JPH0378716A - Image pickup optical system - Google Patents

Image pickup optical system

Info

Publication number
JPH0378716A
JPH0378716A JP1215115A JP21511589A JPH0378716A JP H0378716 A JPH0378716 A JP H0378716A JP 1215115 A JP1215115 A JP 1215115A JP 21511589 A JP21511589 A JP 21511589A JP H0378716 A JPH0378716 A JP H0378716A
Authority
JP
Japan
Prior art keywords
filter
optical system
light
image plane
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1215115A
Other languages
Japanese (ja)
Other versions
JP3055785B2 (en
Inventor
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1215115A priority Critical patent/JP3055785B2/en
Publication of JPH0378716A publication Critical patent/JPH0378716A/en
Application granted granted Critical
Publication of JP3055785B2 publication Critical patent/JP3055785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To suppress a flare to a level negligible in practical use by providing a filter and a photodetecting means which is provided on an image plane and has the nature to reflect a part of incident light and satisfying specified conditions. CONSTITUTION:This optical system has an objective lens which admits the main ray l from an object side to the prescribed image plane G in the state nearly parallel with the optical axis, the filter F which is disposed between the lenses constituting the objective lens between this objective lens and the image plane G and the photodetecting means which is provided on the image plane G and has the nature to reflect a part of the incident light. This optical system is constituted to satisfy the conditions expressed by equation I. In the equation I, fM is the focal length of the system from the point when the reflected light on the image pickup plane is reflected again by the filter F in the optical system and up to the point where the light returns to the image plane G; H is an image height. The flare generated when the reflected light on the image pickup plane reflected by the filter F is lessened in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、主としてビデオスコープに使用する撮像光学
系に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an imaging optical system mainly used in a videoscope.

[従来の技術] 従来のビデオスコープ用撮像光学系として、第9図に示
すような特開昭62−173415号に記載されたもの
がある。この光学系は、主光線が発散する方向で像面に
入射する。また近赤外線を除去するためのフィルターF
を光学系の内部に配置している。
[Prior Art] As a conventional imaging optical system for a videoscope, there is one described in Japanese Patent Application Laid-Open No. 173415/1983 as shown in FIG. In this optical system, the chief ray is incident on the image plane in a diverging direction. Filter F to remove near-infrared rays
is placed inside the optical system.

上記の従来例では、撮像面で反射した光がフィルター面
で反射されてそのまま戻ることがな(、光学系の外側の
方向に反射されて行く。したがって撮像面とフィルター
との間の繰返し反射によりフレアー等が生ずるおそれは
ない。
In the above conventional example, the light reflected on the imaging surface is not reflected on the filter surface and returns as it is (it is reflected in the direction outside the optical system. Therefore, due to repeated reflections between the imaging surface and the filter, There is no risk of flare etc.

しかしこのタイプの光学系を、例えば色モザイクフィル
ターな撮像面に貼り合わせたCCD等と組合わせて使用
する場合は、となりの色フィルターを通過した光が混入
して色むらを生ずる。またモノクロのCCDも、近年画
素が小型化し、上記従来例の光学系では、CODに入射
後ににじみを生じてしまう。
However, when this type of optical system is used in combination with, for example, a color mosaic filter such as a CCD attached to an imaging surface, light passing through an adjacent color filter mixes in, causing color unevenness. Furthermore, the pixels of monochrome CCDs have become smaller in recent years, and the conventional optical system described above causes blurring after entering the COD.

以上の理由から撮像素子と組合わせて使用する光学系も
、主光線が像面に垂直に入射するテレセントリック系で
あることが不可欠となった。
For the above reasons, it has become essential that the optical system used in combination with the image sensor be a telecentric system in which the chief ray is incident perpendicularly to the image plane.

一方、内視鏡は、治療用としてYAGレーザーを使用す
るために対物光学系の内部にYAGレーザーよりの光を
除去するためのフィルターが配置されている。又近赤外
線を除去して色再現性を確保するためには、光学系内部
に近赤外線カットフィルターを配置する必要がある。し
かもこれらフィルターへの光線の入射角が像高によって
異なった場合、YAGレーザーよりの光をカットするフ
ィルターによる光のカットが画面内で不均一になったり
、色再現性が悪化して色むらを生したりする。これをさ
けるためには、これらフィルターは、対物光学系の絞り
と像面の間の主光線の傾斜角の比較的小さい所に配置さ
れている。
On the other hand, since an endoscope uses a YAG laser for treatment, a filter for removing light from the YAG laser is disposed inside the objective optical system. Furthermore, in order to remove near-infrared rays and ensure color reproducibility, it is necessary to arrange a near-infrared cut filter inside the optical system. Furthermore, if the angle of incidence of the light rays on these filters differs depending on the image height, the light cut by the filter that cuts the light from the YAG laser may become uneven within the screen, and color reproducibility may deteriorate, causing color unevenness. live. In order to avoid this, these filters are placed at a location where the angle of inclination of the principal ray between the aperture of the objective optical system and the image plane is relatively small.

[発明が解決しようとする課題] テレセントリック光学系においては、反射率が数バーセ
ントル数十パーセントの固体撮像素子面での反射光が、
そのまま逆に光路をたどり、内蔵しているコンマ数パー
セントから数パーセントの反射率のフィルター面で反射
して光学系を再度通り撮像面でフレアーを生ずることに
なる。
[Problems to be Solved by the Invention] In a telecentric optical system, the reflected light on the surface of a solid-state image sensor with a reflectance of a few centimeters to a few tens of percent,
The light then follows the optical path in the opposite direction, is reflected by the built-in filter surface with a reflectance of a few tenths of a percent to a few percent, passes through the optical system again, and causes flare on the imaging surface.

本発明の目的は、テレセントリック系でその絞りから像
面までの間にフィルターが配置された光学系で、撮像面
での反射光がフィルターにより反射して起こるフレアー
の少ない撮像光学系を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an imaging optical system that is a telecentric system and has a filter placed between its aperture and an image plane, with less flare caused by the reflection of light on the imaging surface by the filter. It is in.

[課題を解決するための手段] 本発明の撮像光学系は、物体側からの主光線をほぼ光軸
と平行な状態にて所定の像面に入射させるようにした対
物レンズと、この対物レンズと像面との開で対物レンズ
を構成するレンズ間に配置されているフィルターと、前
記像面に設けられていて入射光の一部をを反射する性質
を有する受光手段を有する光学系で、次の条件(1)を
満足するものである。
[Means for Solving the Problems] The imaging optical system of the present invention includes an objective lens that allows a principal ray from the object side to enter a predetermined image plane in a state substantially parallel to the optical axis, and this objective lens. An optical system having a filter disposed between lenses constituting an objective lens with a distance between the image plane and the image plane, and a light receiving means provided at the image plane and having a property of reflecting a part of incident light, It satisfies the following condition (1).

(11f&l/H> 1.5 ただしfuは撮像面での反射光で光学系中のフィルター
にて再度反射され像面に戻るまでの間の系の焦点距離、
Hは像高である。
(11f&l/H> 1.5 However, fu is the focal length of the system until the light is reflected from the imaging surface and is reflected again by the filter in the optical system and returns to the image surface,
H is the image height.

第1図は本発明の光学系の概念図であって、絞りSより
も前の前群(レンズt+、t2)で屈折して絞りの中心
を通った主光線βは、更に絞りSより後方の後群(レン
ズL、、L4)で屈折して像面Gに垂直に入射する。こ
の像面1上に位置している撮像面で数バーセントル数十
パーセントの光が反射されて逆方向に戻り、フィルター
面でコンマ数パーセント〜数パーセント反射され、゛レ
ンズ上4にて屈折された後に像面上の光軸付近に結像す
る。この反射光が前述のようにフレアーの原因になる。
FIG. 1 is a conceptual diagram of the optical system of the present invention. The principal ray β, which is refracted by the front group (lenses t+ and t2) in front of the aperture S and passes through the center of the aperture, is further behind the aperture S. It is refracted by the rear group (lenses L, , L4) and enters the image plane G perpendicularly. A few tenths of percent of the light is reflected by the imaging plane located above the image plane 1 and returns in the opposite direction, then is reflected by a few tenths to a few percent at the filter surface and refracted at the top of the lens 4. Later, an image is formed near the optical axis on the image plane. This reflected light causes flare as described above.

このフレアー光の明るさI、は、次の式で表わすことが
出来る。
The brightness I of this flare light can be expressed by the following formula.

Ir=μt”x L x R ただしμmはフレアー光の射出側NA、 Lは輝度、R
は固体撮像素子面とフィルター面の合成の反射率である
Ir=μt"x L x R where μm is the exit side NA of flare light, L is the brightness, and R
is the combined reflectance of the solid-state image sensor surface and the filter surface.

一方、内視鏡においては、像面において通常の結像光の
板面照度が適切な明るさになるように照明光の明るさを
変化させている。そのため光学系の射出側NAに応じて
輝度りが変化し、板面照度が一定になるようにしてバる
。そして板面照度■。は次のように表わせる。
On the other hand, in an endoscope, the brightness of illumination light is changed so that the plate surface illuminance of normal imaging light at the image plane becomes an appropriate brightness. Therefore, the brightness changes depending on the exit side NA of the optical system, and the illuminance on the plate surface is kept constant. And board illuminance ■. can be expressed as follows.

Io= L−u o2=: const。Io = L-u o2 =: const.

ただしμ。は光学系の射出側NAである。したがってL
 = const、/μ。′となり輝度はμ。−2に逆
比例する。
However, μ. is the exit side NA of the optical system. Therefore L
=const,/μ. ′ and the brightness is μ. It is inversely proportional to -2.

以上の式からフレアー光の明るさIfは次のように表わ
すことが出来る。
From the above equation, the brightness If of the flare light can be expressed as follows.

’t=cLL  t”/  u  o”ノXconst
   X  Rμ。、Rは光学系の仕様で決まる係数で
、フレアーを暗くするためには、μmを小さくすればよ
い。
't=cLL t"/u o"ノXconst
X Rμ. , R are coefficients determined by the specifications of the optical system, and in order to darken the flare, it is sufficient to reduce μm.

第2図は、第1図に示した光学系を像面Gにて折り返し
更にフィルター面Fで折り返したようすを示した図であ
る。この図かられかるようにμ。
FIG. 2 is a diagram showing the optical system shown in FIG. 1 folded back at the image plane G and further folded back at the filter plane F. As you can see from this figure, μ.

は、像高Hとレンズ群L&l(レンズL4をフィルター
面で折り返して2ケ配置した系)の合成焦点距離fMと
で次のように表わすことが出来る。
can be expressed as follows using the image height H and the composite focal length fM of lens groups L&l (a system in which two lenses are arranged by folding back the lens L4 at the filter surface).

μmSノ”   H/fv ここでHは仕様として決められるものであり、像高Hが
大になるとμ3も大になりフレアー光は明るくなること
を示している。
μmSノ''H/fv Here, H is determined as a specification, and indicates that as the image height H increases, μ3 also increases and the flare light becomes brighter.

上記式からフレアー光を暗くするためには、fMを大に
すればよい。通常フレアー光の許容範囲としては、およ
そ次に示す通りである。
From the above equation, in order to make the flare light darker, fM should be increased. The allowable range of normal flare light is approximately as shown below.

f、/H> 1.5 上記条件が条件(1)である。即ち条件(1)を満足す
ることによってフレアーを許容の明るさ以下にすること
が出来る。
f, /H> 1.5 The above condition is condition (1). That is, by satisfying condition (1), flare can be reduced to below the allowable brightness.

第3図は、レンズ群LMの部分を更に詳細に示した図で
ある。図において焦点距離f11は、レンズL4を前側
主点位置間がDであるように対称に配置したレンズ群り
、の焦点距離である。ここでフィルター面からレンズ前
面までの距離をa、前側主平面位置(レンズ入射面から
前側主平面までの距離)をbとすると次の式が成立つ。
FIG. 3 is a diagram showing the lens group LM in more detail. In the figure, the focal length f11 is the focal length of a lens group in which the lens L4 is symmetrically arranged so that the distance between the front principal point positions is D. Here, if the distance from the filter surface to the front surface of the lens is a, and the front principal plane position (distance from the lens entrance surface to the front principal plane) is b, the following equation holds true.

D=2a+2b 内因においては、前側主平面がレンズ入射面より前方で
マイナスになっている。
D=2a+2b In the internal factor, the front principal plane is negative in front of the lens entrance surface.

九の大きい系LMを構成してフレアーを少なくするため
には、レンズL4に関して次の条件+21 、 (31
を満足することが好ましい。
In order to reduce flare by configuring a system LM with a large number of 9, the following conditions must be met regarding lens L4:
It is preferable to satisfy the following.

(21f、/H> 2 (31D > 0 レンズL4の焦点距離f4を大きくするには、内視鏡光
学系の物体側の方にパワーを集中することが必要である
。一方はぼテレセントリックな光学系においてレンズの
径を出来るだけ小さくして内視鏡として適切な撮像光学
系にするためには、レンズL4にある程度のパワーを持
たせる必要がある。
(21f, /H > 2 (31D > 0) In order to increase the focal length f4 of the lens L4, it is necessary to concentrate the power toward the object side of the endoscope optical system. In order to make the diameter of the lens as small as possible in the system and make the imaging optical system suitable for an endoscope, it is necessary to provide the lens L4 with a certain degree of power.

以上のことがら撮像光学系全系の焦点距離fに対するレ
ンズ上4焦点距離f4が次の条件(4)を満足すること
が望ましい。
Considering the above, it is desirable that the four focal lengths f4 on the lens with respect to the focal length f of the entire imaging optical system satisfy the following condition (4).

(4120> f4/f > 1 また絞りより像側の後群のレンズ系の中でのレンズL4
の屈折力がある程度以上ないとつまりf4をある程度小
さくしないとテレセントリック系でのレンズの径の増大
をひきおこす。一方f4がある程度以上長くないとフレ
アー光の明るさを小さく押えることが出来ない。これら
のことから次の条件(5)を満足することが望ましい。
(4120 > f4/f > 1 Also, lens L4 in the rear group lens system on the image side of the aperture
If the refractive power is not above a certain level, that is, if f4 is not reduced to a certain extent, the diameter of the lens in a telecentric system will increase. On the other hand, unless f4 is longer than a certain level, the brightness of the flare light cannot be kept low. For these reasons, it is desirable to satisfy the following condition (5).

(5110>f、/fR>  ま ただしfRは、後群の合成焦点距離(レンズL3とレン
ズL4の合成焦点距離)である。
(5110>f, /fR> Also, fR is the combined focal length of the rear group (combined focal length of lens L3 and lens L4).

フレアー除去のための別の手段としてフィルタの位置特
に干渉フィルター面等の反射率の高い面を前記の条件を
満足する位置からはずすことも考えられる。つまりフィ
ルターを対物レンズがら外して前記の式での反射率Rを
0にし、他の影響の少ない位置においてもよい。例えば
フィルターを像面の直前に配置してフィルターと撮像素
子との間にレンズ系を置かないようにすることである。
As another means for eliminating flare, it may be considered to move the position of the filter, particularly a surface with a high reflectance such as an interference filter surface, from a position that satisfies the above conditions. In other words, the filter may be removed from the objective lens to set the reflectance R in the above equation to 0, and placed at a position where there are few other influences. For example, the filter may be placed just in front of the image plane so that no lens system is placed between the filter and the image sensor.

このようにすれば撮像素子の面での反射光はいずれもも
との位置にもどるため集光されずフレアーの明るさを十
分暗くすることが出来る。
In this way, all of the light reflected from the surface of the image sensor returns to its original position, so that it is not condensed and the brightness of the flare can be made sufficiently dark.

[実施例] 次に本発明の撮像光学系の各実施例を示す。[Example] Next, embodiments of the imaging optical system of the present invention will be described.

実施例1 f=1.646   F15.00   IH=1.6
500r+= ■ d+= 0.5000   11.= 1.88300
    vl = 40.78rz=0.9400 d2= 0.3700 ra=4.9000 d、= 0.530O r、=−1,9580 d、= 0.100O r、=OO(絞り) d5=0.1000 rs=−2,0220 d6= 0.3000 r7= 2.7600 d7= 1.0500 r8=−1,2960 d8= 0.1000 re=9.0870 d、= 0.260O r、。 = 2.8540 d、、  =1.350O r++  =−2,8540 d、 =0.2100 n2= 1.84666 3 1.80518 n4= 1.51633 ns” 1.84666 ns” 1.51633 ν、  =23.78 ν、  =25.43 ν4 =64.15 シロ=23.78 ν、  =64.15 rlg :oc′ d+2 =0.400On、=1.51633rI3 
:C″ d、3 =0.0300 rI4 :o。
Example 1 f=1.646 F15.00 IH=1.6
500r+= ■ d+= 0.5000 11. = 1.88300
vl = 40.78rz = 0.9400 d2 = 0.3700 ra = 4.9000 d, = 0.530O r, = -1,9580 d, = 0.100O r, = OO (aperture) d5 = 0.1000 rs = -2,0220 d6 = 0.3000 r7 = 2.7600 d7 = 1.0500 r8 = -1,2960 d8 = 0.1000 re = 9.0870 d, = 0.260O r,. = 2.8540 d,, =1.350O r++ =-2,8540 d, =0.2100 n2= 1.84666 3 1.80518 n4= 1.51633 ns” 1.84666 ns” 1.51633 ν, = 23.78 ν, =25.43 ν4 =64.15 Shiro=23.78 ν, =64.15 rlg :oc' d+2 =0.400On, =1.51633rI3
:C″d,3=0.0300 rI4 :o.

