquid with the GS until the diameter is 100 mm.
was grown into a single crystal. In the case of this crystal growth, gl and gs were controlled so that they were on the line shown in FIG. 4, and the initial melt amount gl 0 was set to 0.4, which was larger than Ke.

そして得られた単結晶のgsが0,0.1,0.2,
0.3,0.4,0.5,0.6のときの箇所にてその軸長方
向の抵抗率を測定した。第5図はその抵抗率の測
定結果(黒丸印)を示しており、横軸にgsをと
り、また縦軸にρ/ρ0(抵抗率分布)をとつてい
る。
And the gs of the obtained single crystal is 0, 0.1, 0.2,
The resistivity in the axial direction was measured at points at 0.3, 0.4, 0.5, and 0.6. FIG. 5 shows the resistivity measurement results (black circles), with gs plotted on the horizontal axis and ρ/ρ 0 (resistivity distribution) plotted on the vertical axis.

なお、比較のために従来法の回転引上法にて成
長させた単結晶の場合の測定結果(破線)を併せ
て示しており、図中の1点鎖線は抵抗率の許容範
囲の一例を示している。
For comparison, the measurement results (dashed line) for a single crystal grown by the conventional rotational pulling method are also shown, and the dashed line in the figure shows an example of the allowable range of resistivity. It shows.

この図より理解される如く従来法による場合は
単結晶の成長に伴つて抵抗率が1.0より徐々に低
下している。つまり単結晶の軸長方向で抵抗率に
影響を及ぼすPの濃度が変化し偏析が生じてい
る。これに対して本発明による場合は、ヒータの
移動による溶融液層厚の制御が完全でないためか
若干のバラツキがあるが、抵抗率が1.0近傍値と
なつており、つまり単結晶の軸長方向のP濃度が
一定となつており、偏析の発生が防止されてい
る。
As can be understood from this figure, in the case of the conventional method, the resistivity gradually decreases from 1.0 as the single crystal grows. In other words, the concentration of P, which affects resistivity, changes in the axial direction of the single crystal, causing segregation. On the other hand, in the case of the present invention, there is some variation probably because the control of the melt layer thickness by the movement of the heater is not perfect, but the resistivity is close to 1.0, that is, in the axial direction of the single crystal. The P concentration is constant, and segregation is prevented from occurring.

また同一断面内で抵抗率分布を調査したが、本
発明により成長させた単結晶及び従来法(回転引
上法)による単結晶共に抵抗率のバラツキは±
2.5%以内であり、両単結晶は共に半径方向の偏
析がなく良好であつた。
In addition, we investigated the resistivity distribution within the same cross section, and found that the variation in resistivity was ±
It was within 2.5%, and both single crystals were good with no radial segregation.

なお上記説明では(4)式を満足させる条件として
(5)、(6)式を得ているが、本発明は(5)式を厳密に成
立させなくとも以下の理由により dgl/dgs=−Ke(1+ε) ……(11) 但し、εは厳密な無偏析条件である(5)式からの
外れの程度を表す定数 としても目的を達成できることは勿論である。そ
の理由を次に説明する。
In addition, in the above explanation, as a condition for satisfying equation (4),
Equations (5) and (6) are obtained, but in the present invention, even if Equation (5) does not hold strictly, dgl/dgs=-Ke(1+ε)...(11) However, ε is Of course, the objective can also be achieved by using a constant representing the degree of departure from equation (5), which is the strict non-segregation condition. The reason for this will be explained next.

(11)式をgsについて積分すると gl=gl0−Ke(1+ε)gs ……(12) を得る。ここでgl0は、結晶引上開始時(gs=0)
のglの値(初期液相率)である。
Integrating equation (11) with respect to gs, we obtain gl=gl 0 −Ke(1+ε)gs...(12). Here, gl 0 is the start of crystal pulling (gs=0)
is the value of gl (initial liquid phase ratio).

