JPS60198364A - Exhaust reflux device - Google Patents

Exhaust reflux device

Info

Publication number
JPS60198364A
JPS60198364A JP59055074A JP5507484A JPS60198364A JP S60198364 A JPS60198364 A JP S60198364A JP 59055074 A JP59055074 A JP 59055074A JP 5507484 A JP5507484 A JP 5507484A JP S60198364 A JPS60198364 A JP S60198364A
Authority
JP
Japan
Prior art keywords
engine
cylinder chamber
storage chamber
valve
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59055074A
Other languages
Japanese (ja)
Inventor
Hatsuo Nagaishi
初雄 永石
Takeshi Kitahara
剛 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59055074A priority Critical patent/JPS60198364A/en
Publication of JPS60198364A publication Critical patent/JPS60198364A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0276Actuation of an additional valve for a special application, e.g. for decompression, exhaust gas recirculation or cylinder scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/20Feeding recirculated exhaust gases directly into the combustion chambers or into the intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/37Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with temporary storage of recirculated exhaust gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To make improvements in engine performance and exhaust capacity, by installing a storage chamber storing a part of combustion gas at more than the specified pressure, a high pressure passage connecting this storage chamber to an engine cylinder chamber and a valve device opening or closing this high pressure passage in synchronization with a speed of engine revolution. CONSTITUTION:Suction air is taken into a cylinder chamber 22 from a suction port 24 via a suction valve 26 and burned after being ignited at a spark plug 28. And, when entering the latter half of an expansion stroke where combustion ends, an opening part 31 of a high pressure passage 30 is opened by a valve device 31 whereby a part of combustion gas flows into a storage chamber 29 from the high pressure passage 30. Afterward, it enters the expansion stroke, and when an exhaust valve 27 is opened, gas inside the cylinder chamber 22 is exhausted to an exhaust port 25. Successively, when again it enters the expansion stroke from a suction stroke, the said opening part 31 is opened again. Therefore, the gas inside the storage chamber 29 is led into the cylinder chamber 22 after the suction air is taken in. Accordingly, the combustion gas is able to flow back to the cylinder chamber 22 without entailing any drop in charging efficiency of the suction air.

Description

【発明の詳細な説明】 (技術分野) この発明は、内燃機関の排気還流装置に関する。[Detailed description of the invention] (Technical field) The present invention relates to an exhaust gas recirculation device for an internal combustion engine.

(従来技術) 内燃機関の有害排気物質である窒素酸化物(NOx)の
発生を抑えるために、機関排気の一部を吸気系に還流し
最高燃焼温度を下げるようにした排気還流装置( E 
G R装置)が知られている。
(Prior technology) In order to suppress the generation of nitrogen oxides (NOx), which are harmful exhaust substances from internal combustion engines, an exhaust recirculation device (E
GR device) is known.

このEGR装置の一例を第1図に基づいて説明する(日
産自動車株式会社: r ECCSL系エンジン」技術
解説書、1979.6参照)。内燃機関lの排気通路2
と、同じく吸気通路3の絞弁4よりも下流側の領域とを
連通するように排気還流通路5(EGR通路)が形成さ
れ、とのEGR通路5の途中に排気還流量全加減する排
気還流弁6 (EGR弁)が介装されている。
An example of this EGR device will be explained based on FIG. 1 (see Nissan Motor Co., Ltd.: r ECCSL Series Engine Technical Manual, June 1979). Exhaust passage 2 of internal combustion engine l
An exhaust gas recirculation passage 5 (EGR passage) is formed so as to communicate with the area downstream of the throttle valve 4 of the intake passage 3, and an exhaust gas recirculation passage 5 (EGR passage) is formed in the middle of the EGR passage 5 between and. A valve 6 (EGR valve) is installed.

そして、このEGR弁6のダイヤフラム装置7の負圧室
に、負圧制御電磁弁8(VCM0Mパルプよって適当な
圧力に調圧された機関吸入負圧が導入され、この制御負
圧に応じてEGR弁6が開閉される。
Then, engine suction negative pressure regulated to an appropriate pressure by a negative pressure control solenoid valve 8 (VCM0M pulp) is introduced into the negative pressure chamber of the diaphragm device 7 of this EGR valve 6, and the EGR Valve 6 is opened and closed.

このVCM0Mバルブ、機関吸入負圧をその定圧部で一
定に減圧すると共に、これをさらに制御装置9からのパ
ルス信号に応じて開閉されるソレノイド部で所定の圧力
となるように大気で希釈してEGR弁6に導入する。
This VCM0M valve reduces engine suction negative pressure to a constant level in its constant pressure section, and further dilutes it with the atmosphere to a predetermined pressure in a solenoid section that opens and closes in response to pulse signals from the control device 9. Introduced into the EGR valve 6.

そして、制御装置9は、クランク角センサ10、絞弁ス
イッチ11,エアフローメータ12,イグニツションス
イッチ(図示しない)、水温上ンサ14等の各種運転状
態検出手段からの信号に基づいて、前記ソレノイド部へ
のパルス信号のデユーティ比を決定し、機関の運転状態
に応じた排気還流量が得られるようにEGR弁6への制
御負圧をコントロールする。
The control device 9 controls the solenoid based on signals from various operating state detection means such as a crank angle sensor 10, a throttle valve switch 11, an air flow meter 12, an ignition switch (not shown), and a water temperature sensor 14. The duty ratio of the pulse signal to the EGR valve 6 is determined, and the negative pressure applied to the EGR valve 6 is controlled so that an amount of exhaust gas recirculation is obtained according to the operating state of the engine.

なお、15はアイドル制御弁、16はエアレギュレータ
、17はフューエルインジェクター、18はキャニスタ
−119は触媒コンバータである。
Note that 15 is an idle control valve, 16 is an air regulator, 17 is a fuel injector, 18 is a canister, and 119 is a catalytic converter.

ところで、このような従来の排気還流装置にあっては、
機関の排気を吸気通路3に導き、ここから新気とともに
機関シリンダ室に吸入させるようになっているため、排
気還流を行なえば、それだけ吸気(新気)量が減少し、
吸気充填効率が低下してしまう。
By the way, in such a conventional exhaust gas recirculation device,
The exhaust gas from the engine is guided into the intake passage 3, from where it is sucked into the engine cylinder chamber along with fresh air.
Intake air filling efficiency decreases.

したがって、排気還流によジエンジン出力が低下するこ
とは避けられず、このためエンジン全開付近では排気還
流を行なわないようにして高出力を確保しているのが現
状であった。
Therefore, it is unavoidable that the engine output decreases due to exhaust gas recirculation, and for this reason, the current situation is to ensure high output by not performing exhaust gas recirculation when the engine is near full throttle.

しかし、これに反してエンジン全開付近tなどNOxが
発生しやすいのであり、このようなときにこそ排気還流
を行なってN0xk低減することが可能となれば、排気
性能の大幅な向上が図れるのである。
However, on the other hand, NOx is more likely to be generated when the engine is at full throttle, and if it is possible to perform exhaust gas recirculation at times like these to reduce NOxk, it will be possible to significantly improve exhaust performance. .

(発明の目的) この発明は、吸気充填効率を低下させることなく排気還
流を可能にして、エンジン性能と排気性能の一層の向上
な図った排気還流装置を提供することを目的としている
(Object of the Invention) An object of the present invention is to provide an exhaust gas recirculation device that enables exhaust gas recirculation without reducing intake air filling efficiency and further improves engine performance and exhaust performance.

(発明の構成および作用) この発明は燃焼後のガスの一部會所定圧以上で蓄える保
存室と、この保存案ヲ機関シリンダ室に接続する高圧通
路と、この高圧通路を機関回転に同期して開閉する弁手
段とからなる。
(Structure and operation of the invention) This invention includes a storage chamber in which a portion of the gas after combustion is stored at a predetermined pressure or higher, a high-pressure passage that connects this storage plan to an engine cylinder chamber, and a high-pressure passage that is synchronized with engine rotation. It consists of a valve means that opens and closes.

機関シリンダ室で燃焼したガスの一部がある程度の燃焼
圧力を維持したまま保存室に蓄えられ、このガスが高圧
通路を介し少なくとも機関の圧縮行程初期に開く弁手段
によシシリンダ室に供給される。
A part of the gas burned in the engine cylinder chamber is stored in a storage chamber while maintaining a certain combustion pressure, and this gas is supplied to the cylinder chamber through a high-pressure passage by a valve means that opens at least at the beginning of the compression stroke of the engine. .

したがって、燃焼後のガスはシリンダ室に所定量の新気
が吸入された後に供給されるのであシ、これにより吸気
充填効率を低下させずに排気還流を行なうことが可能と
なる。
Therefore, the gas after combustion is supplied to the cylinder chamber after a predetermined amount of fresh air has been drawn into the cylinder chamber, thereby making it possible to perform exhaust gas recirculation without reducing the intake air filling efficiency.

(実施例) 第2図は内燃機関の断面を表わしておシ、20はシリン
ダブロック、21はシリンダヘッド、22はシリンダ室
、23はピストン、24 、25は吸気ポートと排気ポ
ート、26.27は吸気パルプと排気パルプ、48.4
9はパルプ26゜27のロッカアームである。
(Example) Fig. 2 shows a cross section of an internal combustion engine, 20 is a cylinder block, 21 is a cylinder head, 22 is a cylinder chamber, 23 is a piston, 24 and 25 are intake ports and exhaust ports, 26.27 are intake pulp and exhaust pulp, 48.4
9 is a rocker arm of pulp 26°27.

この吸気パルプ26を介してシリンダ室22に吸入され
た吸気は、点火プラグ28により着火され(ガソリンエ
ンジンの場合)、燃焼した後に排気パルプ27から室2
2外へと排出されるが、このときその燃焼したガスの一
部を蓄えるように、シリンダ室22の上方のシリンダヘ
ッド21に所定の容積を有する保存室29が形成される
The intake air sucked into the cylinder chamber 22 via the intake pulp 26 is ignited by the spark plug 28 (in the case of a gasoline engine), and after being combusted, it is transferred from the exhaust pulp 27 to the cylinder chamber 22.
At this time, a storage chamber 29 having a predetermined volume is formed in the cylinder head 21 above the cylinder chamber 22 so as to store a part of the burned gas.

この保存室29は高圧に耐え得るように、例えば鋳造等
によりシリンダヘッド21の内部に一体的に形成され、
周囲とは隔成される。
This storage chamber 29 is integrally formed inside the cylinder head 21 by, for example, casting, so as to withstand high pressure.
Separated from the surrounding area.

そして、この保存室29はシリンダヘッド21の内壁を
貫通する高圧通路30を介してシリンダ室22に接続さ
れ、この高圧通路30のシリンダ室22側の開口部31
に高圧通路30を開閉する弁手段32が設けられる。
This storage chamber 29 is connected to the cylinder chamber 22 via a high pressure passage 30 penetrating the inner wall of the cylinder head 21, and an opening 31 of the high pressure passage 30 on the cylinder chamber 22 side
A valve means 32 is provided for opening and closing the high pressure passage 30.

この弁手段32は吸、排気パルプ26.27に対し第3
弁として設置されるもので、前記開口部31を開閉する
ポペット状の弁体33と、そのシリンダヘッド21を貫
通するステム部34を介して弁体33を閉方向に付勢す
る弁スプリング35と、ステム部34の先端に当接する
ロッカアーム36と、ロッカアーム36?Il−介して
弁体33を開閉駆動するカム37とからなる。
This valve means 32 has a third valve for suction and exhaust pulp 26,27.
It is installed as a valve, and includes a poppet-shaped valve body 33 that opens and closes the opening 31, and a valve spring 35 that biases the valve body 33 in the closing direction via a stem portion 34 that passes through the cylinder head 21. , a rocker arm 36 that abuts the tip of the stem portion 34, and a rocker arm 36? It consists of a cam 37 that opens and closes the valve body 33 via Il.

このカム37は吸、排気パルプ26.27のカム軸38
に形成場れ、エンレフ2回転につき1回転する。
This cam 37 is the cam shaft 38 of the suction and exhaust pulp 26.27
The formation field is 1 rotation for every 2 rotations of enref.

そして、このカム37のプロフィルは、カム370回転
によシ前記開ロ部31が圧縮行程の初期と膨張行程の後
半に開かれるように形成される。
The profile of the cam 37 is formed such that the opening portion 31 is opened at the beginning of the compression stroke and at the latter half of the expansion stroke as the cam 370 rotates.

具体的には、吸気行程が終了し吸気パルプ26が閉じた
直後と、膨張行程後半で排気パルプ27が開く直前とに
、短期間開口部31が開かれるようにカムプロフィルが
形成される。
Specifically, the cam profile is formed so that the opening 31 is opened for a short period of time immediately after the intake stroke ends and the intake pulp 26 closes, and immediately before the exhaust pulp 27 opens in the latter half of the expansion stroke.

このような構成において、吸気ポート24から吸気バル
ブ26を介してシリンダ室22に吸入された吸気(燃料
と新気との混合気)は、圧縮上死点付近にて点火プラグ
28により着火され急速に@焼するが、この燃焼が終了
する膨張行程の後半に入ると、第3図C)に示すように
弁手段32により高圧通路30の開口部31が開かれる
In such a configuration, the intake air (mixture of fuel and fresh air) taken into the cylinder chamber 22 from the intake port 24 via the intake valve 26 is ignited by the spark plug 28 near compression top dead center, and is rapidly ignited. However, in the second half of the expansion stroke when this combustion ends, the opening 31 of the high pressure passage 30 is opened by the valve means 32 as shown in FIG. 3C).

このため、シリンダ室22で燃焼したガスの一部が高圧
通路30から保存室29へと流入し、第3図(a)に示
すように所定の圧力のガスが保存室29に蓄えられる。
Therefore, a part of the gas burned in the cylinder chamber 22 flows into the storage chamber 29 from the high pressure passage 30, and gas at a predetermined pressure is stored in the storage chamber 29 as shown in FIG. 3(a).

この後、排気行程に入ると、第3図(b)に示すように
排気パルプ27が開き、シリンダ室22内のガスが排気
ポート25へと排出される。
Thereafter, when the exhaust stroke begins, the exhaust pulp 27 opens as shown in FIG. 3(b), and the gas in the cylinder chamber 22 is discharged to the exhaust port 25.

そして、次にこの状態から吸気行程に入ると、吸気バル
ブ26が開かれ吸気ポート24から吸気がシリンダ室2
2に吸入されるが、この吸気行程が終了して圧縮行程に
入ると同時に、再び弁手段32により高圧通路30の開
口部31が開かれる。
Then, when the intake stroke starts from this state, the intake valve 26 is opened and intake air is drawn from the intake port 24 into the cylinder chamber.
However, at the same time as the intake stroke ends and the compression stroke begins, the opening 31 of the high pressure passage 30 is opened again by the valve means 32.

このため、保存室29内の所定圧力のガスはシリンダ室
22に吸気が吸入された後に導かれ、このときシリンダ
室22内の圧力は低い(大気圧伺近)ことから、これら
の圧力差によって保存室29内のガスが勢いよくシリン
ダ室22に流入するのである。これにより、吸気の充填
効率を低下させることなく燃焼後のガスをシリンダ室2
2に還流することができる。なお、第3図(d)に保存
室29内のガス量の変化を示す。
For this reason, the gas at a predetermined pressure in the storage chamber 29 is guided into the cylinder chamber 22 after the intake air is drawn into the cylinder chamber 22. At this time, since the pressure in the cylinder chamber 22 is low (near atmospheric pressure), the gas at a predetermined pressure is The gas in the storage chamber 29 flows forcefully into the cylinder chamber 22. This allows the gas after combustion to be transferred to the cylinder chamber 2 without reducing the intake air filling efficiency.
2 can be refluxed. Note that FIG. 3(d) shows changes in the amount of gas in the storage chamber 29.

したがって、エンジンの全開時でもエンジン性能を損う
ことなく排気還流が可能となり、高いエンジン出力を確
保しつつN0xk十分に低減することができる。さらに
は、排気還流により燃焼温度が下がりノッキングの心配
が回避されると共に。
Therefore, even when the engine is fully opened, exhaust gas recirculation is possible without impairing engine performance, and NOxk can be sufficiently reduced while ensuring high engine output. Furthermore, exhaust gas recirculation lowers the combustion temperature and avoids concerns about knocking.

吸気の充填後に排気を導入することから、燃焼温度が下
がってもシリンダ室22内の圧力(1f;i内圧力)は
第3図(alのように高くなり、このため排気還流を行
なわないときよりむしろ最大トルクが向上する。
Since exhaust gas is introduced after the intake air is filled, even if the combustion temperature decreases, the pressure inside the cylinder chamber 22 (1f; i internal pressure) remains high as shown in Figure 3 (al). Rather, the maximum torque is improved.

他方、保存室29から勢いよく流入するガスにより、シ
リンダ室22内の流動状態が改善され、良好な燃焼性が
確保されるという利点もある。
On the other hand, there is also the advantage that the gas flowing forcefully from the storage chamber 29 improves the flow state within the cylinder chamber 22 and ensures good combustibility.

また、エンジン全開時には通常、空燃比が過濃側に設定
されるが、これによれば理論空燃比にすることも可能で
あり、したがってNOxのみならずCO等も十分に低減
することができる。
Further, when the engine is fully opened, the air-fuel ratio is normally set to the rich side, but this allows the air-fuel ratio to be set to the stoichiometric air-fuel ratio, and therefore not only NOx but also CO, etc. can be sufficiently reduced.

ところで、保存室29の容積としてシリンダ容積の10
係に設定した場合、そのEGR率は第4図に示すように
なシ、この範囲のEGR率でNOxの低減やノッキング
の防止にか々シの効果が得られる。
By the way, the volume of the storage chamber 29 is 10 of the cylinder volume.
When the EGR rate is set in the range shown in FIG. 4, the EGR rate within this range is effective in reducing NOx and preventing knocking.

このEGR率はエンジンの圧縮比や吸、排気パルプ26
.27の開度特性等によって要求値が変わるが、例えば
保存室29を大きくしてEGR率を太きくずれば、エン
ジンの圧縮比を高めることも可能である。
This EGR rate is determined by the engine's compression ratio, intake and exhaust pulp.
.. Although the required value changes depending on the opening characteristics of the engine 27, for example, it is possible to increase the compression ratio of the engine by increasing the size of the storage chamber 29 and significantly lowering the EGR rate.

また、点火時期においては、ノッキングが防止されるこ
とから、第5図に示すように燃費最良点付近に設定する
ことができ、燃qk十分に向上することかできる。
In addition, since knocking is prevented in the ignition timing, the ignition timing can be set near the best fuel efficiency point as shown in FIG. 5, and the fuel qk can be sufficiently improved.

なお、本実施例では、カム37の設計上、i琵圧通路3
0を短期間開かせることは離しいが、吸、排気パルプ2
6.27の開弁時期と多少ラップするようになってもほ
とんど影響はない。貰た、保存室29の容積は固定であ
るが、これを可変として運転条件に応じてEGR率を切
換制御するようにしても良い。このほか、弁手段32の
開閉時期や弁リフトラ制御することでEGR率を切換え
ることもできる。
In addition, in this embodiment, due to the design of the cam 37, the pressure passage 3
Although it is difficult to open 0 for a short period of time, the suction and exhaust pulp 2
Even if the timing overlaps with the valve opening timing on June 27, it will have little effect. Although the capacity of the storage chamber 29 is fixed, it may be made variable so that the EGR rate can be switched and controlled according to the operating conditions. In addition, the EGR rate can also be changed by controlling the opening/closing timing of the valve means 32 and the valve lifter.

第6図は本発明の他の実施例で、保存室39を排気ポー
ト25の近傍の排気通路40に接続するように設け、シ
リンダ室22から排気通路40に排出された燃焼後のガ
スの一部を保存室39に導くようにしている。保存室3
9の入口側にはチェック弁(リード弁)41が設置され
、シリンダ室22から排出されるガスの脈動を利用して
所定圧以上のガスを保存室39に蓄える。
FIG. 6 shows another embodiment of the present invention, in which a storage chamber 39 is provided so as to be connected to an exhaust passage 40 near the exhaust port 25, and part of the combustion gas discharged from the cylinder chamber 22 to the exhaust passage 40 is provided. The parts are guided to a storage chamber 39. Preservation room 3
A check valve (reed valve) 41 is installed on the inlet side of the cylinder chamber 9, and uses the pulsation of gas discharged from the cylinder chamber 22 to store gas at a predetermined pressure or higher in the storage chamber 39.

そして、保存室39は高圧通路42を介してシリンダ室
22と接続され、その開口部31を開閉する弁手段43
が第2図とほぼ同様に設けられる。
The storage chamber 39 is connected to the cylinder chamber 22 via a high pressure passage 42, and a valve means 43 opens and closes the opening 31 of the storage chamber 39.
are provided in substantially the same manner as in FIG.

この場合、カム44のプロフィルは圧縮行程の初期つま
り吸気行程が終了し吸気パルプ26が閉じた直後に、開
口部31を短期間開くように形成される。
In this case, the profile of the cam 44 is formed to open the opening 31 for a short period of time at the beginning of the compression stroke, that is, immediately after the intake stroke has ended and the intake pulp 26 has closed.

この一方、保存室39の出口側に、保存室39からシリ
ンダ室22に還流するガス量を制御するダイヤスラム型
の流量制御弁45が設けられる。
On the other hand, a diaphragm type flow control valve 45 is provided on the exit side of the storage chamber 39 to control the amount of gas flowing back from the storage chamber 39 to the cylinder chamber 22 .

この流量制御弁45は負圧源からの負圧により作動する
と共に、この負圧を制御回路46からの信号に応じて調
圧する負圧制御弁47が設けられる。
The flow rate control valve 45 is operated by negative pressure from a negative pressure source, and is provided with a negative pressure control valve 47 that regulates this negative pressure in accordance with a signal from a control circuit 46.

制御回路46には図示しないセンサ等からエンジン負荷
信号や回転数信号等が入力され、運転条件に応じて流量
制御弁45の開度を制御する。
The control circuit 46 receives an engine load signal, a rotational speed signal, etc. from a sensor (not shown), etc., and controls the opening degree of the flow rate control valve 45 according to the operating conditions.

これによれは、前記実施例と同様に排気還流が行なえる
と共に、そのEGR率を運転条件に応じて可変制御する
ことができ、常に適切な排気還流が可能となる。
Accordingly, exhaust gas recirculation can be performed in the same manner as in the embodiment described above, and the EGR rate can be variably controlled according to the operating conditions, so that appropriate exhaust gas recirculation can be performed at all times.

なお、各実施例は、従来装置と併用しても良い。Note that each embodiment may be used in combination with a conventional device.

(発明の効果) エンジン全開時でも吸気充填効率を低下させることなく
排気還流を的確に行なえるため、エンジンの高い性能を
確保しつつ排気性能を大幅に向上することができるとい
う効果がある、。
(Effects of the Invention) Since exhaust gas recirculation can be performed accurately without reducing intake air filling efficiency even when the engine is fully opened, there is an effect that exhaust performance can be significantly improved while ensuring high engine performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の構成断面図、第2図は本発明の実施
例會示す断面図、第3図(a)〜(d)はその動作状態
を示す説明図、第4図はEGRIの特性図、第5図は点
火時期の設定例を示すグラフ、第6〜図は本発明の他の
実施例を示す構成断面図である。 21・・・シリンダヘッド、22・・・シリンダ室、2
6・・・吸気・ぐルプ、27・・・排気パルプ、29・
・・保存室、30・・・高圧通路、31・・・開口部、
32・・・弁手段、33・・・弁体、37・・・カム、
39・・・保存室、40・・・排気通路、41・・・チ
ェック弁、42・・・高圧通路、43・・・弁手段、4
4・・・カム、45・・・流量制御弁、46・・・制御
回路。
Fig. 1 is a sectional view of the configuration of a conventional device, Fig. 2 is a sectional view showing an embodiment of the present invention, Figs. Figures 5 and 5 are graphs showing examples of setting the ignition timing, and Figures 6 to 6 are cross-sectional views showing other embodiments of the present invention. 21... Cylinder head, 22... Cylinder chamber, 2
6...Intake/Gulp, 27...Exhaust pulp, 29.
...Storage chamber, 30...High pressure passage, 31...Opening,
32... Valve means, 33... Valve body, 37... Cam,
39... Storage chamber, 40... Exhaust passage, 41... Check valve, 42... High pressure passage, 43... Valve means, 4
4...Cam, 45...Flow rate control valve, 46...Control circuit.

Claims (1)

【特許請求の範囲】 1、燃焼後のガスの一部金所定圧以上で蓄える保存室と
、この保存室を機関シリンダ室に接続する高圧通路と、
この高圧通路を機関回転に同期して開閉する弁手段とか
らなる内燃機関の排気還流装置。 2、上記弁手段は、機関の圧縮行程初期と膨張行程の後
半に開くようになっている特許請求の範囲囲第1項記載
の内燃機関の排気還流装置。
[Claims] 1. A storage chamber for storing part of the gas after combustion at a predetermined pressure or higher, and a high-pressure passage connecting this storage chamber to an engine cylinder chamber;
An exhaust gas recirculation system for an internal combustion engine, which comprises a valve means that opens and closes this high-pressure passage in synchronization with engine rotation. 2. The exhaust gas recirculation system for an internal combustion engine according to claim 1, wherein the valve means is configured to open at the beginning of the engine's compression stroke and at the latter half of the engine's expansion stroke.
JP59055074A 1984-03-22 1984-03-22 Exhaust reflux device Pending JPS60198364A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055074A JPS60198364A (en) 1984-03-22 1984-03-22 Exhaust reflux device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055074A JPS60198364A (en) 1984-03-22 1984-03-22 Exhaust reflux device

Publications (1)

Publication Number Publication Date
JPS60198364A true JPS60198364A (en) 1985-10-07

Family

ID=12988546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055074A Pending JPS60198364A (en) 1984-03-22 1984-03-22 Exhaust reflux device

Country Status (1)

Country Link
JP (1) JPS60198364A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173840A (en) * 1987-01-13 1988-07-18 Mitsubishi Heavy Ind Ltd Exhaust gas recirculation system
KR20020055738A (en) * 2000-12-29 2002-07-10 이성욱 EGR system for diesel engine
CN114962094A (en) * 2022-05-09 2022-08-30 潍柴动力股份有限公司 Combustion system and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173840A (en) * 1987-01-13 1988-07-18 Mitsubishi Heavy Ind Ltd Exhaust gas recirculation system
KR20020055738A (en) * 2000-12-29 2002-07-10 이성욱 EGR system for diesel engine
CN114962094A (en) * 2022-05-09 2022-08-30 潍柴动力股份有限公司 Combustion system and control method thereof
CN114962094B (en) * 2022-05-09 2024-05-17 潍柴动力股份有限公司 Combustion system and control method thereof

Similar Documents

Publication Publication Date Title
US5161497A (en) Variable valve timing operated engine
US4703734A (en) Multi-valve internal combustion engine
US4270500A (en) Internal combustion engine with dual induction system
US4667636A (en) Fuel injection type internal combustion engine
US4570590A (en) Internal combustion engine with multiple intake valves
EP0382063A1 (en) 2-Cycle multi-cylinder engine
US5775283A (en) Intake control system for engine
US6131554A (en) Engine having combustion control system
JPH04284131A (en) Two stroke internal combustion engine having supercharging device
JPH08177471A (en) Two-cycle engine
JP3280758B2 (en) Intake device for engine with mechanical supercharger
JP2662799B2 (en) Engine intake control device
JPS60198364A (en) Exhaust reflux device
US6915790B2 (en) Piston engine and associated operating process
JP2788612B2 (en) Automotive engine
JPH09324672A (en) Fuel injection timing control device of lean-burn engine
JP3948081B2 (en) Spark ignition internal combustion engine
JPH11190236A (en) Device for suppressing knocking of four cycle engine
JPH08144817A (en) Two-cycle engine controller
JP4192813B2 (en) Engine that performs exhaust gas recirculation
JP3312514B2 (en) In-cylinder internal combustion engine
JPS6131145Y2 (en)
JPH0642410A (en) Internal combustion engine provided with exhaust gas reflux device
JPH08144836A (en) Air-fuel ratio detection device of two-cycle engine
JPH0634581Y2 (en) Double intake valve engine