JP7412125B2 - Flexible insulated wire - Google Patents

Flexible insulated wire Download PDF

Info

Publication number
JP7412125B2
JP7412125B2 JP2019192553A JP2019192553A JP7412125B2 JP 7412125 B2 JP7412125 B2 JP 7412125B2 JP 2019192553 A JP2019192553 A JP 2019192553A JP 2019192553 A JP2019192553 A JP 2019192553A JP 7412125 B2 JP7412125 B2 JP 7412125B2
Authority
JP
Japan
Prior art keywords
fiber core
wire
outer diameter
cross
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019192553A
Other languages
Japanese (ja)
Other versions
JP2021068572A (en
Inventor
裕昭 杉本
毅安 中山
大介 田中
誠 宮下
裕一 仲條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Totoku
Original Assignee
Totoku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totoku filed Critical Totoku
Priority to JP2019192553A priority Critical patent/JP7412125B2/en
Publication of JP2021068572A publication Critical patent/JP2021068572A/en
Application granted granted Critical
Publication of JP7412125B2 publication Critical patent/JP7412125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、耐屈曲絶縁電線に関する。さらに詳しくは、本発明は、屈曲性に優れるとともに軽量化が図られ、特に自動車用配線として好適な耐屈曲絶縁電線に関する。 The present invention relates to a bend-resistant insulated wire. More specifically, the present invention relates to a bend-resistant insulated wire that has excellent flexibility and is lightweight, and is particularly suitable for automotive wiring.

近年、自動車、産業ロボット、電気機器、熱機器等では、その高性能化とともに配線箇所が多くなっている。それらの配線に使用される電線に対しては、要求される信頼性も高まっている。さらに、省エネルギーとコンパクト化の要請から、電線自体の軽量化も要求されている。 In recent years, as automobiles, industrial robots, electrical equipment, thermal equipment, etc. have become more sophisticated, the number of wiring locations has increased. The reliability required for the electric wires used for such wiring is also increasing. Furthermore, due to the demand for energy saving and compactness, there is also a demand for lighter weight electric wires themselves.

こうした要求に対し、例えば特許文献1には、アラミド系繊維束又は紐を中心としてその周りに銅素線を配置した撚り線を圧縮加工し、熱処理を行ったハーネス用電線導体が提案されている。また、特許文献2には、架空送電線に関するものであるが、中心部にアラミド繊維、ガラス繊維などのテンションメンバーを配置し、その外側に複数本の軟銅素線の撚り合わせからなる撚線導体を設け、その外側に絶縁被覆を施した絶縁電線が提案されている。また、特許文献3には、最大伸びが10%以上に形成された銅又は銅合金からなる中心線の周囲に、その最大伸びが10%以上の有機繊維を複数本撚り合わせた構造を有し、銅又は銅合金に対する有機繊維の重量比と太さの断面積を規定したワイヤーハーネス用細径電線が提案されている。 In response to these demands, for example, Patent Document 1 proposes an electric wire conductor for harnesses in which a stranded wire consisting of an aramid fiber bundle or string at the center and copper wires arranged around it is compressed and heat treated. . Further, Patent Document 2 relates to an overhead power transmission line, and a stranded conductor consisting of a tension member made of aramid fiber, glass fiber, etc. is arranged in the center, and a plurality of annealed copper wires are twisted on the outside thereof. An insulated wire has been proposed in which an insulated wire is provided with an insulating coating on the outside. Further, Patent Document 3 describes a structure in which a plurality of organic fibers having a maximum elongation of 10% or more are twisted around a center line made of copper or copper alloy formed to have a maximum elongation of 10% or more. , a small-diameter electric wire for a wire harness has been proposed in which the weight ratio of organic fiber to copper or copper alloy and the cross-sectional area of the thickness are specified.

特開2008-91214号公報Japanese Patent Application Publication No. 2008-91214 特開平4-138616号公報Japanese Patent Application Publication No. 4-138616 特開2003-123542号公報Japanese Patent Application Publication No. 2003-123542

上記従来技術の各電線は、中心に繊維を設け、その外周に金属素線を設け、さらにその外周に絶縁体を設けている。しかし、これら電線は、繊維の一部が金属素線の間からはみ出しやすく、電線の外観が悪くなりやすい。また、繊維には水分やオイルが付着することがあり、繊維に付着した水分等は、金属素線の外周に絶縁体を設ける際に絶縁体の発泡や肌荒れを引き起こす原因となる。電線の外観悪化、絶縁体の発泡や肌荒れは、局部的な不均一性を生じさせ、耐屈曲寿命が低下する原因となっていた。 Each of the electric wires of the above-mentioned prior art has a fiber in the center, a metal wire around the outer periphery, and an insulator around the outer periphery. However, in these electric wires, some of the fibers tend to protrude from between the metal wires, which tends to deteriorate the appearance of the electric wires. Further, moisture or oil may adhere to the fibers, and the moisture or the like adhering to the fibers causes foaming or rough skin of the insulator when the insulator is provided around the outer periphery of the metal wire. Deterioration of the appearance of the electric wire, foaming of the insulator, and roughening of the surface of the wire cause local non-uniformity and reduce the bending life.

また、特許文献1では、絶縁体を被覆する際に繊維芯が押出樹脂と接触するため、繊維芯が熱影響を受けてしまい、繊維芯としての機能を発揮できないことがある。こうした現象は、押出温度が高い場合に顕著に発生しやすく、耐屈曲寿命が低下する原因となる。 Further, in Patent Document 1, since the fiber core comes into contact with the extruded resin when covering the insulator, the fiber core may be affected by heat and may not be able to perform its function as a fiber core. Such a phenomenon is more likely to occur when the extrusion temperature is high, causing a decrease in the flex life.

本発明は、上記課題を解決するためになされたものである。その目的は、屈曲性に優れるとともに軽量化が図られ、特に自動車用配線として好適な耐屈曲絶縁電線を提供することにある。 The present invention has been made to solve the above problems. The purpose is to provide a bend-resistant insulated wire that has excellent flexibility and is lightweight, and is particularly suitable for automotive wiring.

本発明に係る耐屈曲絶縁電線は、繊維芯と、該繊維芯の外周に設けられた50~150本の金属素線を撚ってなる撚線導体と、該撚線導体の外周に設けられた絶縁体とを有する、ことを特徴とする。 The bend-resistant insulated wire according to the present invention includes a fiber core, a stranded conductor formed by twisting 50 to 150 metal wires provided around the outer periphery of the fiber core, and a stranded conductor provided around the outer periphery of the stranded conductor. and an insulator.

この発明によれば、繊維芯の外周に多本数の金属素線が撚られているので、その撚りにより繊維芯の中心位置と撚線導体の中心位置とがずれている。そのずれによって、絶縁電線に加わった負荷応力が逃げ、屈曲特性を向上させることができる。また、多本数の金属素線で撚った撚線導体は外径が大きくなるので、撚線導体の外側位置の金属素線の長さは繊維芯の長さよりも顕著に長くなっている。その結果、絶縁電線に応力が加わって屈曲した場合、顕著に長い金属素線は屈曲に対して余裕を生じさせることができ、屈曲特性を向上させることができる。 According to this invention, since a large number of metal wires are twisted around the outer periphery of the fiber core, the center position of the fiber core and the center position of the stranded wire conductor are shifted from each other due to the twisting. Due to this deviation, the load stress applied to the insulated wire is released, and the bending characteristics can be improved. Further, since a stranded conductor made of a large number of metal wires twisted has a large outer diameter, the length of the metal wires at the outer side of the stranded conductor is significantly longer than the length of the fiber core. As a result, when stress is applied to the insulated wire and it bends, the significantly long metal wire can provide a margin for bending, and the bending characteristics can be improved.

本発明に係る耐屈曲絶縁電線において、前記繊維芯の断面積が前記撚線導体の断面積の5~20%の範囲内であり、前記金属素線の断面積が前記繊維芯の断面積の4~20%の範囲内である。この発明によれば、繊維芯、金属素線、撚線導体それぞれの断面積が上記関係であるので、繊維芯に比べてかなり細い金属素線からなる撚線導体が、繊維芯に比べてかなり太い。その結果、繊維芯の中心位置と撚線導体の中心位置とのずれを容易に実現することができる。 In the bend-resistant insulated wire according to the present invention, the cross-sectional area of the fiber core is within a range of 5 to 20% of the cross-sectional area of the stranded wire conductor, and the cross-sectional area of the metal wire is smaller than the cross-sectional area of the fiber core. It is within the range of 4 to 20%. According to this invention, since the cross-sectional areas of the fiber core, metal wire, and stranded wire conductor are in the above relationship, the stranded wire conductor made of the metal wire, which is much thinner than the fiber core, is considerably smaller than the fiber core. thick. As a result, it is possible to easily realize a shift between the center position of the fiber core and the center position of the stranded wire conductor.

本発明に係る耐屈曲絶縁電線において、前記撚線導体の外径が1.6mm以下である。この発明によれば、上記外径の撚線導体は、耐屈曲性に優れた絶縁電線の細径化を実現でき、軽量化を図ることができる。 In the bend-resistant insulated wire according to the present invention, the stranded conductor has an outer diameter of 1.6 mm or less. According to this invention, the stranded wire conductor having the above-described outer diameter can realize a thinner insulated wire with excellent bending resistance, and can achieve weight reduction.

本発明に係る耐屈曲絶縁電線において、前記金属素線の外径が0.02mm以上0.2mm以下の範囲内である。この発明によれば、細い金属素線を多本数撚り合わせて撚線導体とするので、撚線導体を細径化でき、絶縁電線全体の細径化と軽量化と柔軟化を実現できる。その結果、多本数の金属素線で応力集中を低減して引張強度や屈曲特性を向上させることができる。 In the bend-resistant insulated wire according to the present invention, the outer diameter of the metal wire is within a range of 0.02 mm or more and 0.2 mm or less. According to this invention, since a large number of thin metal wires are twisted together to form a stranded wire conductor, the diameter of the stranded wire conductor can be reduced, and the entire insulated wire can be made smaller in diameter, lighter in weight, and more flexible. As a result, it is possible to reduce stress concentration and improve tensile strength and bending properties using a large number of metal wires.

本発明に係る耐屈曲絶縁電線において、前記繊維芯の中心位置と前記撚線導体の中心位置とが一致していない。 In the bend-resistant insulated wire according to the present invention, the center position of the fiber core and the center position of the stranded conductor do not match.

中心位置とは、繊維芯の断面の輪郭から算出した中心位置、撚線導体の断面の輪郭から算出した中心位置のことであり、両者のずれは0.10~0.30mmであることが好ましい。こうしたずれは、絶縁電線に負荷が加わった際に絶縁電線が扁平形状になりやすく、その扁平形状によって特定部位に応力集中が起こらず、応力が逃げて屈曲特性が向上する。 The center position refers to the center position calculated from the cross-sectional contour of the fiber core and the center position calculated from the cross-sectional contour of the stranded wire conductor, and it is preferable that the deviation between the two is 0.10 to 0.30 mm. . Such misalignment tends to cause the insulated wire to become flat when a load is applied to it, and the flat shape prevents stress from concentrating on a specific portion, allowing stress to escape and improving bending characteristics.

本発明によれば、屈曲性に優れるとともに軽量化が図られ、特に自動車用配線として好適な耐屈曲絶縁電線を提供することができる。特に、繊維芯の外周に多本数の金属素線が撚られているので、その撚りにより繊維芯の中心位置と撚線導体の中心位置とがずれ、そのずれによって、絶縁電線に加わった負荷応力が逃げ、屈曲特性を向上させることができる。 According to the present invention, it is possible to provide a bend-resistant insulated wire that has excellent flexibility, is lightweight, and is particularly suitable for wiring for automobiles. In particular, since a large number of metal wires are twisted around the outer periphery of the fiber core, the center position of the fiber core and the center position of the stranded wire conductor are shifted due to the twisting, and this shift causes load stress applied to the insulated wire. can be released and the bending properties can be improved.

本発明に係る耐屈曲絶縁電線の一例を示す模式的な説明図である。1 is a schematic explanatory diagram showing an example of a bend-resistant insulated wire according to the present invention. 耐屈曲絶縁電線を構成する各寸法の説明図である。FIG. 3 is an explanatory diagram of each dimension constituting the bend-resistant insulated wire. 撚線導体の撚り状態の説明図である。FIG. 3 is an explanatory diagram of a twisted state of a twisted wire conductor. 屈曲試験の態様を示す説明図である。FIG. 3 is an explanatory diagram showing an aspect of a bending test.

以下、本発明に係る耐屈曲絶縁電線について図面を参照しつつ説明する。なお、本発明は図示の実施形態に限定されるものではない。 Hereinafter, the bend-resistant insulated wire according to the present invention will be explained with reference to the drawings. Note that the present invention is not limited to the illustrated embodiment.

[耐屈曲絶縁電線]
本発明に係る耐屈曲絶縁電線10(以下、「絶縁電線10」ともいう。)は、図1及び図2に示すように、繊維芯1と、その繊維芯1の外周に設けられた50~150本の金属素線3を撚ってなる撚線導体2と、その撚線導体2の外周に設けられた絶縁体4とを有する。なお、「有する」とは、本発明の効果を阻害しない範囲でそれ以外の構成が含まれていてもよいことを意味し、例えば、撚線導体2と絶縁体4との間に押さえ巻きフィルム、金属素線3の表面にめっきや絶縁被覆層、絶縁体4の外周に融着層等が設けられていてもよいことを意味している。
[Bending-resistant insulated wire]
As shown in FIGS. 1 and 2, the bend-resistant insulated wire 10 (hereinafter also referred to as "insulated wire 10") according to the present invention includes a fiber core 1 and 50 to It has a stranded conductor 2 formed by twisting 150 metal wires 3 and an insulator 4 provided around the outer periphery of the stranded conductor 2. Note that "having" means that other configurations may be included as long as they do not impede the effects of the present invention. This means that plating or an insulating coating layer may be provided on the surface of the metal wire 3, and a fusion layer or the like may be provided on the outer periphery of the insulator 4.