(11)式及び(12)式を(4)式に代入してdgl/
dgs及びglを消去すると、 {1+1/Ke〔−Ke(1+ε)〕}・Cs+〔
gl0/Ke−(1+ε)gs〕dCs/dgs=0 となる。この式を整理すると −εCs+〔gl0/Ke−(1+ε)gs〕 ・dCs/dgs=0 ……(13) を得る。この(13)式をgsについて積分すると 但し、Cs0:初期単結晶中の不純物濃度 として表わせる。
Substituting equations (11) and (12) into equation (4), dgl/
When dgs and gl are deleted, {1+1/Ke[-Ke(1+ε)]}・Cs+[
gl 0 /Ke−(1+ε)gs]dCs/dgs=0. If we rearrange this equation, we get -εCs+[gl 0 /Ke−(1+ε)gs] ・dCs/dgs=0 (13). Integrating this equation (13) with respect to gs gives us However, Cs 0 : can be expressed as the impurity concentration in the initial single crystal.

一方、回転引上法におけるCsは、いわゆる
Pfannの式 Cs=Cs0(1−gs)Ke-1……(15) に従うことが知られている。
On the other hand, Cs in the rotational pulling method is so-called
It is known that Pfann's formula Cs=Cs 0 (1−gs) Ke-1 ...(15) is followed.

ここで例えばKe=0.35、gl0=Keとした条件の
場合には(14)、(15)式は第6図に示すような線
として表わせる。図中の実線は(14)式のεが±
0.1,±0.3,±0.5の6通りの場合であり、破線は
(15)式を示す。この図より理解される如く本発
明により結晶を成長させる場合にはεが±0.5程
度あつても、つまりdgl/dgsが−Keに厳密に一
致せず、多少のdgl/dgsの変動が生じても回転引
上法にて結晶を成長させるよりも成長した結晶に
偏析が少ない。
For example, under the conditions of Ke=0.35 and gl 0 =Ke, equations (14) and (15) can be expressed as lines as shown in FIG. The solid line in the figure indicates that ε in equation (14) is ±
There are six cases: 0.1, ±0.3, and ±0.5, and the broken line indicates equation (15). As can be understood from this figure, when growing a crystal according to the present invention, even if ε is around ±0.5, dgl/dgs does not exactly match -Ke, and some fluctuations in dgl/dgs occur. Also, the grown crystals have less segregation than those grown by the rotational pulling method.

以上詳述した如く本発明による場合は、低酸素
化の条件下であつても偏析の発生を防止して結晶
を成長させ得るので、結晶の軸長方向及び半径方
向、特に軸長方向での不純物濃度が一定となり、
例えば単結晶のどの箇所から半導体装置用材料を
作成してもその材料の抵抗率にバラツキがなく、
更に材料の歩留が高い等、本発明は優れた効果を
奏する。
As detailed above, according to the present invention, crystals can be grown while preventing segregation even under low oxygen conditions. The impurity concentration becomes constant,
For example, no matter which part of a single crystal a material for a semiconductor device is made from, there is no variation in the resistivity of the material.
Furthermore, the present invention has excellent effects such as high material yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理の説明図、第2図はその
原理にてるつぼ内材料すべてを単結晶とする場合
の説明図、第3図は本発明の実施状態を示す模式
図、第4図はその場合のgsとglとの管理説明図、
第5図は本発明の効果の説明図、第6図は本発明
の目的を達成し得るgl、gsの管理範囲の説明図、
第7図は従来技術の説明図である。 2……ヒータ、3……るつぼ、4……溶融液、
5……単結晶、10……単結晶用材料。
Fig. 1 is an explanatory diagram of the principle of the present invention, Fig. 2 is an explanatory diagram when all the materials in the crucible are made of single crystal according to the principle, Fig. 3 is a schematic diagram showing the implementation state of the present invention, and Fig. 4 is an explanatory diagram of the principle of the present invention. The figure is a diagram explaining the management of gs and gl in that case,
Fig. 5 is an explanatory diagram of the effects of the present invention, Fig. 6 is an explanatory diagram of the management range of GL and GS that can achieve the purpose of the present invention,
FIG. 7 is an explanatory diagram of the prior art. 2... Heater, 3... Crucible, 4... Molten liquid,
5... Single crystal, 10... Material for single crystal.