d14 = 1.1000   jl、= 1.520
00rls”:olo dss  =0.4000 r18  =3.6780 d、6 =1.150O r It  = 32.7150 d、7 =0.50(10 rlg:QQ d、、  =1.870O r+9  ” ■ d、、  =0.4000 r2゜ =(資) 像高H= 1.65 f4=7.919 実施例2 19:1.51633 oto  = 1.54869 nl +  = 1.51633 f  = 1.646 μ 。= 0.10 1 ν、  、、64.15 ν8 =74.00 ν9 =64.15 υ、。=45.55 シ、、=64.15 R 2,547 f  = 1.809 r+” ■ d、= 0.4500 rz=1.3450 d2=0.980O r、= 2.4980 d、= 0.5000 r4=−2,4980 d4= 0.0500 r5=oo(絞り) d5=0.150O r、=−1,5640 d6= 0.2500 ry” 1.5640 d7= O’、8700 r8=−1,5640 ds= 0.100O r、= 86.4780 d9= 0.750O r、。 =−2,2420 F15.00 1.88300 n2= 1.84666 n、= 1.84666 n4= 1.51633 ns= 1.69680 = 1.6497 = 40.78 = 23.78 = 23.78 =64.15 = 55.52 d、。 =0.100O rll :■ d、、  =0.4000 rlg  ” (資) 116= 1.51633 d1□ = o、oto。
d14 = 1.1000 jl, = 1.520
00rls": olo dss = 0.4000 r18 = 3.6780 d, 6 = 1.150O r It = 32.7150 d, 7 = 0.50 (10 rlg: QQ d,, = 1.870O r+9 " ■ d ,, =0.4000 r2゜ = (fund) Image height H = 1.65 f4 = 7.919 Example 2 19:1.51633 oto = 1.54869 nl + = 1.51633 f = 1.646 μ. = 0.10 1 ν, ,,64.15 ν8 =74.00 ν9 =64.15 υ,.=45.55 υ, ,=64.15 R 2,547 f = 1.809 r+” ■ d, = 0.4500 rz=1.3450 d2=0.980O r, = 2.4980 d, = 0.5000 r4=-2,4980 d4= 0.0500 r5=oo (aperture) d5=0.150O r, =-1,5640 d6= 0.2500 ry" 1.5640 d7= O', 8700 r8=-1,5640 ds= 0.100O r, = 86.4780 d9= 0.750O r,. =-2, 2420 F15.00 1.88300 n2 = 1.84666 n, = 1.84666 n4 = 1.51633 ns = 1.69680 = 1.6497 = 40.78 = 23.78 = 23.78 = 64.15 = 55 .52 d,. =0.100O rll :■ d,, =0.4000 rlg ” (fund) 116= 1.51633 d1□ = o, oto.

rls :o。rls: o.

d、s  =0.7000   nミニ1.52000
r14=o。
d, s = 0.7000 n mini 1.52000
r14=o.

d、、  =0.0100 rls  =■ d、5 = 0.4000   Q8= 1.5163
3r16:QQ d、、  =0.4100 r+y  =−2,8540 d、7 =0.300O rls  =−9,5620 d、、  =0.580O rls  ”−5,0390 d+9 =0.4605 r2o  = 4.2160 9 nl。
d,, =0.0100 rls = ■ d,5 = 0.4000 Q8 = 1.5163
3r16:QQ d,, =0.4100 r+y =-2,8540 d,7 =0.300O rls =-9,5620 d,, =0.580O rls ”-5,0390 d+9 =0.4605 r2o = 4 .2160 9 nl.

1.84666 1.51633 シロ =64.15 シフ = 74.00 = 64.15 = 23.78 シ、o=64.15 = 0.8500 dz。1.84666 1.51633 Shiro =64.15 Schiff =74.00 = 64.15 = 23.78 C, o=64.15 = 0.8500 dz.

r2、 =■ dz+ r22 :o。r2, = ■ dz+ r22:o.

22 r23:CIO 像高H= 1.65 f*=3.367 μ 。= 0.10 実施例3 f = 2.003 rr= ■ d、=0.500口 rz=2.2780 d2= 0.630O ra=ω d3= 5.020O r4=■(絞り) d4= 0.2000 rs=4.4560 =’0.4000 == 1.5000 = 1.77250 νz=49.66 n+2 = 1.54814 シ12=45.78 nla = 1.51633 シ+3=64.15 f  = 1.809 f4= 12.573 F15.0口 = 1.6500 i、= 1.88300 = 40.78 na=1.80610 = 40.95 d5= 0.7300 r6”−4,4560 d、= 0.2000 r7=OO d7= 1.5000 r8=■ d、= 1.4000 r9=■ d、= 1.300O r+o  ”−1,7150 d、。 =0.500O r++  =−4,5420 d、、  =0.500O r+2 =4.8260 d、2 =1.080O r、3 ==OO d、、  =1.5000 r14 = ■ d、4 =0.4000 r15 : oo n3=1.72916 114= 1.52000 5 1.51633 ns” 1.84666 1.72916 na= 1.54869 ns=1.51633 5 ν3 =54.68 ν4  =74.00 ν5 =64.15 =23.78 54.68 ν8 ν9 =45.55 64.15 像高H= 1.65 fR=4.186 μ 。=0.10 実施例4 f = 1.646 r+= ■ d、=0.5000 rt=0.9400 d2= 0.:37o。22 r23:CIO Image height H=1.65 f*=3.367 μ. = 0.10 Example 3 f = 2.003 rr= ■ d, = 0.500 shares rz=2.2780 d2= 0.630O ra=ω d3=5.020O r4=■ (aperture) d4=0.2000 rs=4.4560 ='0.4000 == 1.5000 = 1.77250 νz=49.66 n+2 = 1.54814 C12=45.78 nla = 1.51633 C+3=64.15 f = 1.809 f4=12.573 F15.0 mouth = 1.6500 i, = 1.88300 = 40.78 na=1.80610 = 40.95 d5=0.7300 r6”-4,4560 d, = 0.2000 r7=OO d7=1.5000 r8=■ d, = 1.4000 r9=■ d, = 1.300O r+o ”-1,7150 d. =0.500O r++ =-4,5420 d,, =0.500O r+2 = 4.8260 d, 2 = 1.080O r, 3 ==OO d,, =1.5000 r14 = ■ d, 4 = 0.4000 r15: oo n3=1.72916 114=1.52000 5 1.51633 ns” 1.84666 1.72916 na=1.54869 ns=1.51633 5 ν3 = 54.68 ν4 = 74.00 ν5 = 64.15 =23.78 54.68 ν8 ν9 =45.55 64.15 Image height H=1.65 fR=4.186 μ. =0.10 Example 4 f = 1.646 r+= ■ d,=0.5000 rt=0.9400 d2=0. :37 o.

ra=4.9000 d、= 0.5300 r4=−1,9580 d4=0.1000 rs”■(絞り) d5= 0.1000 ra=−2,0220 d6= 0.3000 ry=2.7600 d7= 1.0500 re”−1,2960 f = 2.003 f4= 6.164 F15.On H n、= 1.88300 n2= 1.84666 jl、= 1.80518 Q4= 1.51633 1.6500 νl  =40.78 ν2  =23.78 ν、  =25.43 ν4 =64.15 6 da”0.10口0 re=9.0870 d9= 0.2600   15:1.84666r+
o  ”2.8540 d+。=1.3500  n6=1.51633r++
  =−2,8540 d、、  =0.2100 r12 :■ d、。= 1.1000  n7= 1.5200r1
3 = oO tL3 =0.6900 r+<  =3.6780 d14 = 1.150On、= 1.51633r+
s  = 32.7150 d、5 =0.0700 r、6  =QQ d、6 = 0.4000  il、= 1.5163
3r、7 :OO c+、7 =0.4000 r、8 :  Oo νS = 23.78 ν、  =64.15 シフ ”74.00 ν8 ν9 64.15 =64.15 d、8 = 1.500On、。 = 1.54869
   v、、” 45.55rI9 :o。
ra = 4.9000 d, = 0.5300 r4 = -1,9580 d4 = 0.1000 rs" (aperture) d5 = 0.1000 ra = -2,0220 d6 = 0.3000 ry = 2.7600 d7 = 1.0500 re”-1,2960 f = 2.003 f4 = 6.164 F15. On H n, = 1.88300 n2 = 1.84666 jl, = 1.80518 Q4 = 1.51633 1.6500 νl = 40.78 ν2 = 23.78 ν, = 25.43 ν4 = 64.15 6 da "0.10 mouths 0 re=9.0870 d9= 0.2600 15:1.84666r+
o ”2.8540 d+.=1.3500 n6=1.51633r++
=-2,8540 d,, =0.2100 r12: ■ d,. = 1.1000 n7 = 1.5200r1
3 = oO tL3 =0.6900 r+< =3.6780 d14 = 1.150On, = 1.51633r+
s = 32.7150 d, 5 = 0.0700 r, 6 = QQ d, 6 = 0.4000 il, = 1.5163
3r, 7: OO c+, 7 = 0.4000 r, 8: Oo νS = 23.78 ν, = 64.15 Schiff "74.00 ν8 ν9 64.15 = 64.15 d, 8 = 1.500On, . = 1.54869
v,,”45.55rI9:o.

d、9 ”0.400On、、  =1.51633 
  シ、、=64.15r26:QQ 像高H=1.65   f=1.646   fR=2
.546f、= 7.919     u  o = 
0.10ただしrl+r2.・・・はレンズ各面の曲率
半径、dl、d2.・・・は各レンズの肉厚およびしン
ス゛間隔、n l 。
d, 9”0.400On,, =1.51633
C,,=64.15r26:QQ Image height H=1.65 f=1.646 fR=2
.. 546f, = 7.919 u o =
0.10 However, rl+r2. ... is the radius of curvature of each lens surface, dl, d2. . . . is the thickness of each lens and the lens spacing, n l .

n 2 +・・・は各レンズの屈折率、シ1.シ2.・
・・は各レンズのアラへ数である。
n 2 +... is the refractive index of each lens, and C1. C2.・
. . is the number for each lens.

実施例1は、第4図に示すレンズ構成で、フィルターと
CCDの間に1枚の凸レンズを配置したものである。こ
の実施例のフィルターは、物体側の面にYAG光を反射
する干渉フィルターを有し、その像側には近赤外光とY
AG光を吸収する赤外線カットフィルターを有している
Example 1 has a lens configuration shown in FIG. 4, in which one convex lens is placed between the filter and the CCD. The filter of this example has an interference filter that reflects YAG light on the object side surface, and near-infrared light and YAG light on the image side.
It has an infrared cut filter that absorbs AG light.

この実施例において、CCDで反射された光は、可視光
の反射率が数パーセントである前方のフィルターの前面
と、反射率がコンマ数パーセント〜数パーセントである
像側に配置した赤外線カットフィルターで反射し再びC
CD面に入射してフレアー光となる。しかし、フィルタ
ーより像側のレンズからなるレンズ群LMの合成焦点距
離九が条件(1)を満足する構成であり、これによって
フレアーの強度は十分小さくなっている。また条件(1
1を満足するレンズ群し工な構成するためにf2゜D等
の値も各条件を満足するようになっている。
In this example, the light reflected by the CCD is filtered through a front filter with a visible light reflectance of several percent and an infrared cut filter placed on the image side with a reflectance of several tenths of a percent to several percent. Reflected again C
The light enters the CD surface and becomes flare light. However, the configuration is such that the composite focal length 9 of the lens group LM consisting of lenses on the image side of the filter satisfies condition (1), and as a result, the intensity of flare is sufficiently small. Also, the condition (1
In order to construct a lens group that satisfies the condition 1, the values of f2°D, etc. are also set to satisfy each condition.

この実施例1の光学系の条件(1)〜(5)に対応する
値は下記の通りである。
The values corresponding to conditions (1) to (5) of the optical system of Example 1 are as follows.

11  fM/Ha)   2.88   bl  2
.502)f4/Halb)  4.8 31  D/Hal   1.56   bl  O,
374)  f4/f   alb)  4.825)
  f4/fRal b)  3.11上記の値のうち
a)は、フィルター反射面をYAG光を反射する面、b
)は2枚のフィルターのうちの最終面とした時の値であ
る。
11 fM/Ha) 2.88 bl 2
.. 502) f4/Halb) 4.8 31 D/Hal 1.56 bl O,
374) f4/f alb) 4.825)
f4/fRal b) 3.11 Among the above values, a) indicates that the filter reflective surface is the surface that reflects YAG light, and b
) is the value when the final surface of the two filters is used.

実施例2は、第5図に示す光学系でフィルターの像側に
メニスカス凸レンズ、平凸レンズを配置した構成である
。フィルターはYAG光カットフ9 イルター2枚で赤外光線カットフィルターをサンドウィ
ッチにしたものである。
Embodiment 2 has an optical system shown in FIG. 5, in which a meniscus convex lens and a plano-convex lens are arranged on the image side of the filter. The filter is a sandwich of two YAG light cut filters and an infrared light cut filter.

この実施例2の条件+11〜(5)に対応する値は下記
の通りである。
The values corresponding to conditions +11 to (5) of Example 2 are as follows.

1)  fia/Hal   5.87   bl  
5.2321  f4/Ha) bl  7.623)
  D/Ha)   5.34   bl  4.15
4)  f4/f   a)bl  7.6251  
f4/fRa)b)  3.73は3枚構成のフィルタ
ーの最終面をフィルター面とした時の値である。
1) fia/Hal 5.87 bl
5.2321 f4/Ha) bl 7.623)
D/Ha) 5.34 bl 4.15
4) f4/f a)bl 7.6251
f4/fRa) b) 3.73 is a value when the final surface of a three-layer filter is taken as the filter surface.

実施例3はフィルターの像側に平凸レンズと、凸平レン
ズを配置したものである。この実施例で用いているフィ
ルターは、近赤外線吸収フィルターの片面にYAG光を
反射するコートを付けたものである。
In Example 3, a plano-convex lens and a plano-convex lens are arranged on the image side of the filter. The filter used in this example is a near-infrared absorbing filter with a coating that reflects YAG light on one side.

この実施例3の条件(1)〜(5)に対応する値は下記
の通りである。
The values corresponding to conditions (1) to (5) of Example 3 are as follows.

(1)  fii/Hal   6.02   b) 
 3.970 f2)  f4/Ha)bl  3.73(31D/H
a)    5.15   b)  3.95f4) 
  f4/f    al b)  3.08f5) 
 f4/fRa)b)  1.47ここでa)はフィル
ターの物体側の面、b)はフィルターの像側の面をフィ
ルター反射面とした時の値である。
(1) fii/Hal 6.02 b)
3.970 f2) f4/Ha) bl 3.73 (31D/H
a) 5.15 b) 3.95f4)
f4/f al b) 3.08f5)
f4/fRa) b) 1.47 Here, a) is the value when the object side surface of the filter, and b) is the value when the image side surface of the filter is the filter reflection surface.

実施例4は、第7図に示す構成で、実施例1の光学系に
反射率の高いYAG光カ光ドットフィルターンズの像側
へ移した構成で、これによってフレアーを更に低減した
Example 4 has the configuration shown in FIG. 7, in which the optical system of Example 1 is moved to the image side of the YAG optical dot filter lens, which has a high reflectance, thereby further reducing flare.

この実施例4の条件(1)〜(5)に対応する値は下記
の通りである。
The values corresponding to conditions (1) to (5) of Example 4 are as follows.

11  fu/Hal   2.88   bl  Z
、592  f4/Halb)  4.8 3)  D/Ha)   1.15   bl  O,
724f−/f   alb)  4.825)  f
4/fRa) b)  3.11ここでa)はフィルタ
ーの物体側の面、b)はフィルターの像側面をフィルタ
ー反射面とした時の値である。
11 fu/Hal 2.88 bl Z
, 592 f4/Halb) 4.8 3) D/Ha) 1.15 bl O,
724f-/f alb) 4.825) f
4/fRa) b) 3.11 Here, a) is the value when the object side surface of the filter is taken, and b) is the value when the image side surface of the filter is taken as the filter reflection surface.

第8図は、実施例1および実施例4の光学系において、
フィルターをすべてレンズ系の後方に移動させたもので
ある。このようにしてもテレセントリック系におけるフ
レアーを低減させ得る。しかし、この光学系は、レンズ
の後面からCCDまでの距離が極めて長くなり光線高が
高くなるのでレンズの直径が大でコンパクトでない。そ
のため使用範囲が限られる短所がある。
FIG. 8 shows the optical systems of Example 1 and Example 4,
All filters are moved to the rear of the lens system. Even in this way, flare in the telecentric system can be reduced. However, in this optical system, the distance from the rear surface of the lens to the CCD is extremely long, and the height of the light beam becomes high, so the diameter of the lens is large and the system is not compact. Therefore, there is a disadvantage that the range of use is limited.

第8図の光学系のデーターは、次の通りである。The data of the optical system shown in FIG. 8 is as follows.

f  = 1.631 r1=■ d、=0.5000 r*= 0.9400 d2= 0.400O r、=3.5000 d、= 0.5300 r4= −1,9580 d、=0.l0D0 F15.00    IH=1.6500Q、= 1.
8830Ov+=40.78n2= 1.84666 シ2 =23.78 r5=OO(絞り) d、= 0.1000 ra=−1,9990 ds=0.2900     n3= 1.80518
r、=4.0180 d7= 1.050Ofi4= 1.51633r8=
−1,3920 d、= 0.1010 00r 閃 d9= 0.2600  15= 1.84666r+
o  =2.7020 d、、  = 1.4500   ns= 1.516
33r、、  =−2,7020 d++  =0.7[10O r+2  =4.3300 d、2 ” 1.150On、= 1.72916r1
3 :■ d+s  =0.0300 r14 = (資) d、4 = 1.1000   na= 1.5200
03 ν、  、=25.43 ν4 =64.15 ν5 ν6 ν7 ν8 =23.78 =64.15 54.68 = 74.00 r15 =■ d、5 =O,Q300 r18 =(資) d、6 =0.400On、=1.51633    
v、=64.15r17 =■ d、、  =0.6000 r18 =■ d、、= 1.500On+o  = 1.54869
  vro= 45.55r1g =■ d、、=0.400On、、  ”1.51633  
シ、、=64.15r2o  = (資) 像高H=1.65   f=1.631   f、=2
.546f4=7.919     μ 。=0.10
[発明の効果] 本発明によれば、CCU等の高反射率の撮像面をもち、
又YAGフィルター等の高反射率でしかも透過特性に入
射角依存性のあるフィルターをレンズ系中の光線角度の
ゆるやかな絞りとCCDの間に配置され、更に像面に垂
直に光線を入射させるテレセントリック光学系において
、撮像面と74 イルター面のくり返し反射によるフレアーを実用上問題
のないレベルにおさえることを可能にした。
f = 1.631 r1 = ■ d, = 0.5000 r* = 0.9400 d2 = 0.400O r, = 3.5000 d, = 0.5300 r4 = -1,9580 d, = 0. l0D0 F15.00 IH=1.6500Q,=1.
8830Ov+=40.78n2=1.84666 C2=23.78 r5=OO (aperture) d,=0.1000 ra=-1,9990 ds=0.2900 n3=1.80518
r, =4.0180 d7= 1.050Ofi4= 1.51633r8=
-1,3920 d, = 0.1010 00r Flash d9 = 0.2600 15 = 1.84666r+
o = 2.7020 d,, = 1.4500 ns = 1.516
33r,, =-2,7020 d++ =0.7[10O r+2 =4.3300 d,2'' 1.150On, = 1.72916r1
3: ■ d+s = 0.0300 r14 = (fund) d, 4 = 1.1000 na = 1.5200
03 ν, , =25.43 ν4 =64.15 ν5 ν6 ν7 ν8 =23.78 =64.15 54.68 = 74.00 r15 =■ d,5 =O,Q300 r18 =(fund) d,6 =0.400On, =1.51633
v, =64.15r17 =■ d,, =0.6000 r18 =■ d,, = 1.500On+o = 1.54869
vro=45.55r1g=■d,,=0.400On,, ”1.51633
H = 64.15r2o = (fund) Image height H = 1.65 f = 1.631 f, = 2
.. 546f4=7.919μ. =0.10
[Effects of the Invention] According to the present invention, a CCU or the like having a high reflectance imaging surface,
In addition, a filter such as a YAG filter with high reflectance and whose transmission characteristics depend on the angle of incidence is placed between the diaphragm with a gentle ray angle in the lens system and the CCD, and a telecentric filter that makes the rays incident perpendicular to the image plane. In the optical system, we have made it possible to suppress flare caused by repeated reflections between the imaging surface and the 74-irter surface to a level that does not cause any practical problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の概念図、第2図は本発明の光学系にお
いて、像面にて折り返して示した断面図、第3図は第2
図の要部拡大図、第4図乃至第7図は本発明の実施例1
乃至実施例4の断面図、第8図はフレアーを除去した他
の光学系の断面図、第9図は従来の撮像光学系の断面図
である。
Figure 1 is a conceptual diagram of the present invention, Figure 2 is a cross-sectional view of the optical system of the present invention, folded back at the image plane, and Figure 3 is a cross-sectional view of the optical system of the present invention.
Embodiment 1 of the present invention is an enlarged view of the main part of the figure, and FIGS. 4 to 7 are
8 is a sectional view of another optical system with flare removed, and FIG. 9 is a sectional view of a conventional imaging optical system.

Claims (1)

【特許請求の範囲】 物体からの主光線をほぼ光軸と平行な状態にて所定の像
面に入射せしめる対物レンズと、前記対物レンズを構成
するレンズのうちの少なくとも一つのレンズを前記像面
との間に挟むように配置されたフィルターと、前記像面
に設けられた入射光の一部を反射する性質を有する受光
手段とを備え、下記の条件(1)を満足する撮像光学系
。 (1)f_M/H>1.5 ただしf_Mは前記撮像面で反射された光が前記フィル
ターにて反射されて該撮像面に戻るまでの系の合成焦点
距離、Hは最大像高である。
[Scope of Claims] An objective lens that causes the chief ray from an object to enter a predetermined image plane in a state substantially parallel to the optical axis; and at least one lens of the lenses constituting the objective lens is arranged on the image plane. An imaging optical system that satisfies the following condition (1), comprising a filter disposed between the image plane and a light receiving means provided on the image plane and having a property of reflecting a part of incident light. (1) f_M/H>1.5 where f_M is the combined focal length of the system until the light reflected on the imaging surface is reflected on the filter and returns to the imaging surface, and H is the maximum image height.
JP1215115A 1989-08-23 1989-08-23 Imaging optical system Expired - Fee Related JP3055785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1215115A JP3055785B2 (en) 1989-08-23 1989-08-23 Imaging optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1215115A JP3055785B2 (en) 1989-08-23 1989-08-23 Imaging optical system

Publications (2)

Publication Number Publication Date
JPH0378716A true JPH0378716A (en) 1991-04-03
JP3055785B2 JP3055785B2 (en) 2000-06-26

Family

ID=16667002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1215115A Expired - Fee Related JP3055785B2 (en) 1989-08-23 1989-08-23 Imaging optical system

Country Status (1)

Country Link
JP (1) JP3055785B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993719A (en) * 1994-09-08 1999-11-30 Idemitsu Petrochemical Co., Ltd. Method of producing a laminated molding
US6328924B1 (en) * 1992-08-26 2001-12-11 Sumitomo Chemical Company, Ltd. Instrument panel
KR100463329B1 (en) * 1997-07-11 2005-05-03 삼성테크윈 주식회사 Color Charge Coupled Imaging Optical System
JP4896988B2 (en) * 2005-12-21 2012-03-14 ストラ エンソ オサケ ユキチュア ユルキネン Package intended to accept an opening device
JP2017015893A (en) * 2015-06-30 2017-01-19 株式会社リコー Imaging optical system and imaging device
JP2017054078A (en) * 2015-09-11 2017-03-16 富士フイルム株式会社 Imaging lens and imaging device
JP2020140026A (en) * 2019-02-27 2020-09-03 株式会社タムロン Imaging optical system and image capturing device
US11703663B2 (en) 2011-09-02 2023-07-18 Largan Precision Co., Ltd. Photographing optical lens assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8707922B2 (en) 2009-12-15 2014-04-29 Federal Mogul Ignition Company Spark ignition device for an internal combustion engine and central electrode assembly therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328924B1 (en) * 1992-08-26 2001-12-11 Sumitomo Chemical Company, Ltd. Instrument panel
US5993719A (en) * 1994-09-08 1999-11-30 Idemitsu Petrochemical Co., Ltd. Method of producing a laminated molding
KR100463329B1 (en) * 1997-07-11 2005-05-03 삼성테크윈 주식회사 Color Charge Coupled Imaging Optical System
JP4896988B2 (en) * 2005-12-21 2012-03-14 ストラ エンソ オサケ ユキチュア ユルキネン Package intended to accept an opening device
US11703663B2 (en) 2011-09-02 2023-07-18 Largan Precision Co., Ltd. Photographing optical lens assembly
JP2017015893A (en) * 2015-06-30 2017-01-19 株式会社リコー Imaging optical system and imaging device
JP2017054078A (en) * 2015-09-11 2017-03-16 富士フイルム株式会社 Imaging lens and imaging device
US10101565B2 (en) 2015-09-11 2018-10-16 Fujifilm Corporation Imaging lens and imaging apparatus
JP2020140026A (en) * 2019-02-27 2020-09-03 株式会社タムロン Imaging optical system and image capturing device
CN111624747A (en) * 2019-02-27 2020-09-04 株式会社腾龙 Optical imaging system and imaging device
CN111624747B (en) * 2019-02-27 2024-01-12 株式会社腾龙 Optical imaging system and imaging device

Also Published As

Publication number Publication date
JP3055785B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
JP4768995B2 (en) Optical filter and imaging device
US6256155B1 (en) Objective optical system
JP3920655B2 (en) Zoom lens and imaging apparatus using the same
JP4079551B2 (en) Imaging apparatus and imaging optical system
JP4112210B2 (en) Zoom lens and electronic imaging apparatus using the same
JPH0378716A (en) Image pickup optical system
JP2001021805A5 (en)
JP2991554B2 (en) Wide wavelength ghost prevention optical system
CN211506005U (en) Projection display device
JPH05207350A (en) Camera provideo with infrared-ray cut filter
JP4004268B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4076332B2 (en) Electronic imaging device
JP2001042230A (en) Image pickup optical system
JP2582144B2 (en) Shooting lens
JP4501065B2 (en) Lens device
JP2007225642A (en) Imaging lens using infrared absorption glass
JPH07303604A (en) Light source optical system for endoscope
JP4043753B2 (en) Electronic imaging device
JP2826315B2 (en) Light source optical system for endoscope
JP2002277738A (en) Camera
JP2007183333A (en) Imaging apparatus
JPS6221313B2 (en)
JP4067828B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4039838B2 (en) Electronic imaging device
JP4039837B2 (en) Electronic imaging device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees