JPH0378528A - Two-stroke internal combustion engine - Google Patents

Two-stroke internal combustion engine

Info

Publication number
JPH0378528A
JPH0378528A JP21256489A JP21256489A JPH0378528A JP H0378528 A JPH0378528 A JP H0378528A JP 21256489 A JP21256489 A JP 21256489A JP 21256489 A JP21256489 A JP 21256489A JP H0378528 A JPH0378528 A JP H0378528A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust port
port
control valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21256489A
Other languages
Japanese (ja)
Inventor
Mitsunori Ishii
石井 光教
Minoru Imashiro
今城 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP21256489A priority Critical patent/JPH0378528A/en
Publication of JPH0378528A publication Critical patent/JPH0378528A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Abstract

PURPOSE:To improve purifying performance of exhaust by providing constitution in such a way as providing an exhaust control valve, turnable in a vertical direction, in the upper edge part of an exhaust port, opened and closed by a piston, and guiding only combustion gas, just after the exhaust port is opened, to a catalyst device simultaneously with a variable control in the open timing of the exhaust port. CONSTITUTION:In an exhaust port 15, opened and closed by a piston 7, in a side surface of a cylinder liner 5 of a two-stroke engine, an exhaust control valve 18, set to an upper position in a high speed high load region, is vertically turnably arranged in an upper edge part of the exhaust port 15. The point end of a valve unit 18b of this exhaust control valve 18 is formed in a circular arc surface 18c connected to an upper end edge in an opening part of the exhaust port 15, and a subexhaust port 19 is open-formed in this circular arc surface 18c. A subexhaust passage 20, which communicates with this subexhaust port 19, is formed in the valve unit 18b, and this subexhaust passage 20 can be connected to the first exhaust passage 21 provided with an exhaust purifying catalyst device. While the exhaust port 15 is connected to the second exhaust passage 22 which joins the first exhaust passage 21 in the downstream side of the catalyst device.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、シリンダ側面に開口した掃気ポートおよび
排気ポートをピストンが開閉するポートスカベンジング
形式の2ストローク内燃機関の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to an improvement in a two-stroke internal combustion engine of the port scavenging type in which a piston opens and closes a scavenging port and an exhaust port opened on the side of the cylinder.

従来の技術 シリンダ側面に開口した掃気ポートと排気ポートとをピ
ストンで開閉するようにした2ストローク内燃機関では
、爆発の後、ピストンが所定位置(通常ATDC90°
前後)まで下降した時点で排気ポートが開かれて、シリ
ンダ内圧力により燃焼ガスの排出が開始される。そして
更にピストンが次の所定位置(通常ATDC120°前
後)まで下降して掃気ポートが開かれると、クランク室
で圧縮されていた新気が燃焼室内に流入し、残留してい
た燃焼ガスを掃気しつつシリンダ内に充満する。またピ
ストンが上昇に転じると、初めに掃気ポートが閉じ、続
いて排気ポートが閉じてガス交換が完了する。
Conventional Technology In a two-stroke internal combustion engine in which a piston opens and closes a scavenging port and an exhaust port that open on the side of the cylinder, the piston moves to a predetermined position (usually ATDC 90°) after an explosion.
When the cylinder has descended to the front and back), the exhaust port is opened and combustion gas starts to be discharged due to the pressure inside the cylinder. When the piston further descends to the next predetermined position (usually around 120° ATDC) and the scavenging port is opened, fresh air compressed in the crank chamber flows into the combustion chamber and scavenges the remaining combustion gas. The cylinder is filled with water. When the piston starts to rise, the scavenging port closes first, and then the exhaust port closes, completing the gas exchange.

このような2ストローク内燃機関においては、掃気ポー
トから流入した新気の一部が排気ポートへ吹き抜けてし
まうことから、HC排出量が多いという欠点があり、そ
のため排気系の触媒装置は必須のものとなる。
Two-stroke internal combustion engines like this have the disadvantage of high HC emissions because some of the fresh air that flows in from the scavenging port blows through to the exhaust port, so a catalyst device in the exhaust system is essential. becomes.

そして、この場合に、排気ポートが開いた初期の燃焼ガ
スは十分に高温であるのに対し、ピストンがかなり下が
った後期に排出される燃焼ガスは低温となり、触媒の温
度を低下させてしまう、という問題があるので、従来、
特開昭64−19108号公報において、排気ポートを
上下2個に分割し、上方の排気ポートから触媒装置へ高
温な排気のみを導入するとともに、下方の排気ポートか
ら出た排気は触媒装置下流に案内するように構成したも
のもある。
In this case, while the combustion gas at the beginning when the exhaust port is open is sufficiently high temperature, the combustion gas discharged at the later stage when the piston has lowered considerably becomes low temperature, which lowers the temperature of the catalyst. Because of this problem, conventionally,
In JP-A-64-19108, the exhaust port is divided into upper and lower parts, and only high-temperature exhaust gas is introduced into the catalyst device from the upper exhaust port, and the exhaust gas exiting from the lower exhaust port is directed downstream of the catalyst device. Some are designed to guide you.

また2ストローク内燃機関においては、低速低負荷域に
おいて掃気効率が低下し、燃焼が不安定になるとともに
出力低下を生じる、という不具合が知られている。
Furthermore, two-stroke internal combustion engines are known to have a problem in which scavenging efficiency decreases in low speed and low load regions, resulting in unstable combustion and a decrease in output.

この問題に対処するために、従来から、排気ポート上縁
部に、該排気ポートの開閉時期を変化させる排気制御弁
を配設したものがある(例えば特開昭62−23523
号公報等)。このものでは、弁体の先端下縁で実質的な
排気ポート開閉時期が定まるので、低速低負荷側で該排
気制御弁を下方位置に制御することによって、排気ポー
ト開時期が遅くなり、低速トルクの向上ならびに燃焼の
安定化が図れる。
In order to deal with this problem, there are conventional exhaust control valves that are arranged at the upper edge of the exhaust port to change the opening and closing timing of the exhaust port (for example, Japanese Patent Laid-Open No. 62-23523
Publications, etc.). With this type, the actual opening/closing timing of the exhaust port is determined by the lower edge of the tip of the valve body, so by controlling the exhaust control valve to the lower position on the low speed and low load side, the opening timing of the exhaust port is delayed and the low speed torque is increased. It is possible to improve the fuel efficiency and stabilize combustion.

発明が解決しようとする課題 しかしながら、この排気制御弁を、上述した上下2分割
した排気ポートに適用した場合には、排気ポート開時期
を遅らせるべく排気制御弁を下方に位置させた際に、触
媒装置に導入される排気量が極端に少なくなってしまい
、燃焼ガスの殆どが下方の排気ポートから触媒装置を経
由せずに排出されてしま・)虞れがある。
Problems to be Solved by the Invention However, when this exhaust control valve is applied to the above-mentioned upper and lower divided exhaust port, when the exhaust control valve is positioned downward to delay the opening timing of the exhaust port, the catalyst There is a risk that the amount of exhaust gas introduced into the device will be extremely small, and most of the combustion gas will be exhausted from the lower exhaust port without passing through the catalyst device.

課題を解決するための手段 そこで、この発明は、排気制御弁の弁体内部を通して初
期の高温燃焼ガスを触媒装置に導くようにしたものであ
る。すなわち、この発明は、シリンダ側面に開口した掃
気ポートと、同じくシリンダ側面に開口した排気ポート
とを備え、両ポートをピストンが開閉する2ストローク
内燃機関において、上記排気ポートの上縁部に、シリン
ダ上下方向に回動して該排気ポートの一部を覆う排気制
御弁を配設し、この排気制御弁の弁体先端に、副排気ポ
ートを開口形成するとともに、弁体内部に副排気通路を
貫通形成し、かつ該副排気通路の下流側に触媒装置を設
けたことを特徴としている。
Means for Solving the Problems According to the present invention, the initial high-temperature combustion gas is guided to the catalyst device through the inside of the valve body of the exhaust control valve. That is, the present invention provides a two-stroke internal combustion engine that is equipped with a scavenging port that opens on the side of the cylinder and an exhaust port that also opens on the side of the cylinder, and in which both ports are opened and closed by a piston. An exhaust control valve is provided that rotates in the vertical direction to cover a part of the exhaust port, and a sub-exhaust port is formed at the tip of the valve body of the exhaust control valve, and a sub-exhaust passage is formed inside the valve body. The auxiliary exhaust passage is characterized in that it is formed through the exhaust passage and that a catalyst device is provided on the downstream side of the auxiliary exhaust passage.

作用 上記構成では、爆発後ピストンが下降して行くと、初め
に排気制御弁の副排気ポートが開き、比較的高温高圧な
燃焼ガスが弁体内の副排気通路を通して触媒装置に導か
れる。ピストンが更に下降すると、排気制御弁より下方
の排気ポートが開き、ある程度低温になった燃焼ガスが
流出するが、これは触媒装置を経由せずに排出される。
In the above structure, when the piston descends after the explosion, the sub-exhaust port of the exhaust control valve opens first, and comparatively high-temperature, high-pressure combustion gas is guided to the catalyst device through the sub-exhaust passage within the valve body. When the piston descends further, the exhaust port below the exhaust control valve opens and combustion gas, which has cooled to a certain degree, flows out, but it is exhausted without passing through the catalyst device.

実施例 以下、この発明の一実施例を図面に基づいて詳細に説明
する。
EXAMPLE Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図はこの発明に係る2ストローク内燃機関の断面図
であって、シリンダブロックlの下部にクランクケース
カバー2がボルト3により固定されて密閉されたクラン
ク室4が形成されているとともに、シリンダ部に別体の
シリンダライナ5が圧入等により装着され、かつその上
端をシリンダヘッド6が閉塞している。
FIG. 1 is a sectional view of a two-stroke internal combustion engine according to the present invention, in which a crankcase cover 2 is fixed to the lower part of a cylinder block l with bolts 3 to form a sealed crank chamber 4, and a cylinder A separate cylinder liner 5 is attached to the cylinder liner 5 by press-fitting or the like, and a cylinder head 6 closes the upper end of the cylinder liner 5.

7は、上記シリンダライナ5内を摺動するピストン、8
は上記クランク室4に収容されたクランクシャフト、9
は両者を連結したコネクティングロッドである。
7 is a piston that slides inside the cylinder liner 5;
9 is a crankshaft housed in the crank chamber 4;
is a connecting rod that connects the two.

上記クランク室4に接続形成された吸気ポート10には
、クランク室4内に流入した新気の逆流を防止するリー
ドバルブ11が配設されている。
An intake port 10 connected to the crank chamber 4 is provided with a reed valve 11 that prevents fresh air flowing into the crank chamber 4 from flowing backward.

またシリンダヘッド6には、ピストン7により画成され
る燃焼室12へ向けて燃料を噴射供給する燃料噴射弁1
3および点火栓14が装着されている。
The cylinder head 6 also includes a fuel injection valve 1 that injects fuel toward a combustion chamber 12 defined by a piston 7.
3 and a spark plug 14 are installed.

そして、上記シリンダライナ5の側面には、上記ピスト
ン7によって開閉される排気ポート15および掃気ポー
ト16が略矩形に開口形成されている。上記掃気ポート
16は、掃気通路17を介してクランク室4に連通して
いる。
On the side surface of the cylinder liner 5, an exhaust port 15 and a scavenging port 16, which are opened and closed by the piston 7, are formed in a substantially rectangular shape. The scavenging port 16 communicates with the crank chamber 4 via a scavenging passage 17.

上記排気ポート15の上縁部には、回動軸18aに固定
された弁体tsbからなる排気制御弁18が配設されて
いる。この排気制御弁18は、端の回動軸18aを中心
として上下に回動可能に構成されているもので、排気ポ
ート15開口部の上端縁に連続する円弧面18cが弁体
18b先端に形成されていて、排気ポート15の上部を
部分的に覆うようになっている。
An exhaust control valve 18 made of a valve body tsb fixed to a rotating shaft 18a is disposed at the upper edge of the exhaust port 15. This exhaust control valve 18 is configured to be able to rotate up and down about a rotation shaft 18a at the end, and an arcuate surface 18c continuous to the upper edge of the opening of the exhaust port 15 is formed at the tip of the valve body 18b. The upper part of the exhaust port 15 is partially covered.

また上記弁体18bの先端円弧面18cに、副排気ポー
ト!9が開口形成されているとともに、この副排気ポー
ト19から弁体18b内を通って副排気通路20が形成
されている。この副排気通路20は、図外の下流側位置
に排気浄化用の触媒装置を備えた第1排気通路21に接
続されている。
Also, there is a sub-exhaust port on the tip arc surface 18c of the valve body 18b! 9 is formed as an opening, and a sub-exhaust passage 20 is formed from this sub-exhaust port 19 through the inside of the valve body 18b. This auxiliary exhaust passage 20 is connected to a first exhaust passage 21 that is provided with a catalyst device for purifying exhaust gas at a downstream position (not shown).

そして、排気制御弁18の下方に開口する排気ポート!
5は、第2排気通路22に接続されている。
And an exhaust port that opens below the exhaust control valve 18!
5 is connected to the second exhaust passage 22.

この第2排気通路22は、上記第1排気通路21に対し
触媒装置下流側で合流している。あるいは、そのまま第
1排気通路21とは別に排気を外部へ導くように構成し
ても良い。
This second exhaust passage 22 joins the first exhaust passage 21 on the downstream side of the catalyst device. Alternatively, the configuration may be such that the exhaust gas is guided to the outside separately from the first exhaust passage 21.

一ヒ記排気制御弁18の回動軸18aは、第2図に示す
ように、排気ポート15を貫通しており、その一端にサ
ーボモータ等からなるアクチュエータ22が連係してい
る。尚、23はシール部材である。上記アクチュエータ
22は、制御回路24が出力する制御信号によって制御
される。この制御回路24には、図示せぬクランク角セ
ンサ等によって検出される機関の回転数信号とエアフロ
メータ等によって検出される負荷信号とが入力されてお
り、これらに基づいて排気制御弁18を最適位置に制御
するようになっている。
As shown in FIG. 2, the rotating shaft 18a of the exhaust control valve 18 passes through the exhaust port 15, and an actuator 22 such as a servo motor is linked to one end of the rotating shaft 18a. Note that 23 is a sealing member. The actuator 22 is controlled by a control signal output from a control circuit 24. The control circuit 24 receives an engine rotational speed signal detected by a crank angle sensor (not shown) and a load signal detected by an air flow meter, etc., and optimizes the exhaust control valve 18 based on these signals. It is designed to control the position.

すなわち、上記排気制御弁18は、基本的な制御特性と
して、高速高負荷域で上方つまり上死点側に制御され、
かつ低速低負荷側で徐々に下方つまり下死点側に制御さ
れる(第3図参照)。
That is, the basic control characteristic of the exhaust control valve 18 is that it is controlled upward in the high-speed, high-load range, that is, toward the top dead center.
At low speed and low load, it is gradually controlled downward, that is, toward the bottom dead center (see Fig. 3).

そして爆発後の燃焼ガスの排出は、ピストン7のトップ
リング25が、排気制御弁18の副排気ポート19上縁
より下方に下がった時点で開始される。尚、この実質的
な排気ポート開時期は、排気制御弁18が最も上方に位
置する高速高負荷域において90°ATDC前後に設定
されており、低速低負荷域では当然のことながらこれよ
りも遅れたものとなる。
Discharge of the combustion gas after the explosion starts when the top ring 25 of the piston 7 falls below the upper edge of the auxiliary exhaust port 19 of the exhaust control valve 18. Note that this actual exhaust port opening timing is set around 90° ATDC in the high speed, high load range where the exhaust control valve 18 is located at the uppermost position, and is naturally delayed from this in the low speed and low load range. It becomes something.

上記ピストン7の下動によって副排気ポート19が開か
れた直後には、燃焼ガスはかなり高温。
Immediately after the sub-exhaust port 19 is opened by the downward movement of the piston 7, the combustion gas is at a considerably high temperature.

高圧な状態であり、これが排気制御弁18内部の副排気
通路20および第1排気通路21を通して触媒装置に導
かれる。従って、触媒装置が十分高温に保たれ、排気中
に含まれているHC等の処理を良好に行える。
It is in a high pressure state, and is led to the catalyst device through the auxiliary exhaust passage 20 and the first exhaust passage 21 inside the exhaust control valve 18. Therefore, the catalyst device is kept at a sufficiently high temperature, and HC and the like contained in the exhaust gas can be effectively treated.

またピストン7が更に下動すると、排気制御弁18下方
の排気ポート15が開かれる。また、これと前後して掃
気ポートI6が開かれ、クランク室4から圧縮された新
気が供給されて、シリンダ内の残留燃焼ガスを掃気する
ので、この段階で燃焼ガスの温度は急激に低下するが、
このように低温となった燃焼ガスの多くは排気ポート1
5から第2排気通路22を通して排出される。従って、
触媒装置を通ることはなく、その温度低下が回避される
Further, when the piston 7 moves further down, the exhaust port 15 below the exhaust control valve 18 is opened. Also, around this time, the scavenging port I6 is opened and compressed fresh air is supplied from the crank chamber 4 to scavenge the residual combustion gas in the cylinder, so the temperature of the combustion gas drops rapidly at this stage. However,
Most of the combustion gas that has become low temperature in this way is at exhaust port 1.
5 through the second exhaust passage 22. Therefore,
It does not pass through the catalytic device and its temperature drop is avoided.

そして、上記のように初期の高温燃焼ガスと後期の低温
燃焼ガスとを分離する作用は、排気制御弁18の回動位
置に無関係に行われる。すなわち、第3図に示すように
、排気制御弁18が下方に位置していても、初期に排出
される高温燃焼ガスは必ず副排気ポート19から触媒装
置へ導かれ、かつ後期の低温燃焼ガスは第2排気通路2
2側に案内される。
The effect of separating the early high temperature combustion gas and the latter low temperature combustion gas as described above is performed regardless of the rotational position of the exhaust control valve 18. That is, as shown in FIG. 3, even if the exhaust control valve 18 is located downward, the high-temperature combustion gas discharged in the early stage is always guided to the catalyst device through the sub-exhaust port 19, and the low-temperature combustion gas in the latter stage is always guided to the catalyst device through the sub-exhaust port 19. is the second exhaust passage 2
You will be guided to the second side.

発明の効果 以上の説明で明らかなように、この発明に係る2ストロ
ーク内燃機関においては、排気ポート開時期の可変制御
と同時に、触媒装置に対し排気ポート開直後の高温燃焼
ガスのみを確実に案内することができる。従って、低速
低負荷域での掃気効率の向上を図りつつ安定した排気の
清浄化が可能となる。
Effects of the Invention As is clear from the above explanation, in the two-stroke internal combustion engine according to the present invention, at the same time as variable control of the exhaust port opening timing, only the high temperature combustion gas immediately after the exhaust port is opened is reliably guided to the catalyst device. can do. Therefore, it is possible to stably clean the exhaust gas while improving the scavenging efficiency in the low speed and low load range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る2ストローク内燃機関の一実施
例を示す断面図、第2図はその要部の断面図、第3図は
低速低負荷域での作動状態を示す説明図である。 7・・・ピストン、15・・・排気ポート、16・・・
掃気ポート、18・・・排気制御弁、18b・・・弁体
、19・・・副排気ポート、 20・・・副排気通路。 第2図 第1 図
FIG. 1 is a sectional view showing an embodiment of a two-stroke internal combustion engine according to the present invention, FIG. 2 is a sectional view of its main parts, and FIG. 3 is an explanatory diagram showing the operating state in a low speed and low load range. . 7...Piston, 15...Exhaust port, 16...
Scavenging port, 18... Exhaust control valve, 18b... Valve body, 19... Sub-exhaust port, 20... Sub-exhaust passage. Figure 2 Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)シリンダ側面に開口した掃気ポートと、同じくシ
リンダ側面に開口した排気ポートとを備え、両ポートを
ピストンが開閉する2ストローク内燃機関において、上
記排気ポートの上縁部に、シリンダ上下方向に回動して
該排気ポートの一部を覆う排気制御弁を配設し、この排
気制御弁の弁体先端に、副排気ポートを開口形成すると
ともに、弁体内部に副排気通路を貫通形成し、かつ該副
排気通路の下流側に触媒装置を設けたことを特徴とする
2ストローク内燃機関。
(1) In a two-stroke internal combustion engine that is equipped with a scavenging port that opens on the side of the cylinder and an exhaust port that also opens on the side of the cylinder, and in which both ports are opened and closed by a piston, the upper edge of the exhaust port is placed in the vertical direction of the cylinder. An exhaust control valve that rotates to cover a part of the exhaust port is provided, and a sub-exhaust port is formed at the tip of the valve body of the exhaust control valve, and a sub-exhaust passage is formed penetrating inside the valve body. A two-stroke internal combustion engine, further comprising a catalyst device provided downstream of the sub-exhaust passage.
JP21256489A 1989-08-18 1989-08-18 Two-stroke internal combustion engine Pending JPH0378528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21256489A JPH0378528A (en) 1989-08-18 1989-08-18 Two-stroke internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21256489A JPH0378528A (en) 1989-08-18 1989-08-18 Two-stroke internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0378528A true JPH0378528A (en) 1991-04-03

Family

ID=16624790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21256489A Pending JPH0378528A (en) 1989-08-18 1989-08-18 Two-stroke internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0378528A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266319A (en) * 1986-05-14 1987-11-19 Rinnai Corp Burner
JPH06288540A (en) * 1992-06-16 1994-10-11 Noritz Corp Combustion apparatus
EP0637679A1 (en) * 1993-07-06 1995-02-08 Regie Nationale Des Usines Renault S.A. Two strobe engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266319A (en) * 1986-05-14 1987-11-19 Rinnai Corp Burner
JPH0454134B2 (en) * 1986-05-14 1992-08-28 Rinnai Kk
JPH06288540A (en) * 1992-06-16 1994-10-11 Noritz Corp Combustion apparatus
EP0637679A1 (en) * 1993-07-06 1995-02-08 Regie Nationale Des Usines Renault S.A. Two strobe engine

Similar Documents

Publication Publication Date Title
US5396874A (en) Controller for supercharged engine
US4667636A (en) Fuel injection type internal combustion engine
EP0382063A1 (en) 2-Cycle multi-cylinder engine
JPS6312820A (en) Two-cycle internal combustion engine
JPS6312819A (en) Two-cycle internal combustion engine
US7730874B2 (en) Method for controlling a supercharged engine, particularly an indirect injection engine, and engine using such a method
JPS6026185Y2 (en) Internal combustion engine intake system
JPH0378528A (en) Two-stroke internal combustion engine
JP2662799B2 (en) Engine intake control device
GB2317644A (en) Backflow of exhaust gas through exhaust valve into cylinder of i.c. engine
US7673617B2 (en) Indirect-injection internal-combustion engine, notably spark-ignition supercharged engine, with two intake means for carrying out a burnt gas scavenging stage
JPH07139358A (en) Two cycle engine
JPH10227226A (en) Variable cycle type internal combustion engine
JPH0378526A (en) Two-stroke internal combustion engine
JPS6312821A (en) Two-cycle internal combustion engine
JPS639632A (en) Air blowing device for engine
JPH0378527A (en) Two-stroke internal combustion engine
JP2577563B2 (en) Engine with mechanical supercharger
JPS62291427A (en) Two-cycle internal combustion engine
JPS60198364A (en) Exhaust reflux device
JPS5819307Y2 (en) 2-cycle engine intake system
JPH0364649A (en) Control device of engine with mechanical supercharger
JPS6125912A (en) Axial flow scavenging type 2-cycle engine
JPH0364648A (en) Control device of engine with turbo-supercharger
JPH0584373B2 (en)