Claims (1)

【特許請求の範囲】 1 るつぼ内に挿入した結晶用材料を上側から下
側へ向けて溶融していき、またその溶融液を上方
に引上げて凝固させていくことにより結晶を成長
させる方法において、 前記材料を一部溶融させた段階でその溶融液に
不純物を添加したのち溶融液の引上げを開始し、 その引上げ中、結晶の成長に伴つてるつぼ内の
溶融液量を減少させることを特徴とする結晶成長
方法。
[Claims] 1. A method of growing crystals by melting a crystal material inserted into a crucible from the top to the bottom, and pulling the molten liquid upward to solidify it, It is characterized by adding impurities to the melt at the stage where the material is partially melted, and then pulling up the melt, and during the pulling, the amount of the melt in the crucible is reduced as the crystals grow. crystal growth method.
JP4560285A 1985-03-06 1985-03-06 Method for crystal growth Granted JPS61205691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4560285A JPS61205691A (en) 1985-03-06 1985-03-06 Method for crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4560285A JPS61205691A (en) 1985-03-06 1985-03-06 Method for crystal growth

Publications (2)

Publication Number Publication Date
JPS61205691A JPS61205691A (en) 1986-09-11
JPH0379320B2 true JPH0379320B2 (en) 1991-12-18

Family

ID=12723898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4560285A Granted JPS61205691A (en) 1985-03-06 1985-03-06 Method for crystal growth

Country Status (1)

Country Link
JP (1) JPS61205691A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63252989A (en) * 1987-04-08 1988-10-20 Sumitomo Electric Ind Ltd Production of semiconductor single crystal by pull-up method
JPH0532480A (en) * 1991-02-20 1993-02-09 Sumitomo Metal Ind Ltd Method for growing crystal
DE4204777A1 (en) * 1991-02-20 1992-10-08 Sumitomo Metal Ind Zonal single crystal growth with increased temp. gradient control - uses heat screens and sepd. heater elements to control and alter the solid-liq. interface position
JP2606046B2 (en) * 1992-04-16 1997-04-30 住友金属工業株式会社 Control method of single crystal oxygen concentration during single crystal pulling
JPH0680495A (en) * 1992-06-16 1994-03-22 Sumitomo Metal Ind Ltd Method for crystal growth
JPH06263583A (en) * 1993-03-15 1994-09-20 Sumitomo Sitix Corp Crystal growing method
JP2640315B2 (en) * 1993-03-22 1997-08-13 住友シチックス株式会社 Method for producing silicon single crystal
JPH06279170A (en) * 1993-03-29 1994-10-04 Sumitomo Sitix Corp Production of single crystal and its device
JPH07267776A (en) * 1994-03-31 1995-10-17 Sumitomo Sitix Corp Growth method of single crystal

Also Published As

Publication number Publication date
JPS61205691A (en) 1986-09-11

Similar Documents

Publication Publication Date Title
EP0286133B1 (en) Monocrystal rod and method of pulling same from a melt and apparatus therefor
JPH0379320B2 (en)
JPH03115188A (en) Production of single crystal
JPH0480875B2 (en)
US5471943A (en) Process and device for pulling crystals according to the Czochralski method
JP4013324B2 (en) Single crystal growth method
KR100810566B1 (en) Sb-DOPED SILICON SINGLE CRYSTAL AND GROWING METHOD THEREOF
JPH034517B2 (en)
JPH051236B2 (en)
JPS6018634B2 (en) Crystal pulling device
CN105887187B (en) Method for stably controlling concentration of dopant for silicon single crystal growth
JP2550740B2 (en) Crystal growth equipment
JP2640315B2 (en) Method for producing silicon single crystal
JP2600944B2 (en) Crystal growth method
JPH03215384A (en) Crystal-growing device
JPH06271384A (en) Method for pulling up single crystal
JPS5950627B2 (en) Single crystal silicon pulling equipment
JPH04214091A (en) Method for growing crystal
TWI831613B (en) Method for producing single crystal silicon ingot
KR100581045B1 (en) Method for porducing silicon single crystal
JPH0543384A (en) Method for crystal growth
JP2813150B2 (en) Single crystal manufacturing method
JPS61158897A (en) Method for pulling up compound semiconductor single crystal and apparatus therefor
JPH09208360A (en) Growth of single crystal
JPH0524972A (en) Method for growing crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees