JPH0379004A - Method for cooling iron core - Google Patents

Method for cooling iron core

Info

Publication number
JPH0379004A
JPH0379004A JP21581389A JP21581389A JPH0379004A JP H0379004 A JPH0379004 A JP H0379004A JP 21581389 A JP21581389 A JP 21581389A JP 21581389 A JP21581389 A JP 21581389A JP H0379004 A JPH0379004 A JP H0379004A
Authority
JP
Japan
Prior art keywords
iron core
iron
coolant
refrigerant
cores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21581389A
Other languages
Japanese (ja)
Other versions
JP2703631B2 (en
Inventor
Norihiko Ninomiya
二宮 紀彦
Akira Tokuchi
徳地 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP21581389A priority Critical patent/JP2703631B2/en
Publication of JPH0379004A publication Critical patent/JPH0379004A/en
Application granted granted Critical
Publication of JP2703631B2 publication Critical patent/JP2703631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To suppress rise in temperature of an iron core and enable discharge with short pulse widths and a high repetition rate by a method wherein coolant is passed through from a coolant passage inlet provided on a iron core holding jig or an iron core holding piece and a widthwise direction of the iron core divided into a plurality of pieces is cooled. CONSTITUTION:A jig 13a for holding an iron core is formed in a hollowed shape comprising of a pipe and a plate, etc., while a plurality of iron cores 12 are held thereon with necessary intervals kept respectively. A required number of holes or slits of optional shape are provided on the outer periphery of the iron core holding jig 13a while coolant passage inlets 18 are provided so that coolant 16 can pass through the specific spaces among the iron cores. An injection port 15a for the coolant 16 is additionally provided on the iron core holding jig 13a. In order to dissipate the heat the iron cores 12 effectively, the best way is to cool the end faces of wound iron coils. In this case, since heat is deprived by the coolant 16 passing radially between the respective iron cores from the iron core holding jig 13a with respect to any one of the iron cores 12, ideal cooling is possible. Thus highly repetitive operation is possible while stable reproducibility can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、パルス回路に使用される可飽和リアクトル、
チョークコイル、変圧器などに使用される磁性薄体から
なる鉄芯の温度上昇を抑制するための冷却方法に関する
ものである。主な用途は、最近特に開発が急がれて、高
繰り返し運動が要求されているエキシマレーザや銅蒸気
レーザモして自由電子レーザなどの電源部のパルス回路
に用いられる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a saturable reactor used in a pulse circuit,
The present invention relates to a cooling method for suppressing the temperature rise of iron cores made of magnetic thin bodies used in choke coils, transformers, etc. The main applications are in the pulse circuits of the power supplies of excimer lasers, copper vapor lasers, free electron lasers, etc., which have recently been developed rapidly and require high repetition motion.

従来の技術 上述の各種レーザに使用されるパルス電源のパルス幅は
、通常10−8〜10−5秒と言うきわめて時間幅の短
い放電が行われ、かつ出力容量を上げるために高繰り返
し運転が必要である。これらの回路に使われるパルス変
圧器や可飽和リアクトルの鉄芯には、種々の磁性材料の
中でも、鉄損の比較的少なくて、高周波特性の優れた珪
素鋼や、非晶質の磁性薄体を多数回巻いた鉄芯が多く使
われている。これらを用いたパルス磁気圧縮回路の実施
例を第6図に示す。同図において、充電電源(図示せず
)よりコンデンサ1を充電し、その電圧が最大値に達し
た付近で、スイッチ2を閉じて、パルス変圧器4のリー
ケージインダクタンスと回路に既成するインダクタンス
3を介して、パルス変圧器4により所定の電圧まで昇圧
して、コンデンサ5を充電する。
Conventional technology The pulse width of the pulsed power source used in the various lasers mentioned above is usually a very short discharge of 10-8 to 10-5 seconds, and high repetition operation is required to increase the output capacity. is necessary. Among various magnetic materials, the iron cores of pulse transformers and saturable reactors used in these circuits are made of silicon steel, which has relatively low iron loss and excellent high frequency characteristics, and amorphous magnetic thin material. An iron core made of many turns is often used. An example of a pulse magnetic compression circuit using these is shown in FIG. In the figure, a capacitor 1 is charged from a charging power source (not shown), and when the voltage reaches its maximum value, a switch 2 is closed and the leakage inductance of a pulse transformer 4 and an inductance 3 already formed in the circuit are connected. Through the pulse transformer 4, the voltage is increased to a predetermined voltage, and the capacitor 5 is charged.

