JPH0379023A - Method of improving silicon monocrystal film - Google Patents

Method of improving silicon monocrystal film

Info

Publication number
JPH0379023A
JPH0379023A JP21651189A JP21651189A JPH0379023A JP H0379023 A JPH0379023 A JP H0379023A JP 21651189 A JP21651189 A JP 21651189A JP 21651189 A JP21651189 A JP 21651189A JP H0379023 A JPH0379023 A JP H0379023A
Authority
JP
Japan
Prior art keywords
silicon
film
annealing
substrate
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21651189A
Other languages
Japanese (ja)
Inventor
Hiroshi Kitajima
洋 北島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21651189A priority Critical patent/JPH0379023A/en
Publication of JPH0379023A publication Critical patent/JPH0379023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To reduce crystal defect and improve element characteristics by a method wherein silicon is ion-implanted along a low index crystal axis of a silicon monocrystalline film and annealing is done with respect to the silicon monocrystalline film formed on an insulation film. CONSTITUTION:After silicon ions are implanted along a low index crystal axis of a silicon monocrystalline film on a silicon dioxide film obtained conventionally, annealing is performed. For example, silicon ions 4 are implanted into a silicon substrate 1 under the conditions of implantation energy of 70keV and dosage of 5X10<14>cm<-2> in a perpendicular direction, that is, <001> direction into a silicon substrate 1 and annealing at 1000 deg.C for 1 hour is performed in N2 atmosphere. Thus crystal defects remaining in the silicon monocrystalline film 3 formed on the silicon dioxide film 2 can be largely reduced thereby improving obtained element characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン膜の改善方法に関し、特に二酸化シリ
コン膜上に形成されたシリコン膜中に存在する欠陥の低
減法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for improving a silicon film, and more particularly to a method for reducing defects present in a silicon film formed on a silicon dioxide film.

〔従来の技術〕[Conventional technology]

絶縁物上のシリコン単結晶膜、いわゆる5OI(Sil
icon on In5ulator)構造は、浮遊容
量の低減、ラッチアップ耐性の向上といった利点がある
。このSOI構造は、たとえば、シリコン多結晶膜を二
酸化シリコン膜上に形成し、レーザ光やヒーターなどで
一担溶融する方法やシリコン基板に酸素を高濃度イオン
注入しアニールすることによってシリコン基板中に二酸
化シリコン層を形成するいわゆる、S IMOX (f
ieparation by LmplantedQx
ygen)法などが知られている。
A silicon single crystal film on an insulator, so-called 5OI (Sil
This structure has advantages such as reduced stray capacitance and improved latch-up resistance. This SOI structure can be achieved, for example, by forming a silicon polycrystalline film on a silicon dioxide film and melting it with laser light or a heater, or by implanting high concentration oxygen ions into the silicon substrate and annealing it. The so-called S IMOX (f
ieparation by LplantedQx
ygen) method is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した方法で形成した二酸化シリコン膜上のシリコン
単結晶膜中には転位や積層欠陥などの格子欠陥がしばし
ば残留し、そこに形成した素子の特性に悪影響を与える
という欠点があった。
A disadvantage is that lattice defects such as dislocations and stacking faults often remain in the silicon single crystal film on the silicon dioxide film formed by the method described above, which adversely affects the characteristics of devices formed there.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の改善法は、従来方法で得られた二酸化シリコン
膜上のシリコン単結晶膜に低指数結晶軸にそってシリコ
ンイオンを注入しその後、アニールすることを特徴とし
ている。
The improved method of the present invention is characterized by implanting silicon ions along the low index crystal axis into a silicon single crystal film on a silicon dioxide film obtained by a conventional method, and then annealing.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of one embodiment of the present invention.

基板はSIMOX法で形成したものであり、(OO1)
シリコン基板1に酸素イオンを注入エネルギー180K
eV、  ドーズ量2 X 10 ”cm−”の条件で
注入し、N2雰囲気中で1200℃6時間アニールした
ものを用いた。このアニールによって約500nmの二
酸化シリコン層2がシリコン基板中に形成され、表面に
は約150nmの単結晶シリコン層3が形成されている
The substrate was formed by SIMOX method, (OO1)
Oxygen ions are implanted into the silicon substrate 1 at an energy of 180K.
eV and a dose of 2 x 10 "cm-" and annealed at 1200° C. for 6 hours in a N2 atmosphere. By this annealing, a silicon dioxide layer 2 of about 500 nm is formed in the silicon substrate, and a single crystal silicon layer 3 of about 150 nm is formed on the surface.

このような条件で形成したSIMOX基板を断面電子顕
微鏡観察したところ、100〜150nmに1個程度の
格子欠陥が観察された。このように基板にシリコンイオ
ン4を注入エネルギー70KeV、  ドーズ量5 X
 I Q 14am−”の条件で基板に垂直方向、すな
わち<000方向から注入し、N2中で1000℃1時
間のアニールを行い、断面電子顕微鏡観察したところ、
欠陥は観察されなかった。このシリコン膜にMOS (
Metal−oxide−semicondukcto
r) )ランジスタを形成して調べたところリーク電流
が約2桁改善されていた。
When the SIMOX substrate formed under these conditions was observed using a cross-sectional electron microscope, about one lattice defect was observed every 100 to 150 nm. In this way, silicon ions 4 are implanted into the substrate at an energy of 70 KeV and a dose of 5
Injected into the substrate from the vertical direction, that is, <000 direction, under the condition of IQ 14 am-'', annealed at 1000° C. for 1 hour in N2, and observed with a cross-sectional electron microscope.
No defects were observed. This silicon film has a MOS (
Metal-oxide-semiconductor
r)) When a transistor was formed and investigated, the leakage current was improved by about two orders of magnitude.

イオン注入時の基板温度を室温から液体窒素温度に下げ
た基板を用いたところリーク電流は更に約1/2桁の改
善が見られた。
When a substrate was used in which the substrate temperature during ion implantation was lowered from room temperature to liquid nitrogen temperature, leakage current was further improved by about 1/2 digit.

第2図は本発明の他の実施例の縦断面図である。FIG. 2 is a longitudinal sectional view of another embodiment of the invention.

シリコン基板11上に形成された二酸化シリコン膜12
に開口部13が設けられ、上に堆積した多結晶シリコン
膜はランプ光によって一担溶融し単結晶シリコン膜14
となっている。このような構造では開口部13が単結晶
化の際のシードとなるため基板と同じ方位のシリコン膜
14が二酸化シリコン膜12上に形成されるが、開口部
13から離れる程欠陥密度は増加する。
Silicon dioxide film 12 formed on silicon substrate 11
An opening 13 is provided in the polycrystalline silicon film 14 , and the polycrystalline silicon film deposited thereon is melted by the lamp light, forming a single crystal silicon film 14 .
It becomes. In such a structure, since the opening 13 serves as a seed during single crystallization, a silicon film 14 having the same orientation as the substrate is formed on the silicon dioxide film 12, but the defect density increases as the distance from the opening 13 increases. .

このシリコン膜14に基板に垂直方向すなわち〈001
〉方向からシリコンイオン15を注入エネルギー200
KeV、  ドーズ量7 X 1014an−”の条件
で注入し% N2中で1000℃1時間の7ニールを行
った。エッチビットをだして観察したところ、開口部か
ら300μm程度の範囲まで欠陥密度の大幅な減少が見
られた。
This silicon film 14 has a direction perpendicular to the substrate, that is, <001
> Inject silicon ions 15 from the direction with an energy of 200
KeV, the dose was 7 x 1014 an-'', and 7 anneals were performed at 1000°C for 1 hour in %N2. When the etch bit was taken out and observed, the defect density was significantly increased within a range of about 300 μm from the opening. A significant decrease was observed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、二酸化シリコン膜上に形
成されたシリコン単結晶膜中に残留している格子欠陥を
大幅に減少させる効果がある。これは、低指数軸にそっ
て注入されるシリコンイオンが結晶の乱れた部分すなわ
ち欠陥の存在している部分を集中的にこわすことによる
。単結晶の部分ではシリコンイオンは結晶に損傷をあま
り与えずに通りぬけるが欠陥の部分に達するとチャンネ
リングが阻害されるため、欠陥部分では結晶に損傷を与
え、ドーズ量がある程度高ければ欠陥部分だけを非晶質
化することになる。その後、アニールによって固相成長
をおこさせると、強い応力が加わっている場合を除いて
、欠陥を形成することなく単結晶化が生ずる。チャンネ
リングは低温程顕著になるため、実施例1で示したよう
に液体窒素温度でのシリコン注入はより大きな効果をも
つ。
As explained above, the present invention has the effect of significantly reducing lattice defects remaining in a silicon single crystal film formed on a silicon dioxide film. This is because the silicon ions implanted along the low index axis intensively destroy the disordered parts of the crystal, that is, the parts where defects exist. Silicon ions pass through the single crystal part without causing much damage to the crystal, but when they reach the defective part, channeling is inhibited, causing damage to the crystal in the defective part, and if the dose is high to a certain extent, the silicon ion passes through the crystal without causing much damage. Only the crystalline material will be made amorphous. Thereafter, when solid phase growth is caused by annealing, single crystallization occurs without forming defects, except when strong stress is applied. Since channeling becomes more pronounced at lower temperatures, silicon implantation at liquid nitrogen temperature has a greater effect as shown in Example 1.

この方法は単結晶領域に与える損傷が少いという利点が
あり、最終的に得られる素子特性を損うことがほとんど
ない。またチャンネリングを用いていること、欠陥に対
する自己整合的な破壊であることから他の実施例に見ら
れるように膜厚に対する適用範囲が広く、また広い範囲
の欠陥密度に適用することができる。
This method has the advantage of causing less damage to the single crystal region, and hardly impairs the characteristics of the final device. Furthermore, since channeling is used and the defect is destroyed in a self-aligned manner, it can be applied to a wide range of film thicknesses and a wide range of defect densities, as seen in the other embodiments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明するための縦断面図、
第2図は本発明の他の実施例を説明するための縦断面図
である。 ■・・・・・・(OO1)シリコン基板、2・・・・・
・二酸化シリコン層、3・・・・・・単結晶シリコン層
、4・・・・・・シリコンイオン、11・・・・・・(
001)シリコン基板、12・・・・・・二酸化シリコ
ン層、13・・・・・・開口部、14・・・・・・シリ
コン膜、15・・・・・・シリコンイオン。
FIG. 1 is a longitudinal cross-sectional view for explaining one embodiment of the present invention;
FIG. 2 is a longitudinal sectional view for explaining another embodiment of the present invention. ■・・・・・・(OO1) Silicon substrate, 2・・・・・・
・Silicon dioxide layer, 3... Single crystal silicon layer, 4... Silicon ion, 11... (
001) Silicon substrate, 12... Silicon dioxide layer, 13... Opening, 14... Silicon film, 15... Silicon ion.

Claims (1)

【特許請求の範囲】[Claims] 絶縁膜上に形成されたシリコン単結晶膜に対し、該シリ
コン単結晶膜の低指数結晶軸にそってシリコンをイオン
注入し、アニールする工程を有することを特徴とするシ
リコン単結晶膜の改善方法。
A method for improving a silicon single crystal film, comprising the steps of implanting silicon ions into a silicon single crystal film formed on an insulating film along a low index crystal axis of the silicon single crystal film, and annealing the silicon single crystal film. .
JP21651189A 1989-08-22 1989-08-22 Method of improving silicon monocrystal film Pending JPH0379023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21651189A JPH0379023A (en) 1989-08-22 1989-08-22 Method of improving silicon monocrystal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21651189A JPH0379023A (en) 1989-08-22 1989-08-22 Method of improving silicon monocrystal film

Publications (1)

Publication Number Publication Date
JPH0379023A true JPH0379023A (en) 1991-04-04

Family

ID=16689578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21651189A Pending JPH0379023A (en) 1989-08-22 1989-08-22 Method of improving silicon monocrystal film

Country Status (1)

Country Link
JP (1) JPH0379023A (en)

Similar Documents

Publication Publication Date Title
US20060281234A1 (en) Semiconductor device and method of manufacturing the same
JPS63142655A (en) Manufacture of device containing buried sio2 layer
JPH11145436A (en) Laminated soi substrate and manufacture thereof
JPH02301131A (en) Manufacture of semiconductor device
JPS6178119A (en) Manufacture of semiconductor
JPH0770481B2 (en) Method for forming silicon semiconductor layer
JP2000294793A (en) Manufacture of thin-film transistor
JPH0379023A (en) Method of improving silicon monocrystal film
KR930010093B1 (en) Forming method of semiconductor thin film
JP3287834B2 (en) Heat treatment method for polycrystalline semiconductor thin film
JPH026222B2 (en)
JPS6327852B2 (en)
JP2536472B2 (en) Solid phase growth method for polycrystalline semiconductor film
JPS62132344A (en) Manufacture of silicon substrate for integrated circuit
JPH10214843A (en) Manufacturing method of semiconductor substrate
JP3384439B2 (en) Method for manufacturing semiconductor device
KR101002045B1 (en) A method for forming a transistor of a semiconductor device
KR920002463B1 (en) Method of making an article comprising a buried sio2 layer and article produced thereby
JPH04367278A (en) Insulating gate thin film transistor and manufacture thereof
JP2699587B2 (en) Method of implanting impurities into semiconductor substrate
JPH01181473A (en) Semiconductor device and its manufacture
JPS61116821A (en) Formation of single crystal thin film
JPH04242958A (en) Manufacture of semiconductor device
JPS63271942A (en) Reduction of defect of si surface
JPH0396223A (en) Forming method for soi structure