JPH037842Y2 - - Google Patents

Info

Publication number
JPH037842Y2
JPH037842Y2 JP1984024380U JP2438084U JPH037842Y2 JP H037842 Y2 JPH037842 Y2 JP H037842Y2 JP 1984024380 U JP1984024380 U JP 1984024380U JP 2438084 U JP2438084 U JP 2438084U JP H037842 Y2 JPH037842 Y2 JP H037842Y2
Authority
JP
Japan
Prior art keywords
conductor
cable
conductive
conductors
ptfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984024380U
Other languages
Japanese (ja)
Other versions
JPS6026132U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2438084U priority Critical patent/JPS6026132U/en
Publication of JPS6026132U publication Critical patent/JPS6026132U/en
Application granted granted Critical
Publication of JPH037842Y2 publication Critical patent/JPH037842Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本案はフラツトケーブルに係り、可撓性に富
み、且つ耐繰返し屈曲性に優れたものを得ること
を目的とする。
[Detailed Description of the Invention] The present invention relates to a flat cable and aims to provide a flat cable that is highly flexible and has excellent repeated bending resistance.

フラツトケーブルは絶縁材料中に多数本の導体
を所定の間隔で互いに並行に内包させた全体偏
平・肉薄形態のケーブルで、テープ電線、リボン
ケーブル・平形ケーブルなどとも称される。
A flat cable is a completely flat and thin cable in which a large number of conductors are enclosed in an insulating material parallel to each other at predetermined intervals, and is also called a tape wire, ribbon cable, flat cable, etc.

一般には、並行配列した導体群を2枚の絶縁樹
脂テープでサンドイツチに挟んで熱圧着或は接着
剤で三者一体化することにより製造される。その
他、並行配列した導体群を樹脂押出し機のヘツド
を通すことにより全体一体に絶縁被覆する。予め
個々に絶縁被覆処理した導体を互いに並行に接触
させてならべ隣接導体の被覆同士を接着又は融着
して全体一体化させる。絶縁被覆導体を並行配列
し、その並行導体を経糸としてそれを緯糸で全体
フラツトな織物状に織る(製織型フラツトケーブ
ル)、などの方法によつても製造される。
Generally, it is manufactured by sandwiching a group of conductors arranged in parallel between two sheets of insulating resin tape on a sanderch and joining them together using thermocompression bonding or adhesive. In addition, the conductors arranged in parallel are passed through the head of a resin extruder to insulate them as a whole. Conductors that have been individually insulated in advance are brought into contact with each other in parallel, and the coatings of adjacent conductors are bonded or fused together to integrate them as a whole. It can also be manufactured by a method such as arranging insulated conductors in parallel, using the parallel conductors as warp threads, and weaving the weft threads into a completely flat fabric (weaving type flat cable).

フラツトケーブルは、各導体を一括接続処理す
ることができ配線作業を容易・迅速にし合理化で
きる。配線ケーブル自体の占める空間が小さくて
すみ機器を小型化することができる、などの利点
があるので、例えばコンピユータ、通信機、自動
工作機械、複写機、フアクシミリなどその他の電
気・電子機器の内部配線路・外部配線路などとし
て賞用されている。
Flat cables can connect each conductor at once, making wiring work easier, faster, and more streamlined. It has the advantage that the wiring cable itself occupies a small space and the equipment can be made smaller, so it can be used for internal wiring of other electrical and electronic equipment such as computers, communication equipment, automatic machine tools, copying machines, facsimile machines, etc. It has been used as a wiring route, external wiring route, etc.

ところで上記のような電気・電子機器には例え
ば情報続み取り機構部、記録機構部、表示機構部
など多くの可動部分が含まれるが、これ等の可動
機構に接続されるケーブルについては機構の運動
に実質的に抵抗なく追随すべく十分に柔軟で可撓
性に富むものであること、及び断続的な繰返し屈
曲を受けても長期にわたつて断線トラブルを生じ
ない優れた耐繰返し屈曲性を有するものであるこ
とが要求される。例えば上記例のような可動機構
部に接続使用するケーブルとしては1千万回以上
の過酷な繰返し曲げに耐える高い屈曲寿命のある
ものであることが要求される。
By the way, the electrical/electronic equipment mentioned above includes many movable parts, such as an information transfer mechanism, a recording mechanism, and a display mechanism, but the cables connected to these movable mechanisms are It must be sufficiently soft and flexible to follow movements with virtually no resistance, and it must have excellent repeated bending resistance that will not cause wire breakage problems over a long period of time even when subjected to intermittent repeated bending. is required. For example, a cable used for connection to a movable mechanism as in the above example is required to have a long bending life that can withstand severe repeated bending of 10 million times or more.

フラツトケーブルは、偏平な構造体であるから
所謂丸型ケーブルよりも曲げられた時の歪が少な
くて可撓性が得やすく、可動機構等に接続されて
繰返し屈曲を受けるような用途に適している。
Because flat cables have a flat structure, they suffer less distortion when bent than so-called round cables, making it easier to obtain flexibility, making them suitable for applications where they are connected to movable mechanisms and subject to repeated bending. ing.

又フラツトケーブルのうちでも個々の導体が単
線のものよりも撚線のもの(例えば米国 ゴ ア
社、商品名Dore−Flex)の方が可撓性に富み屈
曲用として適している。しかし撚線導体であつて
もその構成素線は充実体であるから同断面積の単
線導体と比べれば可撓性があるといえどもいまだ
かなりの曲げ抵抗・復元抵抗がある。従つて内部
導体として撚線を用いたフラツトケーブルでもそ
の可撓性にはある限界があり、機器によつては使
用不適のケースも多い。又単線・撚線何れの場合
も繰返し曲げにより曲げ部が毛髪状のクラツクを
生じながら劣化し、その部分の電気抵抗が増大し
て何れ破線(断線)を生じる結果となり比較的そ
の屈曲寿命は短い。
Also, among flat cables, those with twisted wires (for example, Dore-Flex, manufactured by Gore, USA) are more flexible and suitable for bending than those with individual conductors made of solid wires. However, even though it is a stranded conductor, its constituent wires are solid, so even though it is more flexible than a single wire conductor with the same cross-sectional area, it still has considerable bending resistance and restoring resistance. Therefore, even flat cables using stranded wires as internal conductors have a certain limit in their flexibility, and are often unsuitable for use with certain types of equipment. In addition, in the case of both solid and stranded wires, repeated bending causes hair-like cracks to deteriorate at the bent portion, which increases the electrical resistance of the wire and eventually results in broken wires (broken wires), resulting in a relatively short bending life. .

フラツトケーブルの屈曲寿命の点からいえば、
個々の導体を横断面丸型とするよりも横断面偏平
平型にした方が屈曲時に発生する歪みが少なく屈
曲寿命は優れたものになる。しかし該ケーブルは
接続のためにケーブル端末の絶縁被覆を取除く
と、その部分の平型導体の屈曲寿命が極端に短く
なる、同一断面積の丸型・正方形導体を用いたも
のよりもケーブルの全体幅が広いものとなり導体
の高密度実装性が悪くなる、鋭角の曲げに弱い、
等の欠点がある。
In terms of the bending life of flat cables,
If each conductor has a flat cross section than if the individual conductor has a round cross section, less distortion occurs during bending and the bending life is better. However, when the insulation coating is removed from the cable end for connection, the bending life of the flat conductor in that part becomes extremely short, compared to cables using round or square conductors with the same cross-sectional area. The overall width is wide, which impairs high-density mounting of conductors, and is susceptible to sharp bends.
There are drawbacks such as.

本案は、上述従来のフラツトケーブルの各種欠
点を除去し、従来のものよりも可撓性に富み、且
つ耐繰返し屈曲性に優れたものを得るもので、図
示例に示すようにフラツトケーブルAの個々の導
体1として、可撓性に富み且つ引張り強度が強
く、しかも導電性を備えた延伸多孔質の4弗化エ
チレン樹脂(PTFE)からなる条線11、具体的
には例えば導電性カーボンブラツク等の導電性充
填材を混入し導電性を付与した延伸多孔質PTFE
のモノフイラメント糸、又はマルチフイラメント
糸、或は細紐状物等を芯材とし、そのまわりに長
手に沿つて導電性材料テープ121を螺旋に巻き
付けて導体層12を形成したもの(第3,4図)
を用い、この導体1を複数本並行配列した導体群
を弗素系樹脂からなる絶縁材料2で被覆すると共
に導体相互を絶縁支持したことを特徴とする。
This proposal eliminates the various drawbacks of the conventional flat cables mentioned above, and provides a cable that is more flexible than the conventional cables and has excellent repeated bending resistance. The individual conductors 1 of A are wires 11 made of stretched porous polytetrafluoroethylene resin (PTFE) that is highly flexible, has high tensile strength, and is electrically conductive, specifically, conductive, for example. Stretched porous PTFE mixed with conductive filler such as carbon black to give conductivity
A conductive layer 12 is formed by using a monofilament yarn, a multifilament yarn, or a thin string-like material as a core material, and a conductive material tape 12 1 is spirally wound around the core material along its length (the third , 4)
A conductor group in which a plurality of conductors 1 are arranged in parallel is coated with an insulating material 2 made of fluorine-based resin, and the conductors are insulated and supported from each other.

この考案において導体1の芯体条線11として
使用する延伸多孔質PTFEは、一般に用いられて
いる化学繊維とはその構造が大きく異なり、その
肉質が連続気孔性の多孔質構造に形成されている
もので、その多孔質構造によつて高い柔軟性を示
すとともに、延伸により強い引張強度も兼ね備え
たものである。この材料の製法は特公昭51−
18991号公報・特開昭50−22881号公報に開示され
ているが、概略次の通りである。
The expanded porous PTFE used as the core wire 11 of the conductor 1 in this invention has a structure that is significantly different from commonly used chemical fibers, and its flesh is formed into a continuous porous structure. It exhibits high flexibility due to its porous structure, and also has high tensile strength due to stretching. The manufacturing method of this material was
This method is disclosed in Japanese Patent Laid-Open No. 18991 and Japanese Patent Application Laid-Open No. 1983-22881, and is summarized as follows.

即ち、PTFE微粉末と液状潤滑剤(ソルベント
ナフサ・ホワイトオイルなどの液状炭化水素、ア
ルコール、石油エーテル、ベンゼンなど)との混
和物に適当量の導電材例えば導電性炭素粉末、
銅・銀・アルミニウム・ニツケル等の金属粉、金
属酸化物、金属窒化物、を加えた混和物を予備成
形し、この予備成形物を押出し、圧延等の手段で
シート状・フイルム状・チユーブ状・ロツド状・
テープ状・紐状等所要の形状に成形する。その成
形物から液状潤滑剤を除去いた後(除去しなくと
もよいが、除去した方が好結果が得られる)、そ
れを未焼結状態に於て一軸或は多軸に約1.5〜1,
500倍に延伸処理する。この延伸処理により成形
品の肉は無数の微小結節が無数の微細なフイブリ
ルによつて互いに連結された連続微細多孔質構造
になる。次いでその延伸処理物をそのまま或いは
その延伸処理物を熱収縮しないように押えた状態
に於て327℃以下の温度で熱セツトして或は327℃
以上の温度で焼結処理する。この得られた製品が
もともと紐状ないし糸状の場合には、そのまま導
体1の芯11として利用し、シート状物の場合は
それを紐状ないし糸状に裁断して利用し、或は繊
維状にほぐして丸める或は撚つて紐状ないし糸状
にして利用する。
That is, a suitable amount of a conductive material such as conductive carbon powder is added to a mixture of PTFE fine powder and a liquid lubricant (liquid hydrocarbon such as solvent naphtha, white oil, alcohol, petroleum ether, benzene, etc.).
A mixture containing metal powders such as copper, silver, aluminum, and nickel, metal oxides, and metal nitrides is preformed, and this preform is extruded and shaped into sheets, films, and tubes by rolling or other means.・Rod-shaped・
Form into the desired shape such as tape or string. After removing the liquid lubricant from the molded product (it is not necessary to remove it, but better results will be obtained), it is heated uniaxially or multiaxially in an unsintered state for about 1.5~1.
Stretch it 500 times. Through this stretching process, the flesh of the molded product becomes a continuous fine porous structure in which countless micronodules are interconnected by countless fine fibrils. Then, the stretched product is heat-set at a temperature of 327°C or lower, either as it is or while the stretched product is held down so as not to shrink due to heat, or at 327°C.
Sintering is carried out at a temperature higher than that. If the obtained product is originally string-like or thread-like, it can be used as it is as the core 11 of the conductor 1, and if it is a sheet-like product, it can be cut into a string-like or thread-like shape and used, or it can be made into a fiber-like material. Use by loosening and rolling or twisting into a string or string.

上記の導電性の延伸多孔質PTFEの紐状ないし
糸状物は極めて耐熱性に優れると共に一般の化学
繊維に比べて可撓性に富み、且つ引張り強度も10
Kg/mm2と大きく、長手方向への伸びをほとんど生
じない。
The above-mentioned conductive stretched porous PTFE strings or threads have extremely high heat resistance, are more flexible than general chemical fibers, and have a tensile strength of 10%.
It has a large weight of Kg/mm 2 and hardly elongates in the longitudinal direction.

導電層12を形成するために条線11に巻き付
ける導電性材料テープ121としては一般に厚さ
0.01〜0.1m/m程度の銅箔その他導電性のよい金
属箔、それ等の箔に銀・スズ・ニツケルなどをメ
ツキ処理したもの、合成樹脂フイルムに金属を蒸
着又は金属箔をラミネートしたものなどを適宜の
幅、例えば0.2〜2m/m程度の細幅テープに裁断
してものが挙げられる。
The conductive material tape 12 1 wound around the wire 11 to form the conductive layer 12 generally has a thickness of
Copper foil and other highly conductive metal foils with a thickness of about 0.01 to 0.1 m/m, foils plated with silver, tin, nickel, etc., synthetic resin films with metal vapor-deposited or metal foil laminated, etc. and cut into narrow tapes with an appropriate width, for example, about 0.2 to 2 m/m.

そして上記のような導電性材料テープ121を、
導電性の延伸多孔質PTFEからなる条線11のま
わりに長手に沿つて螺旋間に隙間を存在させて、
或は隙間なく各螺旋を適当に重ねながら巻き付け
て導体1を作る。巻き付けは一層に限らず、二層
以上多層に巻付けて導体層12を形成してもよ
い。又その際巻付け方向を第4図例のように一層
ごとに逆にするようにしてもよい。
And conductive material tape 12 1 as described above,
A gap exists between the spirals along the length around the wire 11 made of conductive expanded porous PTFE,
Alternatively, the conductor 1 is made by winding each spiral while appropriately overlapping each other without any gaps. The conductor layer 12 may be formed by winding not only one layer but also two or more layers. Further, in this case, the winding direction may be reversed layer by layer as shown in the example in FIG.

而して上記の導体1を前述従来と同様に多数本
並行配列し、その導体群を二枚の弗素系樹脂テー
プでサンドイツチに挟んで熱圧着或は接着剤で絶
縁被覆2を設ける。或は並列導体群を樹脂押出し
機のヘツドを通すことにより弗素系樹脂の絶縁被
覆2を設ける。或は個々に弗素樹脂によつて絶縁
被覆処理した導体1を互いに並行に接触させてな
らべ隣接導体の被覆同士を接着又は融着して全体
一体化させる。或は上記絶縁被覆処理した導体1
を並行配列し、それを緯糸で製織する、等の手法
によりフラツトケーブルを得る。
A large number of the above-mentioned conductors 1 are arranged in parallel in the same manner as in the prior art, and the conductor group is sandwiched between two fluorine-based resin tapes on a sandwich strip, and an insulating coating 2 is provided by thermocompression bonding or adhesive. Alternatively, the insulating coating 2 of fluorine resin is provided by passing the parallel conductor group through the head of a resin extruder. Alternatively, the conductors 1, which have been individually insulated and coated with fluororesin, are brought into contact with each other in parallel, and the coatings of adjacent conductors are bonded or fused together to integrate them as a whole. Or the conductor 1 treated with the above insulation coating
A flat cable is obtained by arranging the cables in parallel and weaving them with weft threads.

即ち上記のように導体1として、可撓性に富み
且つ引張り強度の強い、導電性の延伸多孔質
PTFE条線11を芯体とし、そのまわりに長手に
沿つて導電性材料テープ121を螺旋に巻き付け
て導電層12を形成してなるものを用いてフラツ
トケーブルを構成すると、 (1) 個々の導体1は導電性の延伸多孔質PTFEか
らなる条線11まわりの導体層12が線路長の
少なくとも1.1倍以上、通常は2倍以上の長さ
の長い導電性材料テープがその線路長内に螺旋
に巻回して納まつたコイル構成であることから
曲げ力が作用したときその導体層12自体が例
えば電話受話器のカールケーブル或は可撓性コ
イル構造管と同じような理屈で極めて優れた可
撓性を示すものであること、又芯として特定し
た導電性の延伸多孔質PTFE条線11は摩擦係
数が極めて小さく(PTFEは他の合成樹脂に比
べて極めて摩擦係数が小さい)、微小繊維が自
由に変位可能な特殊な微細繊維質多孔性肉質に
基づき極めて柔軟で優れた可撓性のものであり
曲げ力で容易に屈撓し、その曲げ部の条線外周
とその外側巻回導体層12との相互間に容易に
滑りずれを生じ、上記導体層12の可撓性を阻
害しない。
That is, as described above, the conductor 1 is made of a conductive stretched porous material that is highly flexible and has high tensile strength.
When a flat cable is constructed using a PTFE wire 11 as a core and a conductive layer 12 formed by winding a conductive material tape 121 spirally along its length around the core, (1) Individual The conductor 1 has a conductive layer 12 around the wire 11 made of conductive expanded porous PTFE, and a long conductive material tape with a length of at least 1.1 times the line length, usually at least twice the line length. Because it has a coil structure wound in a spiral, when a bending force is applied, the conductor layer 12 itself becomes extremely flexible in the same way as, for example, a curled cable of a telephone receiver or a flexible coil structure tube. In addition, the conductive expanded porous PTFE wire 11 specified as the core has an extremely low coefficient of friction (PTFE has an extremely low coefficient of friction compared to other synthetic resins), and the microfibers exhibit flexibility. It is extremely flexible and has excellent flexibility due to its special microfiber porous texture that can be freely displaced, and is easily bent by bending force. 12, and the flexibility of the conductor layer 12 is not inhibited.

従つて該フラツトケーブルAは内部導体とし
て従来のように単線或は撚線を用いたものより
も格段に優れた可撓性を示し、曲げ抵抗・復元
抵抗が小さい。
Therefore, the flat cable A exhibits much better flexibility than conventional cables using single wire or stranded wire as the internal conductor, and has low bending resistance and restoring resistance.

(2) 導体層12は上記のように可撓性に富むコイ
ル構造であり、又芯である導電性の延伸多孔質
PTFEからなる条線11は引張り強度が大きく
導体1全体の長手方向への伸びが少ないことか
ら曲げにより導体1自体に生じる内部歪が小さ
く、導体として単線或は撚線を用いたものより
も耐繰返し屈曲性に強く、屈曲寿命が長いもの
となる。
(2) The conductor layer 12 has a highly flexible coil structure as described above, and has a conductive stretched porous core.
The wire 11 made of PTFE has high tensile strength and little elongation in the longitudinal direction of the conductor 1 as a whole, so the internal strain that occurs in the conductor 1 itself due to bending is small, and it has better durability than one using a single wire or stranded wire as a conductor. It is strong against repeated bending and has a long bending life.

(3) 導体として平型導体を用いたものに比べて、
被覆を剥離してもその露出導体1の可撓性及び
耐繰返し屈曲性は長期にわたつて良好に保持さ
れる、導体の実装密度が高くなる、鋭角の曲げ
にも強い。
(3) Compared to those using flat conductors as conductors,
Even if the coating is peeled off, the flexibility and repeated bending resistance of the exposed conductor 1 are maintained well over a long period of time, the packaging density of the conductor is increased, and it is resistant to sharp bending.

(4) 導体1自体の重量は同径の単導線或は撚線に
比べて1/2以下となり、従つ従つてケーブル全
体重量も軽量のものとなる。
(4) The weight of the conductor 1 itself is less than 1/2 that of a single conductor wire or stranded wire of the same diameter, and therefore the overall weight of the cable is also lighter.

(5) 導体の芯である条線11が導電性を有するた
め、長期にわたる繰返し屈曲によつて導電性材
料テープ121が切断されたときにも導通状態
は確保され、極めて耐久性にすぐれた導体とな
る。また条線11自体が導電性を有するため、
例えば圧接型コネクタに接続するときのミスが
減少する。
(5) Since the wire 11, which is the core of the conductor, is conductive, continuity is maintained even when the conductive material tape 121 is cut due to repeated bending over a long period of time, resulting in extremely high durability. Becomes a conductor. Moreover, since the striations 11 themselves have conductivity,
For example, mistakes when connecting to a pressure welding type connector are reduced.

(6) 絶縁被覆材料2としてPTFE・PFA(4弗化
エチレン−パーフロロアルキルビニルエーテル
共重合体)・FEP(4弗化エチレン−六弗化プ
ロピレン共重合体)・ETFE(エチレン−4弗化
エチレン共重合体)等の弗素系の合成樹脂を使
用してフラツトケーブルを構成すると、−196〜
200℃程度の広い温度範囲に於て十分に可撓性
が保持され、電気信号伝送特性も劣化せず、耐
低温特性・耐高温特性がよい。誘導率に周波数
依存性がほとんどないのでパルス伝送時のパル
スなまりがほとんどない。弗素樹脂の自己潤滑
性により、導体との間の滑りが良く、可撓性が
極めて増大する。耐薬品性が良好である等の特
徴を具備した、可撓性に富み、耐繰返し屈曲性
に優れたフラツトケーブルが得られる。
(6) As the insulation coating material 2, PTFE, PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene-hexafluoropropylene copolymer), ETFE (ethylene-tetrafluoroethylene When a flat cable is constructed using a fluorine-based synthetic resin such as
It maintains sufficient flexibility over a wide temperature range of about 200°C, does not deteriorate its electrical signal transmission characteristics, and has good low-temperature and high-temperature resistance. Since the inductivity has almost no frequency dependence, there is almost no pulse distortion during pulse transmission. The self-lubricating property of fluororesin allows for good slippage between it and the conductor, greatly increasing its flexibility. A flat cable with features such as good chemical resistance, high flexibility, and excellent repeated bending resistance can be obtained.

なお、導体層12は第4図例のように導電性材
料テープ121を二層以上多層に且つ一層ごとに
巻き方向を逆にして巻き付けて形成すると、同一
方向に重ね巻きしたものに比べて、導体1の撚り
ぐせがなくなり、ケーブル化したときにケーブル
に歪みを生じることがない。その結果、ケーブル
は均一に屈曲されるため、導体1の一部分に応力
の集中することがなくなり、屈曲寿命が向上す
る。さらに導体1の撚りぐせが残らないので、コ
ネクタ接続時に導体1の接続個所にかかる応力が
減少し、断線が防止される。また、絶縁被覆2を
形成するとき、導体1には歪(撚りぐせ)がない
ので、2枚の樹脂テープで挟んで一体化した後に
該被覆がはがれたりすることがなく、押出被覆の
場合には導体1の線間ピツチの設差が少なくなる
効果もある。また、導体1は撚りぐせがないので
同じ方向に重ね巻きしたもののようにくせ直しを
する必要がなく、さらに絶縁被覆2の形成時にテ
ンシヨンがかつたときにも同方向に重ね巻きした
ものに比べて導体層12が伸びにくく、取扱いや
すい。
Note that if the conductor layer 12 is formed by winding two or more conductive material tapes 12 1 in multiple layers with the winding direction reversed for each layer, as shown in the example in FIG. , the twist of the conductor 1 is eliminated, and no distortion occurs in the cable when it is made into a cable. As a result, the cable is bent uniformly, so stress is not concentrated on a portion of the conductor 1, and the bending life is improved. Furthermore, since no twist remains in the conductor 1, the stress applied to the connection portion of the conductor 1 during connector connection is reduced, and disconnection is prevented. In addition, when forming the insulating coating 2, since there is no distortion (twisting) in the conductor 1, the coating will not peel off after being sandwiched between two resin tapes and integrated, and in the case of extruded coating. This also has the effect of reducing the difference in pitch between the lines of the conductor 1. In addition, since the conductor 1 has no twisting, there is no need to untwist it as would be the case when the conductor is twisted in layers in the same direction.Furthermore, when the tension is lost during the formation of the insulation coating 2, compared to the case in which the conductor is twisted in layers in the same direction, it is not necessary to straighten the twist. The conductor layer 12 is difficult to stretch and is easy to handle.

又、導体層12は複数の導電性材料テープ12
を二層以上多層に重ね巻きすることにより、一
枚の場合に比べて導体抵抗が低くなり、また、圧
接型コネクタに接続したときに該テープのうちの
何枚かが切断されたときにも、残りのテープで導
通状態が確保されるもので信頼性も向上する。さ
らに、各導電性材料テープは厚さが0.01〜0.1mm
程度と薄いため、重ね巻きしたときに可撓性の損
なわれることがない。
Further, the conductor layer 12 includes a plurality of conductive material tapes 12.
By wrapping 1 in two or more layers, the conductor resistance is lower than that in the case of a single tape, and when some of the tapes are cut when connected to a pressure welding connector, However, the remaining tape ensures continuity and improves reliability. Additionally, each conductive material tape has a thickness of 0.01~0.1mm
Because it is so thin, its flexibility will not be lost when it is wrapped in layers.

フラツトケーブルAにはそのケーブルの可撓性
を大幅に損なわない程度に金属箔・導電性樹脂層
(導電性PTFEなど)などによるシールド層や、
機械的強度増加用ジヤケツトなどを付することも
ある。
Flat cable A has a shield layer made of metal foil, conductive resin layer (conductive PTFE, etc.) to the extent that the flexibility of the cable is not significantly impaired.
A jacket or the like may be attached to increase mechanical strength.

耐熱性に優れたケーブルAを得る目的に於ては
絶縁被覆2として例えばPTFE、延伸多孔質
PTFE、PFA、FEP、ETFE、PVdF(ポリ弗化
ビニリデン)などの弗素系樹脂であるから、前記
耐熱性樹脂と組合わせることによつて耐熱性に優
れたケーブルとなる。
For the purpose of obtaining cable A with excellent heat resistance, for example, PTFE, stretched porous material is used as the insulation coating 2.
Since it is a fluorine-based resin such as PTFE, PFA, FEP, ETFE, or PVdF (polyvinylidene fluoride), it can be combined with the heat-resistant resin to create a cable with excellent heat resistance.

絶縁被覆2の材料として耐熱性の樹脂を用いる
場合の被覆法はその樹脂の物性に応じて圧着法ま
たは押出し法のいずれかを用いる。例えば溶融押
出しの困難なPTFEの場合は複数の導体を溝付き
のガイドロールを介して並行離間関係に配列し、
それを一対の圧着ロール間で上下から2枚の
PTFEテープを供給しつつ圧着一体化し、焼成す
ればよく、またFEP・ETFEなどの溶融可能な樹
脂の場合には、前記のように配列した導体を押出
機のヘツドを通過させ、その上に溶融樹脂を被覆
し、冷却してフラツトケーブルを作る。
When a heat-resistant resin is used as the material for the insulating coating 2, either a pressure bonding method or an extrusion method is used depending on the physical properties of the resin. For example, in the case of PTFE, which is difficult to melt extrude, multiple conductors are arranged in a parallel spaced relationship via grooved guide rolls.
Then, between a pair of crimping rolls, the two sheets from above and below are
All you have to do is feed the PTFE tape, press it together, and bake it. In the case of meltable resins such as FEP and ETFE, the conductors arranged as described above are passed through the head of an extruder, and then the PTFE tape is melted. Coat with resin and cool to make a flat cable.

実施例 導体芯11…グラフアイトを含有する、直径
0.27mmの未焼成PTFEモノフイラメントを加熱空
気中で320℃に加熱後6倍に延伸し、収縮しない
ように張力を加えながら加熱空気中で340℃・1
分間保持して得た、直径0.20mmの導電性の延伸多
孔質PTFEモノフイラメント。
Example Conductor core 11... Contains graphite, diameter
A 0.27 mm unfired PTFE monofilament was heated to 320°C in heated air, stretched 6 times, and then stretched to 340°C in heated air for 1 time while applying tension to prevent shrinkage.
A conductive expanded porous PTFE monofilament with a diameter of 0.20 mm obtained by holding for a minute.

導電性材料テープ121…厚さ35μm・幅0.4mm
の銅箔テープ。
Conductive material tape 12 1 ...thickness 35μm, width 0.4mm
copper foil tape.

上記の芯11たる導電性の延伸多孔質PTFEモ
ノフイラメントのまわりに長手に沿つて上記銅箔
テープ121を0.6mmピツチで一層ごとに巻付方向
を逆にして4回巻付け、直径0.4mmの銅箔巻付け
導体1を製造した。この導体1には撚りぐせがな
く、くせ直しの必要はなかつた。
The copper foil tape 12 1 is wound 4 times along its length around the conductive expanded porous PTFE monofilament serving as the core 11 at a pitch of 0.6 mm, with the winding direction reversed for each layer, and the diameter is 0.4 mm. A copper foil-wrapped conductor 1 was manufactured. This conductor 1 had no twists and did not need to be straightened.

上記導体1を10本導体間隔1.27mmで互いに並行
に配列し、その並列導体群を厚さ0.2mmの2枚の
未焼成PTFEテープ間にサンドイツチに挟み、そ
れを溝付きの2本のロール間を通過させて全体一
体化させた。
10 of the above conductors 1 are arranged in parallel with each other with a conductor interval of 1.27 mm, and the parallel conductor group is sandwiched between two sheets of unfired PTFE tape with a thickness of 0.2 mm on a sandwich bench, and then it is placed between two grooved rolls. was passed through and integrated into the whole.

その後そのケーブルを長さ方向に張力を加えな
がら390℃の溶融塩に18秒間浸漬して未焼成
PTFEテープを焼成処理することにより導体間隔
1.27mmの10フラツトケーブルを得た。
The cable is then immersed in molten salt at 390°C for 18 seconds while applying tension in the length direction to unfire it.
The conductor spacing is reduced by firing the PTFE tape.
I got a 1.27mm 10 flat cable.

比較例 上記実施例に於て導体1として0.12mm径の銀メ
ツキ導線を7本撚りしたものを用い、他は同じ手
順で撚り導体を内部導体とするPTFE被覆の10心
フラツトケーブルを得た。
Comparative Example In the above example, seven twisted silver-plated conductors with a diameter of 0.12 mm were used as conductor 1, and the other procedures were the same to obtain a PTFE-coated 10-core flat cable with the twisted conductor as the inner conductor. .

上記実施例で得た本案に係るケーブルと比較例
のケーブルを夫々手で曲げて可撓具合を比較した
ところ前者の方が格段に可撓性を示し、柔軟で屈
曲抵抗・復元抵抗が小さいものであつた。
When the cable according to the present invention obtained in the above example and the cable of the comparative example were bent by hand and their flexibility was compared, the former showed much more flexibility, and was flexible and had less bending resistance and restoring resistance. It was hot.

耐繰返し屈曲性試験 試験法…第5図示のように固定板3とその上方
に並行に位置して且つ往復動駆動される可動板4
との間にU字に曲げた試験片ケーブルAを介入さ
せてケーブルの両端部を夫々止め具31,41で
固定板3と可動板4とに固定してセツトする。そ
して上記両板3,4の間隔を調節してケーブルA
のU字の曲げを半径を25mmに保持させた状態に
し、可動板4を1周期1秒・ストローク200mmで
繰返し往復運動駆動させ、ケーブルAの導体が少
なくとも106秒以上の間断線する即ち瞬断現象
(導体内のクラツクまたはヒゲが屈曲によつて極
めて短時間断線状態になること。屈曲されていな
い状態では導通している。)を生じるまでの屈曲
回数を調べる。
Repeated bending resistance test Test method: As shown in Figure 5, a fixed plate 3 and a movable plate 4 positioned above it in parallel and driven in reciprocating motion.
A test piece cable A bent into a U-shape is interposed between the test piece cable A and both ends of the cable are fixed to the fixed plate 3 and the movable plate 4 with fasteners 31 and 41, respectively. Then, adjust the distance between the two plates 3 and 4 to connect the cable A.
The radius of the U-shaped bend is maintained at 25 mm, and the movable plate 4 is driven in reciprocating motion repeatedly at a cycle of 1 second and a stroke of 200 mm until the conductor of cable A is disconnected for at least 10 6 seconds or more, that is, instantaneous. Check the number of times the conductor is bent until a disconnection phenomenon occurs (a crack or hair in the conductor becomes disconnected for a very short time due to bending. It is conductive when it is not bent).

上記の試験法により、前記実施例で得た本案に
係るケーブルについてその耐繰返し屈曲回数を試
験した結果、2000万回の屈曲においても瞬断現象
が見られなかつた。一方前記比較例で得たケーブ
ルのそれは平均256万回であつた。
Using the above test method, the cable according to the present invention obtained in the above example was tested for its repeated bending resistance, and as a result, no momentary disconnection phenomenon was observed even after 20 million bends. On the other hand, the cable obtained in the comparative example had an average of 2.56 million cycles.

即ち、本案に係るケーブルは個々の導体1の導
体層12のコイル巻構造による導体層自体の可撓
性、芯として用いた導電性の延伸多孔質4弗化エ
チレン樹脂からなる条線11の優れた可撓性及び
優れた低摩擦性とが相まつて耐繰返し屈曲性に極
めて優れるものであつた。
That is, the cable according to the present invention has the flexibility of the conductor layer itself due to the coil-wound structure of the conductor layer 12 of each conductor 1, and the superiority of the wire 11 made of conductive expanded porous tetrafluoroethylene resin used as the core. This combination of flexibility and excellent low friction properties resulted in extremely excellent repeated bending resistance.

また、条線11は導電性を備えた柔軟性に富み
且つ引張強度の強い繊維質材料からなるものであ
るから、導電性材料テープ121に比べ屈曲によ
つて切断されることがはるかに少なく、そのため
導電性材料テープ121が繰返し屈曲によつて断
線したときにも条線11により導体1の導通状態
が確保されるので、導体としての寿命が飛躍的に
向上し、ケーブルは耐繰返し屈曲性に優れたもの
となる。
Furthermore, since the striations 11 are made of a fibrous material that is highly flexible and has high tensile strength and is electrically conductive, it is far less likely to be cut by bending than the electrically conductive material tape 121 . Therefore, even when the conductive material tape 12 1 is broken due to repeated bending, the conductor 1 is maintained in a conductive state by the striations 11, dramatically increasing its life as a conductor and making the cable resistant to repeated bending. Becomes excellent in sex.

又前記実施例に於てケーブルの絶縁被覆2を
PFE・FEP・EPE・ETFE等の溶融可能な樹脂を
用いて押出し法で形成して得たケーブルについて
も実施例で得たものと同様の優れた可撓性・屈曲
寿命を有するものであり、又耐低温特性・耐高温
特性・耐薬品性も優れるものであつた。
In addition, in the above embodiment, the insulation coating 2 of the cable is
Cables formed by extrusion using meltable resins such as PFE, FEP, EPE, and ETFE also have excellent flexibility and bending life similar to those obtained in the examples. It also had excellent low-temperature resistance, high-temperature resistance, and chemical resistance.

なお、引張り強度の強い導電性の延伸多孔質
PTFEからなる条線11のまわりに長手に沿つて
銅箔テープ121を多層に巻付ける場合、第4図
例のように一層ごと巻付け方向を逆にしたとこ
ろ、このようにして得た導体1には撚りぐせがな
く、そのくせ直しの必要性はなく、かつこれを使
用した完成ケーブルの耐屈曲特性は巻付け方向が
同方向の場合と同等であつた。
In addition, it is made of stretched porous conductive material with strong tensile strength.
When winding copper foil tape 12 1 in multiple layers along its length around a wire 11 made of PTFE, the winding direction of each layer is reversed as shown in the example in Fig. 4, and the resulting conductor In No. 1, there was no twist, there was no need to straighten the twist, and the bending resistance of the completed cable using this was the same as when the winding direction was the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフラツトケーブルの一部の平面図、第
2図は第1図の−線拡大横断面図、第3図は
内部導体の一部の拡大正面図、第4図は他の例の
同上図、第5図は耐繰返し屈曲性試験要領を示す
図。 Aはフラツトケーブル、1は導体、11は導電
性の延伸多孔質PTFEからなる導体芯、121
その芯に巻付けた導電性材料テープ、12はその
巻付けにより形成された導体層、2は絶縁被覆、
3は屈曲試験機の固定板、4は同可動板。
Figure 1 is a plan view of a part of the flat cable, Figure 2 is an enlarged cross-sectional view taken along the - line in Figure 1, Figure 3 is an enlarged front view of a part of the internal conductor, and Figure 4 is another example. The same figure as above and FIG. 5 are diagrams showing the procedure for repeated bending resistance test. A is a flat cable, 1 is a conductor, 11 is a conductor core made of conductive expanded porous PTFE, 12 is a conductive material tape wrapped around the core, 12 is a conductor layer formed by the winding, 2 is insulation coating,
3 is the fixed plate of the bending tester, and 4 is the movable plate of the same.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導電性を有する延伸多孔質4弗化エチレン樹脂
からなる条線11を芯体とし、そのまわりに長手
に沿つて導電性材料テープ121を螺旋に巻付け
て導体層12を形成した導体1を複数本並行配列
し、その導体群を弗素系樹脂からなる絶縁材料2
で被覆すると共に導体相互を絶縁支持したフラツ
トケーブル。
A conductor 1 is formed by forming a conductor layer 12 by spirally wrapping a conductive material tape 12 1 around the core wire 11 made of a conductive porous polytetrafluoroethylene resin. A plurality of conductors are arranged in parallel, and the conductor group is covered with an insulating material 2 made of fluorine resin.
A flat cable whose conductors are supported and insulated from each other.
JP2438084U 1984-02-21 1984-02-21 flat cable Granted JPS6026132U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2438084U JPS6026132U (en) 1984-02-21 1984-02-21 flat cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2438084U JPS6026132U (en) 1984-02-21 1984-02-21 flat cable

Publications (2)

Publication Number Publication Date
JPS6026132U JPS6026132U (en) 1985-02-22
JPH037842Y2 true JPH037842Y2 (en) 1991-02-27

Family

ID=30155424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2438084U Granted JPS6026132U (en) 1984-02-21 1984-02-21 flat cable

Country Status (1)

Country Link
JP (1) JPS6026132U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743513B2 (en) * 1974-05-24 1982-09-14

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0126002Y2 (en) * 1980-08-26 1989-08-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5743513B2 (en) * 1974-05-24 1982-09-14

Also Published As

Publication number Publication date
JPS6026132U (en) 1985-02-22

Similar Documents

Publication Publication Date Title
US5245134A (en) Polytetrafluoroethylene multiconductor cable and process for manufacture thereof
US7544886B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, extra-fine insulated wire, coaxial cable, multicore cable and manufacturing method thereof
US5635677A (en) Series of parallel electrical conductors held together by interwoven braiding
US7538276B2 (en) Flat-shaped cable
US20110036613A1 (en) Electronic wire and method of manufacturing the same
RU185113U1 (en) SYMMETRIC DATA CABLE
GB2118520A (en) Winding or insulating tape made of a high temperature-resistant synthetic resin
WO2003067611A1 (en) High accuracy foamed coaxial cable and method for manufacturing the same
US6828501B2 (en) Cable
JP2011124117A (en) Cable for movable portion
JPH0126002Y2 (en)
JPH037842Y2 (en)
JP3648103B2 (en) Extra-fine flat cable
WO2005122188A1 (en) High-precision foamed coaxial cable
WO1995004357A1 (en) Improved dielectric miniature electric cable
JPS6222967Y2 (en)
RU2180772C2 (en) Heating cable
CN110783026A (en) Insulated wire and cable
JP2019067549A (en) Cable for high frequency communication
US4531049A (en) Heating wire
JP6774462B2 (en) Multi-core communication cable
JP3957522B2 (en) High precision foamed coaxial cable
JPS6222966Y2 (en)
RU2690160C1 (en) Symmetric data transmission cable
JP7412125B2 (en) Flexible insulated wire