この耐屈曲絶縁電線10は、繊維芯1の外周に多本数の金属素線3が撚られているので、その撚りにより繊維芯1の中心位置C1と撚線導体2の中心位置C2とがずれ、そのずれによって、絶縁電線10に加わった負荷応力が逃げ、屈曲特性を向上させることができる。その結果、屈曲性に優れるとともに軽量化が図られ、特に自動車用配線として好適な耐屈曲絶縁電線10とすることができる。 This bend-resistant insulated wire 10 has a large number of metal wires 3 twisted around the outer periphery of a fiber core 1, so that the center position C1 of the fiber core 1 and the center position C2 of the stranded wire conductor 2 are shifted due to the twisting. Due to the deviation, the load stress applied to the insulated wire 10 is released, and the bending characteristics can be improved. As a result, the bend-resistant insulated wire 10 has excellent flexibility and is lightweight, making it particularly suitable for automotive wiring.

以下、耐屈曲絶縁電線の各構成要素を詳しく説明する。 Each component of the bend-resistant insulated wire will be explained in detail below.

(繊維芯)
繊維芯1は、耐屈曲絶縁電線10の略中央に位置する必須の構成であり、巻芯として機能する高張力体であることが好ましい。繊維芯1の例としては、複数の繊維を束ねた繊維糸が好ましく用いられる。繊維糸を構成する繊維としては、強度があり、耐熱性であればなおよい。例えば、繊維として、テトロン(登録商標)等のポリエステル繊維や、ケブラ(登録商標)等の全芳香族ポリアミド繊維や、ベクトラン(登録商標)等のポリアリレート繊維、ガラス繊維等を挙げることができる。また、繊維芯1は、異なる材質の繊維糸や、外径の異なる繊維糸を任意に複合させたものであってもよい。
(fiber core)
The fiber core 1 is an essential component located approximately at the center of the bend-resistant insulated wire 10, and is preferably a high-tensile body that functions as a winding core. As an example of the fiber core 1, a fiber yarn made by bundling a plurality of fibers is preferably used. It is preferable that the fibers constituting the fiber thread have strength and are heat resistant. Examples of fibers include polyester fibers such as Tetron (registered trademark), wholly aromatic polyamide fibers such as Kevlar (registered trademark), polyarylate fibers such as Vectran (registered trademark), and glass fibers. Further, the fiber core 1 may be formed by arbitrarily combining fiber yarns made of different materials or fiber yarns with different outer diameters.

繊維芯1は、繊維糸を集合線、撚り線又は編み込み線にして同心円状(真円形)又は略同心円状の断面になっている。このとき、繊維芯1をより同心円状又は略同心円状の断面にするためには、繊維糸を撚り線とすることがより好ましい。繊維芯1の外径は特に限定されないが、例えば0.1~1.0mmの範囲を挙げることができる。繊維糸からなる繊維芯1は柔軟で変形し易いことから、繊維芯1の外径は、繊維芯1が真円形である場合はその外径とし、繊維芯1が扁平形である場合はその断面積から真円形の断面積に換算した外径として評価する。 The fiber core 1 has a concentric (perfect circular) or substantially concentric cross section made of fiber yarns made of assembled lines, twisted lines, or braided lines. At this time, in order to make the fiber core 1 more concentric or approximately concentric in cross section, it is more preferable to use the fiber threads as twisted wires. The outer diameter of the fiber core 1 is not particularly limited, but may be in the range of 0.1 to 1.0 mm, for example. Since the fiber core 1 made of fiber yarn is flexible and easily deformed, the outer diameter of the fiber core 1 is the outer diameter of the fiber core 1 when the fiber core 1 is perfectly circular, and the outer diameter of the fiber core 1 when the fiber core 1 is flat. Evaluate as the outer diameter converted from the cross-sectional area to the cross-sectional area of a perfect circle.

繊維芯1は、通常、繊維糸を重量換算で示す繊度(dtex)で表示され、1dtexは、長さ10000mで1gである。本発明の繊維芯1のdtexの範囲は、110~2000dtexであることが好ましい。こうした繊維芯1は、単一の繊維糸からなるものを用いてもよいし、2種以上の繊維糸からなるものを用いてもよい。2種以上の繊維糸からなるもので繊維芯1を構成した場合は、合計のdtexを上記範囲内とすればよい。110dtex未満では、屈曲耐久性不足となりやすい。一方、2000dtexを超えると、外径が大きくなってしまい、作業性や加工性に影響が出やすく、屈曲耐久性不足にもなる。 The fiber core 1 is usually expressed in fineness (dtex), which indicates the weight of fiber yarn, and 1 dtex is 1 g at a length of 10,000 m. The dtex range of the fiber core 1 of the present invention is preferably 110 to 2000 dtex. The fiber core 1 may be made of a single fiber thread or may be made of two or more types of fiber threads. When the fiber core 1 is composed of two or more types of fiber threads, the total dtex may be within the above range. If it is less than 110 dtex, bending durability tends to be insufficient. On the other hand, if it exceeds 2000 dtex, the outer diameter becomes large, which tends to affect workability and processability, and also results in insufficient bending durability.

繊維芯1が設けられているのは、耐屈曲絶縁電線10の断面の略中央である。「略中央」とは、繊維芯1の中心位置C1が耐屈曲絶縁電線10の断面の中心位置(詳しくは撚線導体2の断面の中心位置C2)には設けられておらず、繊維芯1の中心位置C1と撚線導体2の中心位置C2とがずれていて一致していないことを意味している。繊維芯1の中心位置C1とは、繊維芯1の断面の輪郭から算出した位置のことであり、いわゆる輪郭の重心位置の意味である。繊維芯1の中心位置C1と、後述する撚線導体2の断面の輪郭から算出した中心位置C2とのずれは、0.10~0.30mmであることが好ましい。こうしたずれは、絶縁電線10に負荷が加わった際に絶縁電線10が扁平形状になりやすく、その扁平形状によって特定部位に応力集中が起こらず、絶縁電線10に加わった負荷応力が逃げ、屈曲特性を向上させることができる。なお、繊維芯1の断面形状は、その周りに後述の撚線導体2が設けられた後においては、撚線導体2から加わる加圧力により円形又は略円形を保持することが困難なことが多く、図1に示すように、略三角形や略四角形等に変形した形状になりやすい。 The fiber core 1 is provided approximately at the center of the cross section of the bend-resistant insulated wire 10. "Substantially at the center" means that the center position C1 of the fiber core 1 is not located at the center position of the cross section of the bend-resistant insulated wire 10 (specifically, the center position C2 of the cross section of the stranded wire conductor 2), and the fiber core 1 This means that the center position C1 of the stranded wire conductor 2 and the center position C2 of the stranded wire conductor 2 are shifted from each other and do not match. The center position C1 of the fiber core 1 is a position calculated from the contour of the cross section of the fiber core 1, and is the so-called center of gravity position of the contour. The deviation between the center position C1 of the fiber core 1 and the center position C2 calculated from the cross-sectional contour of the stranded wire conductor 2, which will be described later, is preferably 0.10 to 0.30 mm. Such a deviation is caused by the fact that when a load is applied to the insulated wire 10, the insulated wire 10 tends to become flat, and the flat shape prevents stress from concentrating on a specific part, allowing the load stress applied to the insulated wire 10 to escape, resulting in bending characteristics. can be improved. Note that, after the stranded wire conductor 2 (described later) is provided around the fiber core 1, it is often difficult to maintain a circular or approximately circular cross-sectional shape due to the pressure applied from the stranded wire conductor 2. As shown in FIG. 1, the shape is likely to be deformed into a substantially triangular or substantially quadrangular shape.

(撚線導体)
撚線導体2は、繊維芯1の外周に設けられた必須の構成であり、図3に示すように、50~150本の多数本の金属素線3を撚ってなる撚り線である。この本数の金属素線3を撚って撚線導体2とすることにより、軽量化を実現できる。さらに、繊維芯1の中心位置C1と撚線導体2の中心位置C2とが一致しない形態とすることも可能となる。金属素線3が50本未満では、繊維芯1の中心位置C1と撚線導体2の中心位置C2とは0.10mm未満となるとともに、応力集中を逃す効果が得られない結果となる。一方、金属素線3が150本を超えると、繊維芯1の中心位置C1と撚線導体2の中心位置C2とは0.30mmを超えることとなるとともに、過剰な扁平状態となる。さらに、下記外径範囲の細い金属素線3を上記範囲の本数で構成することにより、撚線導体2を設けた後の全体の外径を小さくでき、耐屈曲絶縁電線全体の細径化と軽量化を実現できる。
(Twisted conductor)
The stranded wire conductor 2 is an essential component provided on the outer periphery of the fiber core 1, and is a stranded wire formed by twisting a large number of 50 to 150 metal wires 3, as shown in FIG. By twisting this number of metal wires 3 to form the twisted wire conductor 2, weight reduction can be realized. Furthermore, it is also possible to adopt a configuration in which the center position C1 of the fiber core 1 and the center position C2 of the stranded wire conductor 2 do not coincide. If the number of metal wires 3 is less than 50, the center position C1 of the fiber core 1 and the center position C2 of the stranded conductor 2 will be less than 0.10 mm, and the effect of releasing stress concentration will not be obtained. On the other hand, when the number of metal wires 3 exceeds 150, the distance between the center position C1 of the fiber core 1 and the center position C2 of the stranded wire conductor 2 exceeds 0.30 mm, resulting in an excessively flattened state. Furthermore, by configuring the number of thin metal wires 3 having the outer diameter range shown below within the above range, the overall outer diameter after the stranded wire conductor 2 is provided can be reduced, and the overall diameter of the bend-resistant insulated wire can be reduced. Weight reduction can be achieved.

金属素線3の撚りピッチPと、撚線導体2の外径との関係は、「撚りピッチP(mm)」÷「撚線導体の外径(mm)」が5倍~25倍の範囲であることが好ましい。この範囲内とすることにより、撚りがほどけることを抑制でき、屈曲特性のバラツキを小さくすることができ、さらに断面が丸くなりやすく、良好な外観と耐久性を得ることができる。この値が5倍未満では、金属素線3をきつめに巻くことになるので、撚線導体2の重なりが多くなり易く、金属素線3の浮きが発生することがある。その結果、断面が丸くならない場合があったり、堅くなって屈曲特性を満たさないか又はバラツキが生じたりすることがある。一方、この値が25倍を超えると、撚りがゆるくなって糸が飛び出してしまい、作業中にほどけるような挙動を示すことがある。その結果、断面が丸くならない場合もあり、屈曲特性にもバラツキが生じることがある。 The relationship between the twist pitch P of the metal wire 3 and the outer diameter of the stranded wire conductor 2 is such that "twist pitch P (mm)" ÷ "outer diameter of the stranded wire conductor (mm)" is in the range of 5 to 25 times. It is preferable that By setting it within this range, untwisting can be suppressed, variations in bending properties can be reduced, and the cross section can be easily rounded, so that good appearance and durability can be obtained. If this value is less than 5 times, the metal wire 3 will be wound tightly, so the stranded conductor 2 will tend to overlap more, and the metal wire 3 may float. As a result, the cross section may not be round, may become stiff and may not satisfy the bending characteristics, or may vary. On the other hand, if this value exceeds 25 times, the twist becomes loose and the threads may pop out, causing the thread to unravel during work. As a result, the cross section may not be round, and the bending properties may vary.

金属素線3の外径は、0.02mm以上、0.2mm以下の範囲内であることが好ましい。こうすることにより、細い金属素線3を多本数撚り合わせて撚線導体2とするので、撚線導体2を細径化でき、絶縁電線全体の細径化と軽量化と柔軟化を実現できる。その結果、多本数の金属素線3で応力集中を低減して引張強度や屈曲特性を向上させることができる。金属素線3の外径が0.02mm未満では、金属素線自体が細径化して多くの本数が必要になるとともに単線強度の絶対値が小さくなる。一方、金属素線3の外径が0.2mmを超えると、表面凹凸が大きくなってしまう。 The outer diameter of the metal wire 3 is preferably in the range of 0.02 mm or more and 0.2 mm or less. By doing this, a large number of thin metal wires 3 are twisted together to form the stranded conductor 2, so the diameter of the stranded conductor 2 can be reduced, and the entire insulated wire can be made smaller in diameter, lighter, and more flexible. . As a result, it is possible to reduce stress concentration by using a large number of metal wires 3 and improve tensile strength and bending properties. If the outer diameter of the metal wire 3 is less than 0.02 mm, the metal wire itself becomes thin in diameter and a large number of wires are required, and the absolute value of the single wire strength becomes small. On the other hand, if the outer diameter of the metal wire 3 exceeds 0.2 mm, surface irregularities will become large.

金属素線3は、良導電性金属であればその種類は特に限定されないが、銅線、銅合金線、アルミニウム線、アルミニウム合金線、銅アルミニウム複合線等の良導電性の金属導体、又はそれらの表面にめっき層が施されたものを好ましく挙げることができる。銅線、銅合金線が特に好ましい。めっき層としては、はんだめっき層、錫めっき層、金めっき層、銀めっき層、ニッケルめっき層等が好ましい。金属素線3の表面には、必要に応じて絶縁皮膜(図示しない)が設けられていてもよい。絶縁皮膜の種類は特に限定されないが、一般的なエナメル皮膜を挙げることができ、例えば、ウレタン、ポリエステル、ポリエステルイミド(PEI)、ポリイミド(PI)、ポリアミドイミド(PAI)等を挙げることができる。その厚さは特に限定されないが、一般的な日本工業規格(JIS C 3202:2014)で1種、2種、3種の程度を挙げることができる。 The metal wire 3 is not particularly limited in type as long as it is a metal with good conductivity, but may be a metal conductor with good conductivity such as a copper wire, a copper alloy wire, an aluminum wire, an aluminum alloy wire, a copper-aluminum composite wire, or the like. Preferred examples include those on which a plating layer is applied. Copper wire and copper alloy wire are particularly preferred. As the plating layer, a solder plating layer, a tin plating layer, a gold plating layer, a silver plating layer, a nickel plating layer, etc. are preferable. An insulating film (not shown) may be provided on the surface of the metal wire 3 if necessary. The type of insulating film is not particularly limited, but examples include common enamel films, such as urethane, polyester, polyesterimide (PEI), polyimide (PI), polyamideimide (PAI), and the like. The thickness is not particularly limited, but may be of type 1, type 2, or type 3 according to the general Japanese Industrial Standards (JIS C 3202:2014).

撚線導体2の外径D2は、1.6mm以下であることが好ましい。こうすることにより、上記外径D2の撚線導体2は、耐屈曲性に優れた絶縁電線10の細径化を実現でき、軽量化を図ることができる。なお、撚線導体2の外径の下限は特に限定されないが、上記した繊維芯1の外径、金属素線3の外径と本数により、0.12mmとすることができる。 The outer diameter D2 of the stranded wire conductor 2 is preferably 1.6 mm or less. By doing so, the stranded wire conductor 2 having the outer diameter D2 can realize a thinner insulated wire 10 having excellent bending resistance, and can achieve weight reduction. Note that the lower limit of the outer diameter of the stranded conductor 2 is not particularly limited, but can be set to 0.12 mm depending on the outer diameter of the fiber core 1 and the outer diameter and number of the metal wires 3 described above.

(絶縁体)
絶縁体4は、撚線導体2を覆うように設けられている。例えば、撚線導体2を設けた後に、その外周を覆うように樹脂押出等で形成することができる。絶縁体4の構成材料としては、絶縁性があり、耐熱性のある樹脂材料であればよく、例えばポリイミド樹脂、アクリル樹脂、ポリ塩化ビニル(PVC)、ポリアミド樹脂、ポリエステル樹脂、フッ素系樹脂等を挙げることができる。絶縁体4の厚さは、0.05mm以上、1.0mm以下の程度であればよいが、屈曲特性向上のためには厚い方がよく、例えば0.1mm~0.3mm程度が好ましい。
(Insulator)
The insulator 4 is provided to cover the stranded conductor 2. For example, after the stranded wire conductor 2 is provided, it can be formed by resin extrusion or the like so as to cover the outer periphery thereof. The constituent material of the insulator 4 may be any insulating and heat-resistant resin material, such as polyimide resin, acrylic resin, polyvinyl chloride (PVC), polyamide resin, polyester resin, fluorine resin, etc. can be mentioned. The thickness of the insulator 4 may be approximately 0.05 mm or more and 1.0 mm or less, but the thicker the better in order to improve the bending characteristics, and is preferably about 0.1 mm to 0.3 mm, for example.

絶縁体4の厚さと、撚線導体2の外径との関係は、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」が0.15~0.30の範囲であることが好ましい。この範囲内とすることにより、耐久性と柔軟性が両立できる。この値が0.15未満では、耐久性が不足することがある。一方、この値が0.30を超えると、柔軟性が不足することがある。 The relationship between the thickness of the insulator 4 and the outer diameter of the stranded conductor 2 is: "Thickness of the insulator 4 (mm)" ÷ "Outer diameter of the stranded conductor (mm)" is 0.15 to 0.30. It is preferable that it is in the range of . By keeping it within this range, both durability and flexibility can be achieved. If this value is less than 0.15, durability may be insufficient. On the other hand, if this value exceeds 0.30, flexibility may be insufficient.

絶縁体4の厚さは均等であることが好ましい。ただし、絶縁体4は主に樹脂押出で形成されることから、樹脂押出し前の段階である撚線導体2が設けられた後の表面は、金属素線3に基づいた表面凹凸が小さいことが好ましい。本発明では、多数本の金属素線3を撚り合わせてなる撚線導体2が繊維芯1を覆うように設けているので、撚線導体2の表面の凹凸が小さくなっている。したがって、その外周に絶縁体4を樹脂押出で形成した後の外径も表面凹凸が小さくなり、かつ絶縁体4の厚さも各部で均一になる。その結果、局部的な応力集中を低減でき、屈曲寿命が長くなる。 Preferably, the thickness of the insulator 4 is uniform. However, since the insulator 4 is mainly formed by resin extrusion, the surface after the stranded wire conductor 2 is provided, which is a stage before resin extrusion, has small surface irregularities based on the metal wires 3. preferable. In the present invention, since the stranded conductor 2 formed by twisting a large number of metal wires 3 is provided so as to cover the fiber core 1, the unevenness on the surface of the stranded conductor 2 is reduced. Therefore, after the insulator 4 is formed on the outer periphery by resin extrusion, the surface unevenness of the outer diameter becomes small, and the thickness of the insulator 4 becomes uniform at each part. As a result, local stress concentration can be reduced and the bending life can be extended.

(断面積)
繊維芯1の断面積は、撚線導体2の断面積の5~20%の範囲内であることが好ましい。この範囲内とすることにより、良好な外観と耐久性を両立することができる。断面積が5%未満では、耐久性不足となることがある。一方、断面積が20%を超えると、糸が飛び出してしまい、外観不良となることがある。各断面積は、撮影した断面画像の画像解析により容易に算出することができる。
(cross-sectional area)
The cross-sectional area of the fiber core 1 is preferably within the range of 5 to 20% of the cross-sectional area of the stranded wire conductor 2. By keeping it within this range, both good appearance and durability can be achieved. If the cross-sectional area is less than 5%, durability may be insufficient. On the other hand, if the cross-sectional area exceeds 20%, threads may protrude, resulting in poor appearance. Each cross-sectional area can be easily calculated by image analysis of photographed cross-sectional images.

また、金属素線3の断面積は、繊維芯1の断面積の4~20%の範囲内であることが好ましい。の範囲内とすることにより、生産性と耐久性を両立することができる。断面積が4%未満では、外径が細くなりすぎて生産時に断線することがある。一方、断面積が20%を超えると、外径が太くなりすぎてしまい、耐久性が低下することがある。各断面積は、撮影した断面画像の画像解析により容易に算出することができる。 Further, the cross-sectional area of the metal wire 3 is preferably within the range of 4 to 20% of the cross-sectional area of the fiber core 1. By keeping it within this range, both productivity and durability can be achieved. If the cross-sectional area is less than 4%, the outer diameter may become too thin and the wire may break during production. On the other hand, if the cross-sectional area exceeds 20%, the outer diameter may become too thick and the durability may deteriorate. Each cross-sectional area can be easily calculated by image analysis of photographed cross-sectional images.

繊維芯1、金属素線3、撚線導体2それぞれの断面積が上記関係であるので、繊維芯1に比べてかなり細い金属素線3からなる撚線導体2が、繊維芯1に比べてかなり太い。その結果、繊維芯1の中心位置C1と撚線導体2の中心位置C2とのずれを容易に実現することができる。 Since the cross-sectional areas of the fiber core 1, the metal wire 3, and the stranded wire conductor 2 are in the above relationship, the stranded wire conductor 2 made of the metal wire 3, which is much thinner than the fiber core 1, is smaller than the fiber core 1. Quite thick. As a result, the deviation between the center position C1 of the fiber core 1 and the center position C2 of the stranded wire conductor 2 can be easily realized.

以下、実施例により本発明をさらに詳しく説明する。なお、これにより本発明が限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that the present invention is not limited thereby.

[実施例1]
繊維芯1として、アラミド(ポリアミド)繊維からなる繊維糸(660dtex、外径約0.245mm)を用いた。この繊維芯1上に、外径0.08mmの軟銅線を100本用い、撚りピッチ15mmで撚り合わせて外径0.97mmの撚線導体2とした。次に、溶融押出しによって、FEP樹脂(絶縁体4)を厚さ0.2mmで形成し、外径1.4mmの絶縁電線10を作製した。この絶縁電線10は、「撚りピッチ(mm)」÷「撚線導体の外径(mm)」は15.5であり、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」は0.21であり、「繊維芯1の断面積」÷「撚線導体2の総断面積」は9%であり、「1本の金属素線3の断面積」÷「繊維芯1の断面積」は11%であった。
[Example 1]
As the fiber core 1, a fiber thread (660 dtex, outer diameter of about 0.245 mm) made of aramid (polyamide) fiber was used. On this fiber core 1, 100 annealed copper wires each having an outer diameter of 0.08 mm were twisted together at a twisting pitch of 15 mm to form a stranded wire conductor 2 having an outer diameter of 0.97 mm. Next, an FEP resin (insulator 4) was formed with a thickness of 0.2 mm by melt extrusion, and an insulated wire 10 with an outer diameter of 1.4 mm was produced. In this insulated wire 10, "twisting pitch (mm)" ÷ "outer diameter of stranded conductor (mm)" is 15.5, and "thickness of insulator 4 (mm)" ÷ "outer diameter of stranded conductor" is 15.5. "diameter (mm)" is 0.21, "cross-sectional area of fiber core 1" ÷ "total cross-sectional area of stranded wire conductor 2" is 9%, "cross-sectional area of one metal wire 3" ÷ The "cross-sectional area of fiber core 1" was 11%.

[実施例2]
外径0.08mmの金属素線50本を撚りピッチ11mmで撚った外径0.72mmの撚線導体2とし、外径1.1mmの絶縁電線10を作製した他は、実施例1と同様にした。この絶縁電線10は、「撚りピッチ(mm)」÷「撚線導体の外径(mm)」は15.3であり、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」は0.28であり、「繊維芯1の断面積」÷「撚線導体2の総断面積」は19%であり、「1本の金属素線3の断面積」÷「繊維芯1の断面積」は11%であった。
[Example 2]
Example 1 was performed except that 50 metal wires with an outer diameter of 0.08 mm were twisted at a twisting pitch of 11 mm to form a stranded wire conductor 2 with an outer diameter of 0.72 mm, and an insulated wire 10 with an outer diameter of 1.1 mm was produced. I did the same. In this insulated wire 10, "twisting pitch (mm)" ÷ "outer diameter of stranded conductor (mm)" is 15.3, and "thickness of insulator 4 (mm)" ÷ "outer diameter of stranded conductor" is 15.3. "diameter (mm)" is 0.28, "cross-sectional area of fiber core 1" ÷ "total cross-sectional area of stranded wire conductor 2" is 19%, "cross-sectional area of one metal wire 3" ÷ The "cross-sectional area of fiber core 1" was 11%.

[実施例3]
外径0.11mmの金属素線50本を撚りピッチ14mmで撚った外径0.94mmの撚線導体2とし、外径1.3mmの絶縁電線10を作製した他は、実施例1と同様にした。この絶縁電線10は、「撚りピッチ(mm)」÷「撚線導体の外径(mm)」は14.9であり、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」は0.21であり、「繊維芯1の断面積」÷「撚線導体2の総断面積」は10%であり、「1本の金属素線3の断面積」÷「繊維芯1の断面積」は20%であった。
[Example 3]
Example 1 was performed except that 50 metal wires with an outer diameter of 0.11 mm were twisted at a twisting pitch of 14 mm to form a stranded wire conductor 2 with an outer diameter of 0.94 mm, and an insulated wire 10 with an outer diameter of 1.3 mm was produced. I did the same. In this insulated wire 10, "twisting pitch (mm)" ÷ "outer diameter of stranded conductor (mm)" is 14.9, and "thickness of insulator 4 (mm)" ÷ "outer diameter of stranded conductor" is 14.9. "diameter (mm)" is 0.21, "cross-sectional area of fiber core 1" ÷ "total cross-sectional area of stranded wire conductor 2" is 10%, "cross-sectional area of one metal wire 3" ÷ The "cross-sectional area of fiber core 1" was 20%.

[実施例4]
外径0.09mmの金属素線150本を撚りピッチ18mmで撚った外径1.17mmの撚線導体2とし、外径1.6mmの絶縁電線10を作製した他は、実施例1と同様にした。この絶縁電線10は、「撚りピッチ(mm)」÷「撚線導体の外径(mm)」は15.4であり、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」は0.17であり、「繊維芯1の断面積」÷「撚線導体2の総断面積」は5%であり、「1本の金属素線3の断面積」÷「繊維芯1の断面積」は13%であった。
[Example 4]
Example 1 was performed, except that 150 metal wires with an outer diameter of 0.09 mm were twisted at a twisting pitch of 18 mm to form a stranded wire conductor 2 with an outer diameter of 1.17 mm, and an insulated wire 10 with an outer diameter of 1.6 mm was produced. I did the same. In this insulated wire 10, "twisting pitch (mm)" ÷ "outer diameter of stranded conductor (mm)" is 15.4, and "thickness of insulator 4 (mm)" ÷ "outer diameter of stranded conductor" is 15.4. "diameter (mm)" is 0.17, "cross-sectional area of fiber core 1" ÷ "total cross-sectional area of stranded wire conductor 2" is 5%, "cross-sectional area of one metal wire 3" ÷ The "cross-sectional area of fiber core 1" was 13%.

[実施例5]
外径0.05mmの金属素線150本を撚りピッチ11mmで撚った外径0.76mmの撚線導体2とし、外径1.2mmの絶縁電線10を作製した他は、実施例1と同様にした。この絶縁電線10は、「撚りピッチ(mm)」÷「撚線導体の外径(mm)」は14.5であり、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」は0.26であり、「繊維芯1の断面積」÷「撚線導体2の総断面積」は16%であり、「1本の金属素線3の断面積」÷「繊維芯1の断面積」は4%であった。
[Example 5]
Example 1 was performed, except that 150 metal wires with an outer diameter of 0.05 mm were twisted at a twist pitch of 11 mm to form a stranded wire conductor 2 with an outer diameter of 0.76 mm, and an insulated wire 10 with an outer diameter of 1.2 mm was produced. I did the same. In this insulated wire 10, "twist pitch (mm)" ÷ "outer diameter of stranded conductor (mm)" is 14.5, and "thickness of insulator 4 (mm)" ÷ "outer diameter of stranded conductor" is 14.5. "diameter (mm)" is 0.26, "cross-sectional area of fiber core 1" ÷ "total cross-sectional area of stranded wire conductor 2" is 16%, "cross-sectional area of one metal wire 3" ÷ The "cross-sectional area of fiber core 1" was 4%.

[実施例6]
アラミド(ポリアミド)繊維からなる繊維糸(440dtex、外径約0.20mm)を繊維芯1とし、外径0.08mmの金属素線50本を撚りピッチ11mmで撚った外径0.72mmの撚線導体2とし、外径1.1mmの絶縁電線10を作製した他は、実施例1と同様にした。この絶縁電線10は、「撚りピッチ(mm)」÷「撚線導体の外径(mm)」は15.3であり、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」は0.28であり、「繊維芯1の断面積」÷「撚線導体2の総断面積」は13%であり、「1本の金属素線3の断面積」÷「繊維芯1の断面積」は16%であった。
[Example 6]
A fiber thread (440 dtex, outer diameter approximately 0.20 mm) made of aramid (polyamide) fiber was used as the fiber core 1, and 50 metal wires each having an outer diameter of 0.08 mm were twisted at a twisting pitch of 11 mm to have an outer diameter of 0.72 mm. The procedure was the same as in Example 1, except that the stranded conductor 2 was an insulated wire 10 having an outer diameter of 1.1 mm. In this insulated wire 10, "twisting pitch (mm)" ÷ "outer diameter of stranded conductor (mm)" is 15.3, and "thickness of insulator 4 (mm)" ÷ "outer diameter of stranded conductor" is 15.3. "diameter (mm)" is 0.28, "cross-sectional area of fiber core 1" ÷ "total cross-sectional area of stranded wire conductor 2" is 13%, "cross-sectional area of one metal strand 3" ÷ The "cross-sectional area of fiber core 1" was 16%.

[実施例7]
アラミド(ポリアミド)繊維からなる繊維糸(440dtex、外径約0.20mm)を繊維芯1とし、外径0.05mmの金属素線150本を撚りピッチ11mmで撚った外径0.76mmの撚線導体2とし、外径1.2mmの絶縁電線10を作製した他は、実施例1と同様にした。この絶縁電線10は、「撚りピッチ(mm)」÷「撚線導体の外径(mm)」は14.5であり、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」は0.26であり、「繊維芯1の断面積」÷「撚線導体2の総断面積」は11%であり、「1本の金属素線3の断面積」÷「繊維芯1の断面積」は6%であった。
[Example 7]
A fiber thread (440 dtex, outer diameter approximately 0.20 mm) made of aramid (polyamide) fiber was used as the fiber core 1, and 150 metal wires each having an outer diameter of 0.05 mm were twisted at a twisting pitch of 11 mm to have an outer diameter of 0.76 mm. Example 1 was carried out in the same manner as in Example 1, except that the stranded conductor 2 was used as an insulated wire 10 having an outer diameter of 1.2 mm. In this insulated wire 10, "twist pitch (mm)" ÷ "outer diameter of stranded conductor (mm)" is 14.5, and "thickness of insulator 4 (mm)" ÷ "outer diameter of stranded conductor" is 14.5. "diameter (mm)" is 0.26, "cross-sectional area of fiber core 1" ÷ "total cross-sectional area of stranded wire conductor 2" is 11%, "cross-sectional area of one metal wire 3" ÷ The "cross-sectional area of fiber core 1" was 6%.

[比較例1]
外径0.08mmの金属素線30本を撚りピッチ9mmで撚った外径0.58mmの撚線導体2とし、外径1.0mmの絶縁電線10を作製した他は、実施例1と同様にした。この絶縁電線10は、「撚りピッチ(mm)」÷「撚線導体の外径(mm)」は15.5であり、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」は0.34であり、「繊維芯1の断面積」÷「撚線導体2の総断面積」は31%であり、「1本の金属素線3の断面積」÷「繊維芯1の断面積」は11%であった。
[Comparative example 1]
Example 1 was performed except that 30 metal wires each having an outer diameter of 0.08 mm were twisted at a twisting pitch of 9 mm to form a stranded wire conductor 2 with an outer diameter of 0.58 mm, and an insulated wire 10 with an outer diameter of 1.0 mm was prepared. I did the same. In this insulated wire 10, "twisting pitch (mm)" ÷ "outer diameter of stranded conductor (mm)" is 15.5, and "thickness of insulator 4 (mm)" ÷ "outer diameter of stranded conductor" is 15.5. "diameter (mm)" is 0.34, "cross-sectional area of fiber core 1" ÷ "total cross-sectional area of stranded wire conductor 2" is 31%, "cross-sectional area of one metal wire 3" ÷ The "cross-sectional area of fiber core 1" was 11%.

[比較例2]
外径0.08mmの金属素線220本を撚りピッチ21mmで撚った外径1.40mmの撚線導体2とし、外径1.8mmの絶縁電線10を作製した他は、実施例1と同様にした。この絶縁電線10は、「撚りピッチ(mm)」÷「撚線導体の外径(mm)」は15.0であり、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」は0.14であり、「繊維芯1の断面積」÷「撚線導体2の総断面積」は4%であり、「1本の金属素線3の断面積」÷「繊維芯1の断面積」は11%であった。
[Comparative example 2]
A stranded conductor 2 with an outer diameter of 1.40 mm was obtained by twisting 220 metal wires with an outer diameter of 0.08 mm at a twist pitch of 21 mm, and an insulated wire 10 with an outer diameter of 1.8 mm was prepared. I did the same. In this insulated wire 10, "twist pitch (mm)" ÷ "outer diameter of stranded conductor (mm)" is 15.0, and "thickness of insulator 4 (mm)" ÷ "outer diameter of stranded conductor" is 15.0. "diameter (mm)" is 0.14, "cross-sectional area of fiber core 1" ÷ "total cross-sectional area of stranded wire conductor 2" is 4%, "cross-sectional area of one metal wire 3" ÷ The "cross-sectional area of fiber core 1" was 11%.

[比較例3]
外径0.12mmの金属素線160本を撚りピッチ27mmで撚った外径1.78mmの撚線導体2とし、外径2.2mmの絶縁電線10を作製した他は、実施例1と同様にした。この絶縁電線10は、「撚りピッチ(mm)」÷「撚線導体の外径(mm)」は15.2であり、「絶縁体4の厚さ(mm)」÷「撚線導体の外径(mm)」は0.11であり、「繊維芯1の断面積」÷「撚線導体2の総断面積」は3%であり、「1本の金属素線3の断面積」÷「繊維芯1の断面積」は24%であった。
[Comparative example 3]
Example 1 was performed, except that 160 metal wires with an outer diameter of 0.12 mm were twisted at a twist pitch of 27 mm to form a stranded wire conductor 2 with an outer diameter of 1.78 mm, and an insulated wire 10 with an outer diameter of 2.2 mm was produced. I did the same. In this insulated wire 10, "twisting pitch (mm)" ÷ "outer diameter of stranded conductor (mm)" is 15.2, and "thickness of insulator 4 (mm)" ÷ "outer diameter of stranded conductor" is 15.2. "diameter (mm)" is 0.11, "cross-sectional area of fiber core 1" ÷ "total cross-sectional area of stranded wire conductor 2" is 3%, "cross-sectional area of one metal wire 3" ÷ The "cross-sectional area of fiber core 1" was 24%.

[屈曲試験]
各実施例と比較例について屈曲試験を図4に示す方法で行った。屈曲試験は、図4に示すように、半径5mmのマンドレル42,42の間に各実施例と比較例で作製した長さ1000mmの絶縁電線10を挟み、絶縁電線10の下方端部に荷重41を取り付け、マンドレル42と垂直方向に毎分30回の速度で両側90度ずつの屈曲を1回として屈曲回数を測定した。屈曲回数の評価は、絶縁電線10の抵抗値が10%上昇するまでの回数とした。実施例1~7の絶縁電線は、いずれも屈曲回数2万回を超えたので、超えた時点で測定は終了した。一方、比較例1~3は、屈曲回数がいずれも2万回まで到達しなかった。
[Bending test]
A bending test was conducted for each example and comparative example by the method shown in FIG. 4. In the bending test, as shown in FIG. 4, the insulated wire 10 with a length of 1000 mm produced in each example and comparative example is sandwiched between mandrels 42 and 42 with a radius of 5 mm, and a load 41 is applied to the lower end of the insulated wire 10. was attached, and the number of bends was measured in the direction perpendicular to the mandrel 42 at a rate of 30 times per minute, with one bend being 90 degrees on each side. The number of times of bending was evaluated as the number of times until the resistance value of the insulated wire 10 increased by 10%. The insulated wires of Examples 1 to 7 were all bent more than 20,000 times, and the measurement was terminated when the bending number was exceeded. On the other hand, in Comparative Examples 1 to 3, the number of bendings did not reach 20,000 times.

[中心位置のずれ]
得られた耐屈曲絶縁電線10を樹脂中に硬化させて断面を切り出し、研磨して顕微鏡で観察した、繊維芯1の中心位置C1と撚線導体2の中心位置C2との距離Lを測定した。
[Misalignment of center position]
The resulting bend-resistant insulated wire 10 was cured in a resin, a cross section was cut out, polished and observed under a microscope, and the distance L between the center position C1 of the fiber core 1 and the center position C2 of the stranded wire conductor 2 was measured. .

Figure 0007412125000001
Figure 0007412125000001

1 繊維芯
2 撚線導体
3 金属素線
4 絶縁体
10 耐屈曲絶縁電線
A1 繊維芯の断面積
A2 撚線導体の断面積
A3 1本の金属素線の断面積
D1 繊維芯の外径
D2 撚線導体の外径
D3 耐屈曲絶縁電線の外径
d 金属素線の外径
C1 繊維芯の中心位置
C2 撚線導体の中心位置
L C1とC2との距離
P 撚線導体の撚りピッチ
T 絶縁体の厚さ


1 Fiber core 2 Stranded conductor 3 Metal wire 4 Insulator 10 Flexible insulated wire A1 Cross-sectional area of fiber core A2 Cross-sectional area of stranded conductor A3 Cross-sectional area of one metal wire D1 Outer diameter of fiber core D2 Twisting Outer diameter of wire conductor D3 Outer diameter of bend-resistant insulated wire d Outer diameter of metal wire C1 Center position of fiber core C2 Center position of stranded conductor L Distance between C1 and C2 P Twisting pitch of stranded conductor T Insulator thickness of


Claims (3)

繊維糸を撚り線してなる外径0.1~1.0mmの繊維芯と、該繊維芯の外周に設けられた50~150本の金属素線を撚ってなる撚線導体と、該撚線導体の外周に設けられた絶縁体とを有前記金属素線の表面には絶縁皮膜は設けられておらず、前記繊維芯の断面積が前記撚線導体の断面積の5~20%の範囲内であり、前記金属素線の断面積が前記繊維芯の断面積の4~20%の範囲内であり、前記繊維芯の中心位置と前記撚線導体の中心位置とのずれは0.10~0.30mmである、ことを特徴とする耐屈曲絶縁電線。 A fiber core with an outer diameter of 0.1 to 1.0 mm formed by twisting fiber threads, a stranded conductor formed by twisting 50 to 150 metal wires provided around the outer periphery of the fiber core, an insulator provided on the outer periphery of the stranded conductor, no insulating film is provided on the surface of the metal wire, and the cross-sectional area of the fiber core is 5 to 50% of the cross-sectional area of the stranded conductor. 20%, the cross-sectional area of the metal wire is within the range of 4 to 20% of the cross-sectional area of the fiber core, and the deviation between the center position of the fiber core and the center position of the stranded wire conductor. is 0.10 to 0.30 mm . 前記撚線導体の外径が1.6mm以下である、請求項に記載の耐屈曲絶縁電線。 The bend-resistant insulated wire according to claim 1 , wherein the stranded conductor has an outer diameter of 1.6 mm or less. 前記金属素線の外径が0.02mm以上0.2mm以下の範囲内である、請求項1又は2に記載の耐屈曲絶縁電線。

The bend-resistant insulated wire according to claim 1 or 2 , wherein the outer diameter of the metal wire is within a range of 0.02 mm or more and 0.2 mm or less.

JP2019192553A 2019-10-23 2019-10-23 Flexible insulated wire Active JP7412125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019192553A JP7412125B2 (en) 2019-10-23 2019-10-23 Flexible insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019192553A JP7412125B2 (en) 2019-10-23 2019-10-23 Flexible insulated wire

Publications (2)

Publication Number Publication Date
JP2021068572A JP2021068572A (en) 2021-04-30
JP7412125B2 true JP7412125B2 (en) 2024-01-12

Family

ID=75638723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019192553A Active JP7412125B2 (en) 2019-10-23 2019-10-23 Flexible insulated wire

Country Status (1)

Country Link
JP (1) JP7412125B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208275A (en) 2016-05-19 2017-11-24 東京特殊電線株式会社 High-bent heater wire and planar heating element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106869U (en) * 1982-01-13 1983-07-20 住友電気工業株式会社 Thin conductor for caulking connection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017208275A (en) 2016-05-19 2017-11-24 東京特殊電線株式会社 High-bent heater wire and planar heating element

Also Published As

Publication number Publication date
JP2021068572A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
US7847192B2 (en) Electrical conductor
JP6783550B2 (en) High bending heater wire and planar heating element
JP4092237B2 (en) Fiber rope for rope
US10249412B2 (en) Composite cable
KR20120004910A (en) Electronic wire and method of manufacturing the same
JP2003303515A (en) Composite stranded conductor for carrying electricity
JP6893496B2 (en) coaxial cable
JP7412125B2 (en) Flexible insulated wire
JP7412126B2 (en) Flexible insulated wire
JP4938403B2 (en) Fiber composite wire conductor and insulated wire
US5354954A (en) Dielectric miniature electric cable
JP7412127B2 (en) Flexible insulated wire
CN110783026A (en) Insulated wire and cable
JP5857993B2 (en) Flat cable
JP2021068573A (en) Flex-resistance insulated wire
JP2021068574A (en) Flex-resistance insulated wire
CN217008685U (en) Extrusion-resistant small-diameter conductive fiber coaxial cable
JP2000090753A (en) Coaxial cable
JP5987962B2 (en) Multi-core cable and manufacturing method thereof
JP2862543B2 (en) Composite twist type tensile strength element
CN217008688U (en) Light conductive fiber coaxial cable
JP6089071B2 (en) Headphone cable
CN218497832U (en) Super-flexible high-tensile-strength watertight cable and conductor thereof
JP7295817B2 (en) Conductor stranded wire for wire harness
JP2023044086A (en) cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231226

R150 Certificate of patent or registration of utility model

Ref document number: 7412125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150