コンデンサ5への充電時間T1は、主に前記コンデンサ
1.5とインダクタンス3とによって決まり、その間可
飽和り7クトル6は、チョークコイルとして働いて、高
いインピーダンス値を有していたが、最大値付近に達す
ると、磁気飽和をおこすように設計しであるため、イン
ピーダンスは急激に低下して、スイッチング作用をする
。そのため、コンデンサ5の電荷は可飽和リアクトル6
を介してコンデンサ7に移送される。コンデンサ7への
充電時間T2は、主にコンデンサ5.7と可飽和り7ク
トル6の飽和後のインダクタンスで決まり、その間可飽
和り7クトル8は、チョークコイルとして働いて高いイ
ンピーダンス値を有していたが、最大値付近に達すると
磁気飽和をおこすように設計しであるため、インピーダ
ンスは急激に低下して、スイッチングの作用をする。そ
のため、コンデンサ7の電荷は、可飽和り7クトル8を
介してレーザなどの発振部、すなわち負荷9に供給され
る。負荷9への充電時間T3は主にコンデンサ7と可飽
和り7クトルの飽和後のインダクタンスおよび負荷9が
有しているインピーダンスの値で決まる。ここでこのよ
うに複数のスイッチングの作用をさせる理由は、充電時
間下、)T2)T3とパルス幅を段階的に圧縮して行き
、所定のパルス幅を得たいためである。すなわち、可飽
和り7クトル6.8は前段のコンデンサ5および7にそ
れぞれ充電される電圧と充電時間の積とに、みあった磁
気容量を持つものとするため、(インダクタンス3の値
))(可飽和り7クトル6の飽和後のインダクタンスの
値))(可飽和り7クトル8の飽和後のインダクタンス
の値)と段階的にインダクタンスの小さくしていくこと
になる。必要によっては、4〜5段の例も見られる。
The charging time T1 to the capacitor 5 is mainly determined by the capacitor 1.5 and the inductance 3, during which the saturable capacitor 6 acts as a choke coil and has a high impedance value, but the maximum value When it reaches this point, the design is such that magnetic saturation occurs, so the impedance drops rapidly and a switching effect occurs. Therefore, the charge on the capacitor 5 is transferred to the saturable reactor 6
is transferred to the capacitor 7 via. The charging time T2 to the capacitor 7 is mainly determined by the inductance after saturation of the capacitor 5.7 and the saturable capacitor 6, during which the saturable capacitor 8 acts as a choke coil and has a high impedance value. However, since it is designed to cause magnetic saturation when it reaches near its maximum value, the impedance drops rapidly, causing a switching effect. Therefore, the charge of the capacitor 7 is supplied to an oscillating unit such as a laser, that is, a load 9 via a saturable capacitor 8. The charging time T3 for the load 9 is mainly determined by the inductance of the capacitor 7 and the saturable resistor after saturation, and the value of the impedance of the load 9. The reason why a plurality of switching operations are performed in this manner is to compress the pulse width ()T2)T3 in stages during the charging time to obtain a predetermined pulse width. In other words, since the saturable capacitor 6.8 has a magnetic capacity that matches the product of the voltage and charging time charged to the capacitors 5 and 7 in the previous stage, (value of inductance 3)) (Value of inductance after saturation of 7 saturable vectors 6)) (Value of inductance after saturation of 7 saturable vectors 8) The inductance is gradually reduced. Depending on the need, examples of 4 to 5 stages can also be seen.

さて、このようなパルス回路で使われるパルス変圧器4
や可飽和り7クトル6.8は充電時間、すなわち放電周
期が短いため、鉄芯の高周波領域における鉄損が大きく
て、発熱が高い。したがって、繰り返し運転するには、
油、ガスなどの冷媒を用いて、冷却しながら使用してい
る。最も単純な従来例を第7図に示す。これは第6因に
示した1ターン巻きの可飽和り7クトル8の具体的な構
造例で金属導体の円筒容器10と絶縁板11とを気密に
保持された容器内に、そして複数に分割された鉄芯12
が鉄芯保持具13に保持されている。鉄芯保持具13は
、端子14と絶縁板11とにより図示しない方法で気密
に保持されている。
Now, pulse transformer 4 used in such a pulse circuit.
Since the saturable torque 6.8 has a short charging time, that is, a short discharging cycle, the iron core has a large iron loss in the high frequency range and generates a lot of heat. Therefore, for repeated driving,
It is used while being cooled using a refrigerant such as oil or gas. The simplest conventional example is shown in FIG. This is a specific structural example of the saturable 7 torque coil 8 with one turn winding shown in the sixth factor, in which a cylindrical container 10 of a metal conductor and an insulating plate 11 are held in an airtight container and divided into multiple parts. iron core 12
is held by the iron core holder 13. The iron core holder 13 is airtightly held by the terminal 14 and the insulating plate 11 by a method not shown.

さて、電気的には鉄芯保持具13を金属導体にするか、
又は絶縁物にした場合はこの中に金属導体を通して、端
子14と接続すれば、端子′14と負荷9と円筒容器1
0とで構成される回路は、鉄芯12に対し、1ターン巻
きの可飽和り7クトルとしての形状をなす。さて、こう
いった可飽和り7クトルがパルス運転を繰り返すと、鉄
芯12が鉄損により温度上昇するために、注入口15よ
り油やガスなどの冷媒16を円筒容器10内に送り込み
、注出口17より外へ循環して熱交換するサイクルを繰
り返して鉄芯を冷却していた。
Now, electrically, should the iron core holder 13 be made of a metal conductor?
Or, if an insulator is used, a metal conductor can be passed through it and connected to the terminal 14, thereby connecting the terminal 14, the load 9, and the cylindrical container 1.
The circuit composed of the iron core 12 has a shape of 7 volts of saturable winding with one turn around the iron core 12. Now, when such a saturable 7 torque pulse operation is repeated, the temperature of the iron core 12 increases due to iron loss. The iron core was cooled by repeating a cycle of circulating it outside from the outlet 17 and exchanging heat.

発明が解決しようとする問題点 前述の通り、従来の冷却方法を用いた鉄芯を繰り返し運
転の多いパルス回路、例えば1秒間にモロもの運転を行
う回路に用いた場合、その鉄芯はやむおえぬ事であるが
、鉄損により異常に高い温度上昇を示し、そのために鉄
芯の磁気特性を悪くし、時には鉄芯の磁気特性を局部的
に大きく劣化させて冷却後も、初期特性にもどらないな
どの問題があった。特に鉄芯の材質が非晶質磁性薄体で
ある場合にその劣化現象は顕著である。
Problems to be Solved by the Invention As mentioned above, when an iron core using the conventional cooling method is used in a pulse circuit that operates repeatedly, for example, in a circuit that operates slowly in one second, the iron core becomes unstable. However, it shows an abnormally high temperature rise due to iron loss, which deteriorates the magnetic properties of the iron core, and sometimes greatly deteriorates the magnetic properties of the iron core locally, causing it to return to its initial characteristics even after cooling. There were problems such as not having one. In particular, when the material of the iron core is an amorphous magnetic thin body, the deterioration phenomenon is remarkable.

第6図に示した従来方式による鉄芯の冷却方法では、い
くら鉄芯の外円周面を積極的に冷却しても、その巻鉄芯
は例えば20μmの磁性薄体が数百回から数千回をも各
層間が絶縁されて巻上げられているため、外円周面への
熱伝導は悪く、かつ熱伝導の良い巻鉄芯の幅方向の端面
は、複数個の鉄芯により分割して、構成されているため
、その間に存在する熱せられた冷媒はよどみ流れず、内
・外の熱勾配を大きくして放熱効果に乏しかった。
In the conventional iron core cooling method shown in Fig. 6, no matter how actively the outer circumferential surface of the iron core is cooled, the wound iron core has a magnetic thin body of, for example, 20 μm, which is heated several hundred times to several times. Because each layer is wound a thousand times with insulation between each layer, heat conduction to the outer circumferential surface is poor, and the widthwise end face of the wound iron core, which has good heat conduction, is divided by multiple iron cores. Because of this structure, the heated refrigerant that exists between them stagnates and does not flow, creating a large internal/external thermal gradient and poor heat dissipation effect.

問題点を解決するための手段 本発明は、鉄芯すなわち磁性薄体を巻き上げた巻鉄芯又
は絶縁耐圧を考慮して各層間に絶縁テープを入れたり、
磁性薄体に絶縁コーティングを施して巻き上げた巻鉄芯
の放熱効果の良い幅方向、すなわち端面を冷媒による流
れを作って、積極的に冷却する事により、温度上昇を抑
制し、異常な磁性特性の発生を防止しようとするもので
ある。
Means for Solving the Problems The present invention provides an iron core, that is, a wound iron core in which a magnetic thin body is wound up, or an insulating tape is inserted between each layer in consideration of dielectric strength.
By creating a flow of refrigerant in the width direction, that is, the end face, where the heat dissipation effect of the wound iron core, which is wound with an insulating coating on a thin magnetic material, is actively cooled, temperature rise can be suppressed and abnormal magnetic properties can be suppressed. The aim is to prevent the occurrence of

すなわち、 ■磁性薄体を巻き回してなる鉄芯を複数個に分割して所
定の間隔を設けて鉄芯保持具または鉄芯保持具片に保持
し、上記鉄芯保持具または鉄芯保持具片に設けた複数個
の冷媒通過口により冷媒を通過させて、鉄芯の幅方向の
端面を冷却する事を特徴とする鉄芯の冷却方法。
That is, ■ an iron core formed by winding a magnetic thin body is divided into a plurality of pieces and held at predetermined intervals on an iron core holder or iron core holder piece; A method for cooling an iron core, characterized in that the end face in the width direction of the iron core is cooled by passing a refrigerant through a plurality of refrigerant passage ports provided in each piece.

■鉄芯が非晶質磁性薄体である事を特徴とする上記0項
記載の鉄芯の冷却方法である。
(2) The method for cooling an iron core as described in item 0 above, characterized in that the iron core is an amorphous magnetic thin body.

作用 上述の鉄芯保持具または鉄芯保持具片に設けた冷媒通過
口より冷媒を通過させ、複数個に分割した鉄芯の幅方向
を冷却するので、鉄芯の1度上昇を抑制し、パルス幅の
短いかつ高繰り返し放電が可能となる。
Function: The refrigerant is passed through the refrigerant passage provided in the above-mentioned iron core holder or iron core holder piece to cool the width direction of the iron core divided into multiple pieces, thereby suppressing the rise of the iron core by 1 degree. Short pulse width and high repetition discharge becomes possible.

実施例 第1図に前述した第7図に相当する可飽和り7クトルの
一実施例を示す。
Embodiment FIG. 1 shows an embodiment of the saturable 7 volts corresponding to FIG. 7 described above.

同一機能のものについては、同一記号を付しであるため
、その説明を省略する。鉄芯保持具13aは中に空間を
設けた形状をなし、パイプや板等を使って製作して、こ
の上に複数の鉄芯12をそれぞれ必要な所定の間隙を開
けて、図示しない方法で保持する。そ′して、鉄芯保持
具13aの外周上に任意の形状の孔またはスリットを必
要個数開けて、その鉄芯の所定の間隙を冷媒16が通過
出来るように冷媒通過口18を設ける。また鉄芯保持具
13aには冷媒16の注入口15aを設ける。
Items with the same function are given the same symbols, and therefore their explanation will be omitted. The iron core holder 13a has a shape with a space inside, and is manufactured using a pipe, plate, etc., and a plurality of iron cores 12 are placed thereon with required predetermined gaps between them, using a method not shown. Hold. Then, a required number of holes or slits of arbitrary shape are opened on the outer periphery of the iron core holder 13a, and a refrigerant passage port 18 is provided so that the refrigerant 16 can pass through a predetermined gap in the iron core. Further, the iron core holder 13a is provided with an injection port 15a for the refrigerant 16.

さて、このようにして構成された可飽和り7クトルの鉄
芯12は次のようにして冷却される。冷媒16は図示し
ない外部の冷媒循環系が注入口15aに接続され、鉄芯
保持具13aの中に圧入される。そして鉄芯保持具13
aの外周上に設けられた冷媒通過口18を通って、鉄芯
12の端面を矢印の方向へ熱を奪いながら放射状に通過
して、注出口17へと放出されて、図示しない熱交換器
とポンプとにより構成される冷媒循環系により冷媒16
の温度が下げられて、再び注入口15aへと循環させる
Now, the iron core 12 having a saturable capacity of 7 volts constructed in this way is cooled in the following manner. An external refrigerant circulation system (not shown) is connected to the inlet 15a, and the refrigerant 16 is press-fitted into the iron core holder 13a. And iron core holder 13
The refrigerant passes through the refrigerant passage port 18 provided on the outer periphery of the refrigerant a, passes radially through the end face of the iron core 12 while removing heat in the direction of the arrow, and is discharged to the spout 17, where it is transferred to a heat exchanger (not shown). A refrigerant circulation system consisting of a pump and a refrigerant 16
temperature is lowered, and the water is circulated again to the injection port 15a.

なお、冷媒16の循環経路は前述と全く逆に注出口17
より注入し、注入口15aより注出しても同様の効果が
ある。
Note that the circulation path of the refrigerant 16 is completely opposite to that described above.
The same effect can be obtained by injecting the liquid from the injection port 15a and pouring it out from the injection port 15a.

鉄芯12の温度上昇を効果的に熱放散させるためには、
巻鉄芯の端面より熱を奪う冷却方法が最も良く、本発明
によれば、冷媒16が鉄芯保持具13aより、いずれの
鉄芯12に対しても、各巻鉄芯の間隙を放射状に通過し
ながら熱を奪って行くため、これは理想的な冷却方法と
言える。
In order to effectively dissipate the temperature rise of the iron core 12,
The best cooling method is to remove heat from the end face of the wound iron core, and according to the present invention, the refrigerant 16 passes radially through the gaps between the wound iron cores from the iron core holder 13a to any of the iron cores 12. This can be said to be an ideal cooling method because it removes heat while doing so.

第2図に、可飽和り7クトルの他の実施例を示す。FIG. 2 shows another embodiment with a saturable capacity of 7 volts.

第1図と同一機能のものについては同一記号を付しであ
るため、その説明を省略する。第2図は鉄芯12を保持
する鉄芯保持具13bと電気を通す金属導体19とに、
それぞれの機能毎に部品を分離したもので、絶縁板11
と鉄芯保持具13bと端子14と金属導体19とが図示
しない方法で気密に保持されている。
Components with the same functions as those in FIG. 1 are given the same symbols, so their explanation will be omitted. FIG. 2 shows an iron core holder 13b that holds the iron core 12 and a metal conductor 19 that conducts electricity.
The parts are separated for each function, and the insulating plate 11
The iron core holder 13b, the terminal 14, and the metal conductor 19 are held airtight by a method not shown.

金属導体19には、鉄芯保持具131)との間に設けた
空間に通じる孔をあけて、その端部に注入口15aを設
けている。冷媒16は、注入口15aより金属導体19
の中を通過して鉄芯保持具13bとの間に設けた空間に
達し、冷媒通過口18より鉄芯12の端面へ放出され以
後は、第1因と同一作用になる。
The metal conductor 19 has a hole communicating with the space provided between it and the iron core holder 131), and an injection port 15a is provided at the end of the hole. The refrigerant 16 is introduced into the metal conductor 19 from the injection port 15a.
The refrigerant passes through the core holder 13b and reaches the space provided between the refrigerant holder 13b and is discharged from the refrigerant passage port 18 to the end face of the iron core 12. From then on, the refrigerant acts in the same way as the first factor.

第3図に他の実施例を示す。この場合は、鉄芯12の外
周面を鉄芯保持具20で保持した例である。
FIG. 3 shows another embodiment. In this case, the outer peripheral surface of the iron core 12 is held by the iron core holder 20.

この保持具にも冷媒通過口18が設けられている。This holder is also provided with a refrigerant passage port 18.

そして数ターンを鉄芯12に巻きつける事が必要な可飽
和り7クトルや、変圧器として構成する場合に比較的扱
い易い。電極21と絶縁板11と端子14とが図示しな
い方法で気密に保持されている。電極21と鉄芯12に
数ターン巻いたコイル23の一端とが電気的に接続され
、他端は電極22とが同様接続されて、可飽和り7クト
ルを形成している。
Moreover, it is relatively easy to handle when configuring a saturable 7 torque coil that requires winding several turns around the iron core 12 or a transformer. The electrode 21, the insulating plate 11, and the terminal 14 are held airtight by a method not shown. The electrode 21 and one end of a coil 23 wound several turns around the iron core 12 are electrically connected, and the other end is similarly connected to the electrode 22 to form a saturable voltage of 7 volts.

コイル23が鉄芯保持具20を通過する部分には、孔ま
たはスリットを設け、この中を通した後の隙間は冷媒通
過口18の孔に比べて充分小さな面積であれば特にその
隙間をうめる必要はない。冷媒16は電極21に設けら
れた注入口+51)と、その孔の中を通過して注入され
る。その後、各鉄芯12の所定の間隙を放射状に巻鉄芯
を冷却しながら冷媒通過口18を通って、円筒容器10
と鉄芯保持具20との間の空間にぬけ、注出口17を通
って排出される。効果は、第1図と同様である。また冷
媒16の循環方向を逆にしても、同一効果が得られる。
A hole or slit is provided in the portion where the coil 23 passes through the iron core holder 20, and if the area of the gap after passing through this is sufficiently small compared to the hole of the refrigerant passage port 18, the gap is particularly filled. There's no need. The coolant 16 is injected through an injection port +51) provided in the electrode 21 and the hole thereof. Thereafter, the iron cores are wound radially at a predetermined gap between each iron core 12 and passed through the refrigerant passage port 18 while cooling the iron cores.
and the iron core holder 20 and is discharged through the spout 17. The effect is the same as in FIG. The same effect can also be obtained even if the direction of circulation of the refrigerant 16 is reversed.

以上の通り、本発明によれば比較的単純な方法で効果的
成果を得る事が出来る。
As described above, according to the present invention, effective results can be obtained with a relatively simple method.

