JPH0378914A - Manufacture of superconductor - Google Patents
Manufacture of superconductorInfo
- Publication number
- JPH0378914A JPH0378914A JP1214610A JP21461089A JPH0378914A JP H0378914 A JPH0378914 A JP H0378914A JP 1214610 A JP1214610 A JP 1214610A JP 21461089 A JP21461089 A JP 21461089A JP H0378914 A JPH0378914 A JP H0378914A
- Authority
- JP
- Japan
- Prior art keywords
- block
- doping
- superconductor
- small
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002887 superconductor Substances 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000002131 composite material Substances 0.000 claims description 17
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 6
- 229910045601 alloy Inorganic materials 0.000 abstract description 5
- 239000000956 alloy Substances 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 5
- 229910052758 niobium Inorganic materials 0.000 abstract description 4
- 229910000657 niobium-tin Inorganic materials 0.000 abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 abstract description 4
- 229910052719 titanium Inorganic materials 0.000 abstract description 4
- 229910052718 tin Inorganic materials 0.000 abstract description 3
- 238000003754 machining Methods 0.000 abstract description 2
- 238000007669 thermal treatment Methods 0.000 abstract 2
- 229910017755 Cu-Sn Inorganic materials 0.000 abstract 1
- 229910017927 Cu—Sn Inorganic materials 0.000 abstract 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- 229910020012 Nb—Ti Inorganic materials 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、超電導特性を向上させる合金系および化合物
系超電導々体の製法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing alloy-based and compound-based superconductors that improve superconducting properties.
超電導機器に利用される超電導線材としては、NbTi
やNb5Snの線材が工業的に利用されているが、より
高い磁場で、より高いJ、を有する超電導線材を利用し
て、マグネットなどの機器を小型化し、かつ、高性能化
することが期待されている。NbTi is a superconducting wire used in superconducting equipment.
Although Nb5Sn and Nb5Sn wires are used industrially, it is expected that superconducting wires with higher J in higher magnetic fields will be used to miniaturize and improve the performance of devices such as magnets. ing.
例えば、Nb3SnのJc特性を向上させるためには、
Ta、TiおよびHfなどをドープすることが有効であ
る0通常、NbまたはCu−3n合金に上記の金属を合
金化して複合ビレットとし、このビレットに押出し、圧
延、伸線などの加工を施した通常線材を用いて再び複合
ビレットを組立て、同様の加工工程を繰り返す0通常、
この工程を2〜3回繰り返して最終サイズで拡散反応に
よりNb3Snを合成するため加熱処理をする。もちろ
ん、加熱処理は熱間加工や中間焼鈍などでも行なわれて
いる。For example, in order to improve the Jc characteristics of Nb3Sn,
It is effective to dope Ta, Ti, Hf, etc. 0 Usually, Nb or Cu-3n alloy is alloyed with the above metals to form a composite billet, and this billet is subjected to processing such as extrusion, rolling, wire drawing, etc. Normally, the composite billet is reassembled using wire rods and the same processing steps are repeated.
This process is repeated 2 to 3 times, and heat treatment is performed to synthesize Nb3Sn by a diffusion reaction at the final size. Of course, heat treatment is also performed in hot working, intermediate annealing, etc.
しかしながら、上述の製作工程において、Nb中に前記
ドーピング成分を合金化することは容易でないという問
題がある0例えば、電子ビーム溶解においてTiなどの
成分は蒸発しやすく、均一な合金化は困難である。他方
、Cu−5n合金側にドーピングする例もあるが、固溶
量がかなり制限されるばかりでなく、拡散反応後もCu
中に残留しやすく、充分ドーピングの効果が得られない
という問題があった。また、従来法には特別な合金化の
炉を要し、工業製造上多大な費用と時間を要するという
問題もあった。However, in the above manufacturing process, there is a problem in that it is not easy to alloy the doping components in Nb. For example, components such as Ti easily evaporate during electron beam melting, making uniform alloying difficult. . On the other hand, there are examples of doping into the Cu-5n alloy, but not only is the amount of solid solution considerably limited, but Cu remains even after the diffusion reaction.
There is a problem that the doping tends to remain in the interior of the dopant, making it impossible to obtain a sufficient doping effect. Furthermore, the conventional method requires a special alloying furnace, which poses a problem in that it requires a great deal of cost and time in industrial production.
本発明は上記問題点を解決した超電導々体の製法を提供
するもので、超電導体またはその主成分からなるブロッ
クに、超電導体の副成分からなる小ブロックを配置して
複合ブロックを形成した後、または、この複合ブロック
をさらに第3の物質からなるブロックに配置した後、加
工および熱処理を施すことを特徴とするものである。The present invention provides a method for manufacturing a superconductor that solves the above-mentioned problems, and in which a composite block is formed by arranging small blocks made of subcomponents of the superconductor on a block made of a superconductor or its main component. Alternatively, this composite block is further arranged in a block made of a third material, and then processed and heat treated.
本発明によれば、N b s S n B144体は、
例えば以下のような工程により製作される。According to the present invention, the N b s S n B144 body is
For example, it is manufactured by the following steps.
すなわち、第1図(a)、(b)、(C)に示すように
、Nbの円柱状ブロック(1)に所要量のドーピング成
分を収納すべく小空間部(2a)、(2b)、(2C)
を全長に亘って形成する。小空間部の(2a)、(2b
)、(2C)の形状は第1図(a)、(b)、(C)に
例示する通りであり、均一な対称的な分布が望ましい。That is, as shown in FIGS. 1(a), (b), and (C), small spaces (2a), (2b), and (2C)
is formed over the entire length. (2a), (2b) of the small space part
) and (2C) are as illustrated in FIGS. 1(a), (b), and (C), and a uniform and symmetrical distribution is desirable.
この小空間部(2a)、(2b)、(2C)にドーピン
グ成分、例えばTiやTaの線、棒、管あるいは板状体
が充填されて複合ブロックが形成される0次に、Cu−
Sn合金ブロックに前記複合ブロックを収納する小空間
を形成し、そこに複合ブロックを配置して第2の複合ブ
ロックを形成する。通常、第2の複合ブロックはCuな
どに包含されてから加工され、必要に応じて以上の操作
を繰り返して所望の仕上げ寸法において600〜800
°Cの加熱処理が施され、NbとSnとの反応でNb、
Snの細線が生成する。These small spaces (2a), (2b), and (2C) are filled with doping components such as wires, rods, tubes, or plates of Ti or Ta to form a composite block.
A small space for storing the composite block is formed in the Sn alloy block, and the composite block is placed in the small space to form a second composite block. Usually, the second composite block is processed after being included in Cu, etc., and the above operations are repeated as necessary to achieve the desired finished size of 600 to 800 mm.
°C heat treatment is applied, and the reaction between Nb and Sn causes Nb,
A thin line of Sn is generated.
仕上げ寸法におけるNbの線径は通常0.1〜100μ
、特に0,5〜10Inaの範囲内にあり、反応は実用
的な速さで進行する。The diameter of Nb wire in finished dimensions is usually 0.1 to 100μ
, especially within the range of 0.5 to 10 Ina, and the reaction proceeds at a practical speed.
一方、Nb−Ti−ZrあるいはNb−TiTaなどの
3元合金の場合には、Nb−TiブロックにZrあるい
はTaなどを複合して加工し、加工および熱処理過程を
経て均質化した3元合金を得ることができる。On the other hand, in the case of ternary alloys such as Nb-Ti-Zr or Nb-TiTa, the ternary alloy is processed by combining Zr or Ta into a Nb-Ti block and homogenized through processing and heat treatment. Obtainable.
以下、本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail below.
0.5閣φのNb5Sn超電導線を以下の工程により製
作した。すなわち、まず、100閣φのNbビレット断
面に4.3閣φの貫通孔を9個、すなわち、中央に1個
およびその周囲に等間隔で8個うがち、それら貫通孔に
4.1閣φのTa棒を挿入して4.1閤φまで加工した
。加工は、常法によりNbビレットにCuを被覆し、8
00°Cで熱間押出し後、圧延および引抜きを行ってか
ら、HNO,でCuをエツチングにより除いてNbの複
合棒を形成した0次に、100閣φのCu−14,2%
Snビレット断面に4.3閣φの貫通孔を前記Nbビレ
ットの場合と同様の配置で9個形成し、ここに上記Nb
複合棒を挿入した。このビレットを外径150 mbφ
のCu管に入れて封止し、500″Cで熱間押出し、常
法により、圧延および伸線を行い5Iφの線とした0次
に、この5閤φの線を内径50m5φ、外径?5mφの
Cu管に充填して同様に加工を施し、0.5 mφまで
伸線し、680°CX2.5日の拡散加熱処理を施した
。このようにして得られたNb3Sn超電導線について
、4.2K、ITの磁場のもとでJcを測定したところ
、260A/−の値が得られた。また、上記実施例にお
いて、Ta棒に代えてNb−15%Ti棒を用いて同様
な加工を施したNb、Sn超電導線についてJ、を測定
したところ、280 A/−の値が得られた。なお、比
較のために無垢のNbビレットを用いて同様の加工を施
した場合については、JcO値は190A/−に留まっ
た。A Nb5Sn superconducting wire with a diameter of 0.5 mm was manufactured by the following process. That is, first, in a Nb billet cross section of 100 mm diameter, there are 9 through holes of 4.3 mm diameter, one in the center and 8 holes equally spaced around the center, and 4.1 mm diameter holes are formed in these through holes. A Ta rod was inserted and processed to a diameter of 4.1 mm. For processing, a Nb billet was coated with Cu using a conventional method, and 8
After hot extrusion at 00°C, rolling and drawing were performed, and then the Cu was removed by etching with HNO to form a Nb composite rod.
Nine through holes with a diameter of 4.3 mm were formed in the cross section of the Sn billet in the same arrangement as in the case of the Nb billet, and the Nb
A composite rod was inserted. This billet has an outer diameter of 150 mbφ
It was put into a Cu tube and sealed, hot extruded at 500"C, rolled and wire-drawn using the usual method to make a 5Iφ wire. Next, this 5Iφ wire was made into a 5Iφ wire with an inner diameter of 50m5φ and an outer diameter of ? It was filled into a 5 mφ Cu tube, processed in the same way, drawn to 0.5 mφ, and subjected to diffusion heat treatment at 680°C for 2.5 days.The Nb3Sn superconducting wire thus obtained was When Jc was measured under a magnetic field of .2 K and IT, a value of 260 A/- was obtained.Also, in the above example, a similar process was performed using a Nb-15% Ti rod instead of the Ta rod. When J was measured for the Nb, Sn superconducting wire that had been subjected to The JcO value remained at 190A/-.
上記実施例はNb1Sn超電導線について述べたが、本
発明は上記実施例に限定されることなく、Nb−Ti−
Zrなど他の超電導材料にも適用できる。Although the above embodiment described the Nb1Sn superconducting wire, the present invention is not limited to the above embodiment;
It can also be applied to other superconducting materials such as Zr.
以上説明したように本発明によれば、超電導体またはそ
の主成分からなるブロックに、超電導体の副成分からな
る小ブロックを配置して複合ブロックを形成した後、ま
たは、この複合ブロックをさらに第3の物質からなるブ
ロックに配置した後、加工および熱処理を施すため、ド
ーピングを適正にかつ工業的に実行できるので、ドーピ
ング効果を最大限に発揮できる。また、本発明では、プ
ロツクからm械加工により任意の形状の複合ビレットを
容易に形成することができ、特別な設備費を要しないと
いう優れた効果もある。As explained above, according to the present invention, after a composite block is formed by arranging small blocks composed of subcomponents of a superconductor on a block composed of a superconductor or its main component, or after the composite block is further processed. Since processing and heat treatment are performed after the material is placed in a block made of the material No. 3, doping can be carried out appropriately and industrially, so that the doping effect can be maximized. Further, the present invention has the advantageous effect that a composite billet of any shape can be easily formed from a block by machining, and no special equipment costs are required.
第1図(a)、(b)、(C)は本発明にかかる複合ビ
レ・ントの説明図である。
1・・・円柱状ブロック、 2a、 2b、 2c・・
・小空間部。FIGS. 1(a), (b), and (C) are explanatory diagrams of a composite billet according to the present invention. 1...Cylindrical block, 2a, 2b, 2c...
・Small space.
Claims (1)
体の副成分からなる小ブロックを配置して複合ブロック
を形成した後、または、この複合ブロックをさらに第3
の物質からなるブロックに配置した後、加工および熱処
理を施すことを特徴とする超電導々体の製法。After forming a composite block by arranging small blocks composed of sub-components of the superconductor on a block composed of a superconductor or its main component, or after forming a composite block by arranging a block composed of a superconductor or its main component,
A method for manufacturing a superconductor, which comprises placing it in a block made of a substance, and then subjecting it to processing and heat treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1214610A JPH0378914A (en) | 1989-08-21 | 1989-08-21 | Manufacture of superconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1214610A JPH0378914A (en) | 1989-08-21 | 1989-08-21 | Manufacture of superconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0378914A true JPH0378914A (en) | 1991-04-04 |
Family
ID=16658571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1214610A Pending JPH0378914A (en) | 1989-08-21 | 1989-08-21 | Manufacture of superconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0378914A (en) |
-
1989
- 1989-08-21 JP JP1214610A patent/JPH0378914A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61194155A (en) | Production of nb3sn superconductive wire | |
US3778894A (en) | PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE | |
JPS5913036A (en) | Production of nb3sn superconductive wire rod using cu-4a group element alloy | |
EP0498413B1 (en) | Method of manufacturing Nb3Sn superconducting wire | |
JPH0378914A (en) | Manufacture of superconductor | |
EP0361268B1 (en) | Method of manufacturing hard-to-work alloy articles | |
US3857173A (en) | Method of producing a composite superconductor | |
US6289576B1 (en) | Method for drawing elongated superconductive wires | |
JP4193194B2 (en) | Method for producing Nb3Sn superconducting wire | |
JP3050576B2 (en) | Method for producing compound linear body | |
JPH04277409A (en) | Compound superconducting wire and manufacture thereof | |
JPH04155714A (en) | Manufacture of nb3 sn type superconducting wire material | |
JPH03283322A (en) | Manufacture of nb3al superconductor | |
JPH03134917A (en) | Manufacture of ceramic superconductor | |
JPH0528860A (en) | Manufacture of superconductive wire of nb3sn type | |
JPH0554742A (en) | Manufacture of superconducting wire | |
JPH03283318A (en) | Manufacture of nb3al multicore superconductor | |
JPH07182941A (en) | Manufacture of low-copper ratio nb3sn superconducting wire | |
JPH0432111A (en) | Manufacture of compound superconductive wire | |
JPH03283321A (en) | Manufacture of nb3al multicore superconductor | |
JPH04137411A (en) | Manufacture of nb3 sn multicore superconducting wire | |
JPH0343915A (en) | Manufacture of multiple-cored superconductor | |
JPH0512934A (en) | Compound superconducting wire and manufacture thereof | |
JPH0428120A (en) | Manufacture of nb3 sn compound superconductive wire | |
JPH04255615A (en) | Manufacture of oxide superconducting wire rod |