JPH0378914A - Manufacture of superconductor - Google Patents

Manufacture of superconductor

Info

Publication number
JPH0378914A
JPH0378914A JP1214610A JP21461089A JPH0378914A JP H0378914 A JPH0378914 A JP H0378914A JP 1214610 A JP1214610 A JP 1214610A JP 21461089 A JP21461089 A JP 21461089A JP H0378914 A JPH0378914 A JP H0378914A
Authority
JP
Japan
Prior art keywords
block
doping
superconductor
small
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1214610A
Other languages
Japanese (ja)
Inventor
Shoji Shiga
志賀 章二
Kiyoshi Yamada
清 山田
Takayuki Sano
隆行 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1214610A priority Critical patent/JPH0378914A/en
Publication of JPH0378914A publication Critical patent/JPH0378914A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain a sufficient doping effect by placing a small block made of an auxiliary component of a superconductor inside a superconductor block and further inside a block made of a third material, and applying machining and thermal treatment thereon. CONSTITUTION:Small hollows 2a, 2b, 2c for containing a predetermined amount of a doping component therein are formed over the whole length of a columnar Nb block 1. The small hollows 2a, 2b, 2c are filled with lines, rods, tubes or plates made of the doping component such as Ti and Ta, thereby forming a compound block. A small space for containing the compound block therein is formed inside a Cu-Sn alloy block, and the compound block is housed therein to form a second compound block. A thermal treatment is applied at 600-800 deg.C onto the second compound block having a desired finish dimension so that a fine wire on Nb3Sn produced with the reaction of Nb and Sn. Doping can be therefore performed suitably and industrially so that a doping effect can be exhibited to the maximum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超電導特性を向上させる合金系および化合物
系超電導々体の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing alloy-based and compound-based superconductors that improve superconducting properties.

〔従来の技術〕[Conventional technology]

超電導機器に利用される超電導線材としては、NbTi
やNb5Snの線材が工業的に利用されているが、より
高い磁場で、より高いJ、を有する超電導線材を利用し
て、マグネットなどの機器を小型化し、かつ、高性能化
することが期待されている。
NbTi is a superconducting wire used in superconducting equipment.
Although Nb5Sn and Nb5Sn wires are used industrially, it is expected that superconducting wires with higher J in higher magnetic fields will be used to miniaturize and improve the performance of devices such as magnets. ing.

例えば、Nb3SnのJc特性を向上させるためには、
Ta、TiおよびHfなどをドープすることが有効であ
る0通常、NbまたはCu−3n合金に上記の金属を合
金化して複合ビレットとし、このビレットに押出し、圧
延、伸線などの加工を施した通常線材を用いて再び複合
ビレットを組立て、同様の加工工程を繰り返す0通常、
この工程を2〜3回繰り返して最終サイズで拡散反応に
よりNb3Snを合成するため加熱処理をする。もちろ
ん、加熱処理は熱間加工や中間焼鈍などでも行なわれて
いる。
For example, in order to improve the Jc characteristics of Nb3Sn,
It is effective to dope Ta, Ti, Hf, etc. 0 Usually, Nb or Cu-3n alloy is alloyed with the above metals to form a composite billet, and this billet is subjected to processing such as extrusion, rolling, wire drawing, etc. Normally, the composite billet is reassembled using wire rods and the same processing steps are repeated.
This process is repeated 2 to 3 times, and heat treatment is performed to synthesize Nb3Sn by a diffusion reaction at the final size. Of course, heat treatment is also performed in hot working, intermediate annealing, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述の製作工程において、Nb中に前記
ドーピング成分を合金化することは容易でないという問
題がある0例えば、電子ビーム溶解においてTiなどの
成分は蒸発しやすく、均一な合金化は困難である。他方
、Cu−5n合金側にドーピングする例もあるが、固溶
量がかなり制限されるばかりでなく、拡散反応後もCu
中に残留しやすく、充分ドーピングの効果が得られない
という問題があった。また、従来法には特別な合金化の
炉を要し、工業製造上多大な費用と時間を要するという
問題もあった。
However, in the above manufacturing process, there is a problem in that it is not easy to alloy the doping components in Nb. For example, components such as Ti easily evaporate during electron beam melting, making uniform alloying difficult. . On the other hand, there are examples of doping into the Cu-5n alloy, but not only is the amount of solid solution considerably limited, but Cu remains even after the diffusion reaction.
There is a problem that the doping tends to remain in the interior of the dopant, making it impossible to obtain a sufficient doping effect. Furthermore, the conventional method requires a special alloying furnace, which poses a problem in that it requires a great deal of cost and time in industrial production.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明は上記問題点を解決した超電導々体の製法を提供
するもので、超電導体またはその主成分からなるブロッ
クに、超電導体の副成分からなる小ブロックを配置して
複合ブロックを形成した後、または、この複合ブロック
をさらに第3の物質からなるブロックに配置した後、加
工および熱処理を施すことを特徴とするものである。
The present invention provides a method for manufacturing a superconductor that solves the above-mentioned problems, and in which a composite block is formed by arranging small blocks made of subcomponents of the superconductor on a block made of a superconductor or its main component. Alternatively, this composite block is further arranged in a block made of a third material, and then processed and heat treated.

本発明によれば、N b s S n B144体は、
例えば以下のような工程により製作される。
According to the present invention, the N b s S n B144 body is
For example, it is manufactured by the following steps.

すなわち、第1図(a)、(b)、(C)に示すように
、Nbの円柱状ブロック(1)に所要量のドーピング成
分を収納すべく小空間部(2a)、(2b)、(2C)
を全長に亘って形成する。小空間部の(2a)、(2b
)、(2C)の形状は第1図(a)、(b)、(C)に
例示する通りであり、均一な対称的な分布が望ましい。
That is, as shown in FIGS. 1(a), (b), and (C), small spaces (2a), (2b), and (2C)
is formed over the entire length. (2a), (2b) of the small space part
) and (2C) are as illustrated in FIGS. 1(a), (b), and (C), and a uniform and symmetrical distribution is desirable.

この小空間部(2a)、(2b)、(2C)にドーピン
グ成分、例えばTiやTaの線、棒、管あるいは板状体
が充填されて複合ブロックが形成される0次に、Cu−
Sn合金ブロックに前記複合ブロックを収納する小空間
を形成し、そこに複合ブロックを配置して第2の複合ブ
ロックを形成する。通常、第2の複合ブロックはCuな
どに包含されてから加工され、必要に応じて以上の操作
を繰り返して所望の仕上げ寸法において600〜800
°Cの加熱処理が施され、NbとSnとの反応でNb、
Snの細線が生成する。
These small spaces (2a), (2b), and (2C) are filled with doping components such as wires, rods, tubes, or plates of Ti or Ta to form a composite block.
A small space for storing the composite block is formed in the Sn alloy block, and the composite block is placed in the small space to form a second composite block. Usually, the second composite block is processed after being included in Cu, etc., and the above operations are repeated as necessary to achieve the desired finished size of 600 to 800 mm.
°C heat treatment is applied, and the reaction between Nb and Sn causes Nb,
A thin line of Sn is generated.

仕上げ寸法におけるNbの線径は通常0.1〜100μ
、特に0,5〜10Inaの範囲内にあり、反応は実用
的な速さで進行する。
The diameter of Nb wire in finished dimensions is usually 0.1 to 100μ
, especially within the range of 0.5 to 10 Ina, and the reaction proceeds at a practical speed.

一方、Nb−Ti−ZrあるいはNb−TiTaなどの
3元合金の場合には、Nb−TiブロックにZrあるい
はTaなどを複合して加工し、加工および熱処理過程を
経て均質化した3元合金を得ることができる。
On the other hand, in the case of ternary alloys such as Nb-Ti-Zr or Nb-TiTa, the ternary alloy is processed by combining Zr or Ta into a Nb-Ti block and homogenized through processing and heat treatment. Obtainable.

〔実施例〕〔Example〕

以下、本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail below.

0.5閣φのNb5Sn超電導線を以下の工程により製
作した。すなわち、まず、100閣φのNbビレット断
面に4.3閣φの貫通孔を9個、すなわち、中央に1個
およびその周囲に等間隔で8個うがち、それら貫通孔に
4.1閣φのTa棒を挿入して4.1閤φまで加工した
。加工は、常法によりNbビレットにCuを被覆し、8
00°Cで熱間押出し後、圧延および引抜きを行ってか
ら、HNO,でCuをエツチングにより除いてNbの複
合棒を形成した0次に、100閣φのCu−14,2%
Snビレット断面に4.3閣φの貫通孔を前記Nbビレ
ットの場合と同様の配置で9個形成し、ここに上記Nb
複合棒を挿入した。このビレットを外径150 mbφ
のCu管に入れて封止し、500″Cで熱間押出し、常
法により、圧延および伸線を行い5Iφの線とした0次
に、この5閤φの線を内径50m5φ、外径?5mφの
Cu管に充填して同様に加工を施し、0.5 mφまで
伸線し、680°CX2.5日の拡散加熱処理を施した
。このようにして得られたNb3Sn超電導線について
、4.2K、ITの磁場のもとでJcを測定したところ
、260A/−の値が得られた。また、上記実施例にお
いて、Ta棒に代えてNb−15%Ti棒を用いて同様
な加工を施したNb、Sn超電導線についてJ、を測定
したところ、280 A/−の値が得られた。なお、比
較のために無垢のNbビレットを用いて同様の加工を施
した場合については、JcO値は190A/−に留まっ
た。
A Nb5Sn superconducting wire with a diameter of 0.5 mm was manufactured by the following process. That is, first, in a Nb billet cross section of 100 mm diameter, there are 9 through holes of 4.3 mm diameter, one in the center and 8 holes equally spaced around the center, and 4.1 mm diameter holes are formed in these through holes. A Ta rod was inserted and processed to a diameter of 4.1 mm. For processing, a Nb billet was coated with Cu using a conventional method, and 8
After hot extrusion at 00°C, rolling and drawing were performed, and then the Cu was removed by etching with HNO to form a Nb composite rod.
Nine through holes with a diameter of 4.3 mm were formed in the cross section of the Sn billet in the same arrangement as in the case of the Nb billet, and the Nb
A composite rod was inserted. This billet has an outer diameter of 150 mbφ
It was put into a Cu tube and sealed, hot extruded at 500"C, rolled and wire-drawn using the usual method to make a 5Iφ wire. Next, this 5Iφ wire was made into a 5Iφ wire with an inner diameter of 50m5φ and an outer diameter of ? It was filled into a 5 mφ Cu tube, processed in the same way, drawn to 0.5 mφ, and subjected to diffusion heat treatment at 680°C for 2.5 days.The Nb3Sn superconducting wire thus obtained was When Jc was measured under a magnetic field of .2 K and IT, a value of 260 A/- was obtained.Also, in the above example, a similar process was performed using a Nb-15% Ti rod instead of the Ta rod. When J was measured for the Nb, Sn superconducting wire that had been subjected to The JcO value remained at 190A/-.

上記実施例はNb1Sn超電導線について述べたが、本
発明は上記実施例に限定されることなく、Nb−Ti−
Zrなど他の超電導材料にも適用できる。
Although the above embodiment described the Nb1Sn superconducting wire, the present invention is not limited to the above embodiment;
It can also be applied to other superconducting materials such as Zr.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、超電導体またはそ
の主成分からなるブロックに、超電導体の副成分からな
る小ブロックを配置して複合ブロックを形成した後、ま
たは、この複合ブロックをさらに第3の物質からなるブ
ロックに配置した後、加工および熱処理を施すため、ド
ーピングを適正にかつ工業的に実行できるので、ドーピ
ング効果を最大限に発揮できる。また、本発明では、プ
ロツクからm械加工により任意の形状の複合ビレットを
容易に形成することができ、特別な設備費を要しないと
いう優れた効果もある。
As explained above, according to the present invention, after a composite block is formed by arranging small blocks composed of subcomponents of a superconductor on a block composed of a superconductor or its main component, or after the composite block is further processed. Since processing and heat treatment are performed after the material is placed in a block made of the material No. 3, doping can be carried out appropriately and industrially, so that the doping effect can be maximized. Further, the present invention has the advantageous effect that a composite billet of any shape can be easily formed from a block by machining, and no special equipment costs are required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)、(C)は本発明にかかる複合ビ
レ・ントの説明図である。 1・・・円柱状ブロック、 2a、 2b、 2c・・
・小空間部。
FIGS. 1(a), (b), and (C) are explanatory diagrams of a composite billet according to the present invention. 1...Cylindrical block, 2a, 2b, 2c...
・Small space.

Claims (1)

【特許請求の範囲】[Claims] 超電導体またはその主成分からなるブロックに、超電導
体の副成分からなる小ブロックを配置して複合ブロック
を形成した後、または、この複合ブロックをさらに第3
の物質からなるブロックに配置した後、加工および熱処
理を施すことを特徴とする超電導々体の製法。
After forming a composite block by arranging small blocks composed of sub-components of the superconductor on a block composed of a superconductor or its main component, or after forming a composite block by arranging a block composed of a superconductor or its main component,
A method for manufacturing a superconductor, which comprises placing it in a block made of a substance, and then subjecting it to processing and heat treatment.
JP1214610A 1989-08-21 1989-08-21 Manufacture of superconductor Pending JPH0378914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1214610A JPH0378914A (en) 1989-08-21 1989-08-21 Manufacture of superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214610A JPH0378914A (en) 1989-08-21 1989-08-21 Manufacture of superconductor

Publications (1)

Publication Number Publication Date
JPH0378914A true JPH0378914A (en) 1991-04-04

Family

ID=16658571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214610A Pending JPH0378914A (en) 1989-08-21 1989-08-21 Manufacture of superconductor

Country Status (1)

Country Link
JP (1) JPH0378914A (en)

Similar Documents

Publication Publication Date Title
JPS61194155A (en) Production of nb3sn superconductive wire
US3778894A (en) PROCESS FOR MAKING A V{11 Ga SUPERCONDUCTIVE COMPOSITE STRUCTURE
JPS5913036A (en) Production of nb3sn superconductive wire rod using cu-4a group element alloy
EP0498413B1 (en) Method of manufacturing Nb3Sn superconducting wire
JPH0378914A (en) Manufacture of superconductor
EP0361268B1 (en) Method of manufacturing hard-to-work alloy articles
US3857173A (en) Method of producing a composite superconductor
US6289576B1 (en) Method for drawing elongated superconductive wires
JP4193194B2 (en) Method for producing Nb3Sn superconducting wire
JP3050576B2 (en) Method for producing compound linear body
JPH04277409A (en) Compound superconducting wire and manufacture thereof
JPH04155714A (en) Manufacture of nb3 sn type superconducting wire material
JPH03283322A (en) Manufacture of nb3al superconductor
JPH03134917A (en) Manufacture of ceramic superconductor
JPH0528860A (en) Manufacture of superconductive wire of nb3sn type
JPH0554742A (en) Manufacture of superconducting wire
JPH03283318A (en) Manufacture of nb3al multicore superconductor
JPH07182941A (en) Manufacture of low-copper ratio nb3sn superconducting wire
JPH0432111A (en) Manufacture of compound superconductive wire
JPH03283321A (en) Manufacture of nb3al multicore superconductor
JPH04137411A (en) Manufacture of nb3 sn multicore superconducting wire
JPH0343915A (en) Manufacture of multiple-cored superconductor
JPH0512934A (en) Compound superconducting wire and manufacture thereof
JPH0428120A (en) Manufacture of nb3 sn compound superconductive wire
JPH04255615A (en) Manufacture of oxide superconducting wire rod