さて、鉄芯保持具に設けた冷媒通過口18の位置と形状
について、その実施例を第4図に示す。(a)は冷媒通
過口18の位置を効果的に分割された鉄芯12の所定の
間隙部のみに設けた例である。また、(ト))は任意の
位置に設けた場合で、鉄芯12により冷媒通過口18の
一部がふさがれても良いように、ランダムな位置に多く
の孔を設けたものである。(C)は(b)と同様、鉄芯
12により一部の冷媒通過口18がふさがれても良いよ
うにスリット(長孔)を形成した例である。即ち、冷媒
通過口18は、円でも長孔でも菱形でも任意の形状で良
く、その大きさと数量は放熱に必要な流量と、鉄芯保持
具の機械的強度を加味して決定する。
Now, FIG. 4 shows an example of the position and shape of the refrigerant passage port 18 provided in the iron core holder. (a) is an example in which the position of the refrigerant passage port 18 is provided only in a predetermined gap portion of the effectively divided iron core 12. Moreover, (g)) is a case where many holes are provided at random positions so that a part of the refrigerant passage port 18 may be blocked by the iron core 12 when provided at an arbitrary position. Similarly to (b), (C) is an example in which slits (elongated holes) are formed so that some of the refrigerant passage ports 18 may be blocked by the iron core 12. That is, the refrigerant passage port 18 may have any shape such as a circle, a long hole, or a diamond shape, and its size and number are determined by taking into account the flow rate required for heat radiation and the mechanical strength of the iron core holder.

さて、前述の内容を応用すると種々の構造が考えられる
が、鉄芯保持具を分割して設けた他の実施例を第5図に
示す。鉄芯が重い事や各鉄芯間に設ける所定の間隙を確
実に保持する事など考えると、この方法は有益である。
Now, various structures can be considered by applying the above-mentioned contents, and FIG. 5 shows another embodiment in which the iron core holder is divided and provided. This method is advantageous considering that the iron cores are heavy and that a predetermined gap between each iron core is maintained reliably.

(a)図は第2図の実施例を〜)図は第3図の実施例を
そのまま応用したもので、鉄芯保持具のみを分割して鉄
芯保持具片23を用いたものである。鉄芯12と鉄芯保
持具片23または24とは交互にカセット式に挿入して
固定されるもので、その接触面の気密性は、それ程重要
でない。
(a) The figure shows the embodiment shown in Fig. 2.) The figure shows an application of the embodiment shown in Fig. 3 as it is, in which only the iron core holder is divided and iron core holder pieces 23 are used. . The iron core 12 and the iron core holder pieces 23 or 24 are inserted and fixed alternately in a cassette manner, and the airtightness of their contact surfaces is not so important.

冷媒16による鉄芯12の冷却方法とその効果は第2図
、第3図と同一であるので説明を省略する。
The method of cooling the iron core 12 by the refrigerant 16 and its effects are the same as those shown in FIGS. 2 and 3, so the explanation will be omitted.

第5図(C)または(aは、第51E(a)またはの)
の各々鉄芯保持具片23または24の具体的構造例であ
る。いずれも所定の間隙部より冷媒16を通過させるた
めの冷媒通過口18を有し、鉄芯12をはさみ込むため
の段差をもうけている。冷媒通過口18の形状は前述の
如く、丸、スリットなど冷媒を必要量通し得るならば任
意の形状で良い。従って、鉄芯12と鉄芯保持具片23
または24との接触面に部分的隙間を設けてもよい。
Figure 5(C) or (a is Article 51E(a) or)
These are specific structural examples of the iron core holder piece 23 or 24, respectively. Each of them has a refrigerant passage port 18 through which the refrigerant 16 passes through a predetermined gap, and has a step for inserting the iron core 12 therebetween. As described above, the shape of the refrigerant passage port 18 may be any shape, such as a circle or a slit, as long as it can pass the required amount of refrigerant. Therefore, the iron core 12 and the iron core holder piece 23
Alternatively, a partial gap may be provided at the contact surface with 24.

なお、本発明に於ける鉄芯12は簡単な例として、円筒
状巻鉄芯で示したが、その他の形状としてレーストラッ
ク形や角形の巻鉄芯についても同様な効果がある。この
場合には、円筒容器10や鉄芯保持具もおのずから箱形
形状とするなどの工夫が必要となる。
Although the iron core 12 in the present invention is shown as a cylindrical wound iron core as a simple example, similar effects can be obtained with other shapes such as a racetrack shape or a rectangular wound iron core. In this case, it is necessary to take measures such as making the cylindrical container 10 and the iron core holder naturally box-shaped.

第5図(!0は第5図(e)と(f)の鉄芯保持具片2
5と26が交互に嵌合して冷媒通過口18を合わせて構
成されたもので、上述の同様な効果がある。第5図(e
)および(f)の冷媒通過口18は穴の代わりに切欠き
にしてもよい。そして冷媒通過口18と別の位置に同様
な貫通孔を設けてボルト締めすれば複数個の鉄芯保持具
片25.26が一体に形成することもできる。
Figure 5 (!0 is the iron core holder piece 2 in Figure 5 (e) and (f)
5 and 26 are alternately fitted to align the refrigerant passage ports 18, and the same effect as described above can be obtained. Figure 5 (e
) and (f), the refrigerant passage port 18 may be a notch instead of a hole. If a similar through hole is provided at a position different from the refrigerant passage port 18 and bolted, a plurality of iron core holder pieces 25 and 26 can be integrally formed.

また、磁性薄体の材質についてはパルス幅が10−s〜
10″″秒、繰り返し運転頻度が多い時でs 103p
ps、電圧は数百kv取下程度のパルス回路に挿入され
る可飽和り7クトルやパルス変圧器などに使用されるた
め、その材質は高周波特性に優れている事、モして鉄損
の小さい事が必要で、今日まで主に珪素鋼板の磁性薄体
で50μm程度の厚みのものが使われて来た。しかし極
く最近では、さらに高周波特性が優れた損失の小さい2
0μm程度の厚さを有する鉄系、コバルト系の非晶質磁
性薄体が開発されている。
In addition, regarding the material of the magnetic thin body, the pulse width is 10-s~
10'' seconds, s 103p when repeated operation is frequent
ps, voltage is used in saturable 7-volt transformers and pulse transformers that are inserted into pulse circuits of several hundred kilovolts, so the material must have excellent high frequency characteristics, and it is important to reduce iron loss. It needs to be small, and to date magnetic thin silicon steel plates with a thickness of about 50 μm have been used. However, very recently, 2-layer batteries with even better high-frequency characteristics and lower loss
Iron-based and cobalt-based amorphous magnetic thin bodies having a thickness of about 0 μm have been developed.

中でもコバルト系は、鉄系非晶質磁性薄体に比べ、はる
かに鉄損は小さく、さらに他の磁性体に比べて飽和特性
も優れている事から可飽和り7クトルとしては理想的な
材料であり、従来のパルス回路の繰り返し運転頻度に比
べて1桁以上も向上したものの、これ以上の高繰り返し
運転は、やはり鉄損による発熱のため、限界を生じてい
た。本考案による鉄芯の冷却方法を採用すれば、鉄芯を
有効に効率的に冷し、温度上昇をおさえ、さらに高繰り
返し運転が可能となった。
Among them, cobalt-based materials have much lower iron loss than iron-based amorphous magnetic thin materials, and also have better saturation characteristics than other magnetic materials, making them ideal materials for saturable magnets. Although this is an improvement of more than one order of magnitude compared to the repetitive operation frequency of conventional pulse circuits, higher repetitive operation still has a limit due to heat generation due to iron loss. By adopting the iron core cooling method according to the present invention, the iron core can be cooled effectively and efficiently, temperature rise can be suppressed, and even higher repetition rate operation has become possible.

発明の効果 本発明によれば、鉄芯の鉄損により生じる温度上昇、す
なわち磁性薄体を巻き上げた巻鉄芯の端面に、冷媒を流
す事によって従来の鉄損によって生じていた異常発熱を
効果的におさえ、熱を奪い、適正な温度上昇値とする事
が可能になった。特に繰り返し運転の厳しい環境で使用
される場合は、冷媒通過経路を太くしたり、冷媒の圧力
を上げたりして冷媒の流量を増すなどの調整をする事が
可能である。また、より厳しい運転モード例えば、数千
回7秒で使う場合は、鉄芯の幅を狭くして、鉄芯の分割
数を増し、放熱面積を増す工夫をする事によってより効
果を得る事ができた。本発明によるある実施例では従来
の冷却方式に比べ、10倍以上の高繰り返し運転が可能
になった事、合わせて磁性特性の劣化は見られず、安定
な再現性が得られた。
Effects of the Invention According to the present invention, temperature rise caused by iron loss in the iron core, that is, abnormal heat generation caused by iron loss in the conventional method can be suppressed by flowing a refrigerant into the end face of the wound iron core around which a magnetic thin body is wound. It is now possible to control the temperature and remove heat to achieve an appropriate temperature rise value. Especially when used in a harsh environment with repeated operations, it is possible to make adjustments such as making the refrigerant passage thicker or increasing the refrigerant pressure to increase the refrigerant flow rate. In addition, in more severe operating modes, for example, when using several thousand times in 7 seconds, it is possible to obtain more effectiveness by narrowing the width of the iron core, increasing the number of divisions of the iron core, and increasing the heat dissipation area. did it. In an example according to the present invention, it was possible to perform a repeatable operation more than 10 times as high as in the conventional cooling method, and stable reproducibility was obtained without any deterioration of magnetic properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る鉄芯一実施例の説明図、第2図
、第3図および第5図は本発明に係る鉄芯の他の実施例
の説明図、第4図(a)、■)、(C)は本発明に係る
鉄芯保持具の各々異なる実施例の要部斜視図、第52山
)および(g)は、本発明に係る鉄芯のその他の実施例
の要部説明図、第5図(C)、(ロ)、(e)、(f)
は本発明に係る鉄芯保持具片の各々異なる実施第6図は
本発明に係る鉄芯の応用バ 第7図は従来の鉄芯の説明図である。 13.13a、13b、、20:鉄芯保持具18:冷媒
通過口 26:鉄芯保持具片
FIG. 1 is an explanatory diagram of one embodiment of the iron core according to the present invention, FIGS. 2, 3, and 5 are explanatory diagrams of other embodiments of the iron core according to the present invention, and FIG. ), ■), and (C) are perspective views of essential parts of different embodiments of the iron core holder according to the present invention, and No. 52) and (g) are perspective views of other embodiments of the iron core according to the present invention. Main part explanatory diagram, Figure 5 (C), (B), (e), (f)
FIG. 6 shows different embodiments of the iron core holder pieces according to the present invention; FIG. 6 shows the application of the iron core according to the present invention; and FIG. 7 is an explanatory view of a conventional iron core. 13.13a, 13b, 20: Iron core holder 18: Refrigerant passage port 26: Iron core holder piece

Claims (1)

【特許請求の範囲】[Claims]  磁性薄体を巻き回してなる鉄芯を複数個に分割して所
定の間隔を設けて、鉄芯保持具または鉄芯保持具片に保
持し、上記鉄芯保持具または鉄芯保持具片に設けた複数
個の冷媒通過口より冷媒を通過させて鉄芯の幅方向の端
面を冷却することを特徴とする鉄芯の冷却方法。
An iron core formed by winding a magnetic thin body is divided into a plurality of pieces and held at predetermined intervals in an iron core holder or an iron core holder piece, and then A method for cooling an iron core, characterized in that the end face in the width direction of the iron core is cooled by passing a refrigerant through a plurality of refrigerant passage ports provided.
JP21581389A 1989-08-22 1989-08-22 Iron core cooling method Expired - Fee Related JP2703631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21581389A JP2703631B2 (en) 1989-08-22 1989-08-22 Iron core cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21581389A JP2703631B2 (en) 1989-08-22 1989-08-22 Iron core cooling method

Publications (2)

Publication Number Publication Date
JPH0379004A true JPH0379004A (en) 1991-04-04
JP2703631B2 JP2703631B2 (en) 1998-01-26

Family

ID=16678682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21581389A Expired - Fee Related JP2703631B2 (en) 1989-08-22 1989-08-22 Iron core cooling method

Country Status (1)

Country Link
JP (1) JP2703631B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100947292B1 (en) * 2007-11-01 2010-03-16 최병길 Quick cooling method for minimizing the thermal distortion
KR100947289B1 (en) * 2007-11-01 2010-03-16 최병길 Quick cooling method for the efficient cooling
JP2011142354A (en) * 2003-06-25 2011-07-21 Cymer Inc Method and apparatus for cooling magnetic circuit element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011142354A (en) * 2003-06-25 2011-07-21 Cymer Inc Method and apparatus for cooling magnetic circuit element
KR100947292B1 (en) * 2007-11-01 2010-03-16 최병길 Quick cooling method for minimizing the thermal distortion
KR100947289B1 (en) * 2007-11-01 2010-03-16 최병길 Quick cooling method for the efficient cooling

Also Published As

Publication number Publication date
JP2703631B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US11587768B2 (en) Nanosecond pulser thermal management
JPH0670922B2 (en) Magnetic parts for high voltage pulse generator
US5448580A (en) Air and water cooled modulator
US6016095A (en) Snubber for electric circuits
US20080301929A1 (en) Method of Manufacturing a Power Module
US6198761B1 (en) Coaxial laser pulser with solid dielectrics
JPH0219634B2 (en)
JPH0379004A (en) Method for cooling iron core
DE2659859C2 (en) Device for maintaining an electrical discharge
JP3132251B2 (en) Magnetic switch for pulse power supply
JPH0198206A (en) Magnetic component for high-voltage pulse generator
JPH03159218A (en) High tension pulse generating magnetic part
Vella-Coleiro et al. The generation of rotating magnetic fields for bubble devices
US5177762A (en) Saturable reactor
JPH02135717A (en) Magnetic part for generating high-voltage pulse
JP2645459B2 (en) Saturable reactor for high voltage pulse generator
JP7452160B2 (en) Cooling structure for heat generating parts and pulse power supply
Kobayashi et al. High power repetitive excimer lasers pumped by an all solid state magnetic exciter
JPH0196910A (en) Saturable inductor and manufacture thereof and pulse laser exciting power source device using saturable inductor
Endo et al. All-solid-state pulsed power modulator for high power, high repetition rate applications
JPH03240212A (en) High voltage pulse generating magnetic part and high voltage pulse generator using the same
JPH03212908A (en) Magnetic core part for generation high voltage pulse
Barrett Magnetic pulse compression techniques for non-thermal plasma discharge applications
JPH09284103A (en) Pulse generating circuit
JP2024065250A (en) Magnetic attraction type magnetic refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees