JPH0378010B2 - - Google Patents
Info
- Publication number
- JPH0378010B2 JPH0378010B2 JP60278604A JP27860485A JPH0378010B2 JP H0378010 B2 JPH0378010 B2 JP H0378010B2 JP 60278604 A JP60278604 A JP 60278604A JP 27860485 A JP27860485 A JP 27860485A JP H0378010 B2 JPH0378010 B2 JP H0378010B2
- Authority
- JP
- Japan
- Prior art keywords
- distortion
- signal
- amplifier
- agc
- level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Noise Elimination (AREA)
- Radio Relay Systems (AREA)
Description
【発明の詳細な説明】
〔概要〕
入力信号中におけるパイロツト信号のレベルに
よつて作成したAGC電圧に応じてAGC制御を行
つて信号出力レベルを安定化している無線装置に
おいて、信号レベルによつて混変調歪量が変化す
るので、入力信号から作成した歪成分の信号によ
つて入力信号中の歪を補償する歪補償器を設ける
とともに、AGC電圧に応じて歪補償器における
歪補償量を制御するようにしたので、信号レベル
の変動に拘わらず出力における歪量の変化を防止
することができる。[Detailed Description of the Invention] [Summary] In a wireless device that stabilizes a signal output level by performing AGC control according to an AGC voltage created based on the level of a pilot signal in an input signal, Since the amount of intermodulation distortion changes, a distortion compensator is provided to compensate for the distortion in the input signal using a distortion component signal created from the input signal, and the amount of distortion compensation in the distortion compensator is controlled according to the AGC voltage. This makes it possible to prevent changes in the amount of distortion in the output regardless of changes in the signal level.
本発明は混変調を補償するための装置に係り、
特に無線装置における受信部の歪を補償するため
の混変調補償装置に関するものである。
The present invention relates to a device for compensating for cross-modulation,
In particular, the present invention relates to a cross-modulation compensation device for compensating for distortion in a receiving section of a wireless device.
ヘテロダイン中継を行うSSB多重無線装置等に
おいては、通常送信部の最終段電力増幅器におけ
る歪が最も大きく、これに対しては、従来から歪
補償器を設けて混変調を補償するようにしてい
る。しかしながら多重量が増加すると、受信信号
を増幅し周波数変換する受信部における歪も無視
することができなくなり、受信部における歪補償
が必要になる。 In SSB multiplex radio equipment that performs heterodyne relay, distortion is usually the largest in the final stage power amplifier of the transmitter, and to counter this, conventionally a distortion compensator has been provided to compensate for cross modulation. However, as the multiplex weight increases, distortion in the receiving section that amplifies the received signal and converts the frequency cannot be ignored, and distortion compensation in the receiving section becomes necessary.
本発明はこのような場合に好適な混変調補償装
置を提供しようとするものである。 The present invention aims to provide a cross-modulation compensation device suitable for such cases.
従来から送信部の終段電力増幅を行うFET増
幅器の利得の温度変動による歪補償の目的で、入
力信号と出力信号のそれぞれのレベルを検出し
て、その差が一定になるように増幅段に自動利得
制御(AGC)をかけるとともに、終段電力増幅
器の後段に歪補償器を設けて、出力信号における
混変調歪を補償する方式が用いられている。
Conventionally, in order to compensate for distortion due to temperature fluctuations in the gain of the FET amplifier that performs the final stage power amplification of the transmitter, the levels of the input signal and output signal are detected, and the difference between them is kept constant at the amplification stage. A method is used in which automatic gain control (AGC) is applied and a distortion compensator is provided after the final stage power amplifier to compensate for intermodulation distortion in the output signal.
この場合は受信部から送信部に対する入力レベ
ルは一定であるとして、送信部のみの歪補償を行
つているが、実際はフエージング等によつて受信
部からの入力レベルも変動し、これに従つて歪量
も変動するので、送信部のみの歪補償では不十分
であつて、受信部においても混変調補償が必要に
なるが、従来これに対する対策は全く考えられて
いなかつた。
In this case, the input level from the receiving section to the transmitting section is assumed to be constant, and distortion compensation is performed only for the transmitting section, but in reality, the input level from the receiving section also fluctuates due to fading, etc., and the input level from the receiving section changes accordingly. Since the amount of distortion also fluctuates, distortion compensation only in the transmitting section is insufficient, and cross-modulation compensation is also required in the receiving section, but no countermeasures have been considered in the past.
本発明はこのような従来技術の問題点を解決し
ようとするものであつて、第1図に示すような原
理的構成を有するものである。
The present invention is intended to solve the problems of the prior art, and has a basic configuration as shown in FIG.
101は無線装置におけるAGC電圧発生手段
であつて、入力信号中におけるパイロツト信号の
レベルを検出してAGC電圧を発生する。無線装
置は、このAGC電圧に応じて増幅器の利得を制
御することによつて、出力信号レベルを安定化す
る。 Reference numeral 101 is an AGC voltage generating means in the wireless device, which detects the level of a pilot signal in an input signal and generates an AGC voltage. The wireless device stabilizes the output signal level by controlling the gain of the amplifier according to this AGC voltage.
102は歪補償手段であつて、入力信号から歪
成分の信号を発生し、この歪信号によつて入力信
号中の歪を補償する。 Reference numeral 102 denotes a distortion compensating means, which generates a distortion component signal from the input signal and compensates for distortion in the input signal using this distortion signal.
103は制御手段であつて、AGC電圧発生手
段101のAGC電圧に応じて上述の歪補償手段
102における歪補償量を制御する。 103 is a control means that controls the amount of distortion compensation in the distortion compensation means 102 according to the AGC voltage of the AGC voltage generation means 101.
無線装置においては信号レベルによつて混変調
歪量が変化するが、信号レベルに対応するパイロ
ツト信号レベルから作成されたAGC電圧に応じ
て、歪補償手段の歪補償量を変化させるようにし
たので、信号レベルが変化しても出力信号におけ
る歪量の変化を防止することができる。
In radio equipment, the amount of cross-modulation distortion changes depending on the signal level, but the amount of distortion compensation of the distortion compensation means is changed according to the AGC voltage created from the pilot signal level corresponding to the signal level. , even if the signal level changes, it is possible to prevent the amount of distortion in the output signal from changing.
第2図は本発明の一実施例の構成を示すもので
あつて、1は低雑音増幅器、2は受信帯域フイル
タ、3は周波数変換器、4は受信局部発振器、5
は前置中間周波(IF)増幅器、6はIF帯域フイ
ルタ、7はAGC増幅器、8はIF増幅器、9〜1
1はパイロツト信号抽出フイルタ、12〜14は
パイロツト信号検波器、15は直流(DC)増幅
器、16は歪補償器、17は歪成分制御回路であ
る。
FIG. 2 shows the configuration of an embodiment of the present invention, in which 1 is a low noise amplifier, 2 is a receiving band filter, 3 is a frequency converter, 4 is a receiving local oscillator, and 5 is a receiving band filter.
is a pre-intermediate frequency (IF) amplifier, 6 is an IF band filter, 7 is an AGC amplifier, 8 is an IF amplifier, 9 to 1
1 is a pilot signal extraction filter, 12 to 14 are pilot signal detectors, 15 is a direct current (DC) amplifier, 16 is a distortion compensator, and 17 is a distortion component control circuit.
第2図において、周波数多重化されたSSB信号
からなる受信信号aは、低雑音増幅器1を経て増
幅され、受信帯域フイルタ2を経て帯域制限さ
れ、周波数変換器3において受信局部発振器4か
らの局発信号と混合されてIF信号出力を生じる。
このIF信号は前置IF増幅器5において増幅され、
IF帯域フイルタ6を経て帯域制限され、AGC増
幅器7に加えられてAGCを行われるとともに増
幅されて一定化されたIF出力を生じる。この出
力はIF増幅器8において一定の増幅を行われた
のち、歪補償器16において歪の補償を行われて
IF出力信号bを生じる。 In FIG. 2, a received signal a consisting of a frequency-multiplexed SSB signal is amplified via a low-noise amplifier 1, band-limited via a receiving band filter 2, and then sent from a receiving local oscillator 4 to a frequency converter 3. It is mixed with the emitted signal to produce an IF signal output.
This IF signal is amplified in the pre-IF amplifier 5,
The signal is band-limited through an IF band filter 6, and is added to an AGC amplifier 7 to perform AGC and is amplified to produce a constant IF output. This output is amplified to a certain degree by the IF amplifier 8, and then compensated for distortion by the distortion compensator 16.
produces an IF output signal b.
一方、周波数多重化されたSSB信号は第3図に
示すようなスペクトルを有し、帯域の両端と中央
付近に一定出力のパイロツト信号P1,P2,P3,
……を含んでいる。AGC増幅器7のIF出力の一
部は、パイロツト信号抽出フイルタ9〜11に加
えられ、第3図に示すようなパイロツト信号を抽
出される。抽出された各パイロツト信号P1,P2,
P3は、それぞれ検波器12〜14において検波
されたのち合成され、DC増幅器15を経て増幅
されてAGC電圧cを生じ、この電圧によつて
AGC増幅器7においてAGC制御が行われて、IF
出力レベルが一定化される。 On the other hand, the frequency-multiplexed SSB signal has a spectrum as shown in Figure 3, with constant output pilot signals P 1 , P 2 , P 3 ,
Contains... A part of the IF output of the AGC amplifier 7 is applied to pilot signal extraction filters 9 to 11, and a pilot signal as shown in FIG. 3 is extracted. Each extracted pilot signal P 1 , P 2 ,
P 3 is detected by the detectors 12 to 14, and then combined and amplified via the DC amplifier 15 to generate the AGC voltage c.
AGC control is performed in the AGC amplifier 7, and the IF
The output level is made constant.
さらにAGC電圧cは歪成分制御回路17を介
して歪補償器16に加えられ、歪補償器16にお
ける歪補償量を変化させることによつて、歪量を
一定化されたIF出力信号aを得ることができる。 Further, the AGC voltage c is applied to the distortion compensator 16 via the distortion component control circuit 17, and by changing the amount of distortion compensation in the distortion compensator 16, an IF output signal a with a constant amount of distortion is obtained. be able to.
第4図は第2図における歪補償器16と歪成分
制御回路17の構成例を示したものであつて、2
1は増幅器、22はハイブリツド、23は可変減
衰器、24は可変移相器、25はハイブリツド、
26は増幅器、27は減衰器、28はハイブリツ
ド、29,30は伝送線、31はハイブリツド、
32,33は係数器である。ハイブリツド25、
増幅器26、減衰器27、ハイブリツド28、伝
送線29は歪信号発生部34を構成している。 FIG. 4 shows an example of the configuration of the distortion compensator 16 and distortion component control circuit 17 in FIG.
1 is an amplifier, 22 is a hybrid, 23 is a variable attenuator, 24 is a variable phase shifter, 25 is a hybrid,
26 is an amplifier, 27 is an attenuator, 28 is a hybrid, 29 and 30 are transmission lines, 31 is a hybrid,
32 and 33 are coefficient multipliers. hybrid 25,
The amplifier 26, attenuator 27, hybrid 28, and transmission line 29 constitute a distortion signal generator 34.
第4図において、入力信号は増幅器21におい
て増幅されたのち、ハイブリツド22を経て2分
されて、それぞれ可変減衰器23、可変移相器2
4に入力される。可変減衰器23は、係数器32
からの制御電圧に応じた減衰を入力信号に対して
与えたのち、これを歪信号発生部34に入力す
る。歪信号発生部34においては、入力信号はハ
イブリツド25で2分される。ハイブリツド25
で2分された信号のうち一方は、増幅器26にお
いて増幅器1、周波数変換器3、前置IF増幅器
5と同等の特性の増幅を行われて、類似の歪成分
を生じる。この歪成分は、固定減衰器27を経て
所要の減衰を与えられる。またハイブリツド25
で2分された他方の信号は、伝送線29を経て適
当な固定的遅延を与えられて伝送される。ハイブ
リツド28は固定減衰器27の信号と伝送線29
の信号とを合成する。ハイブリツド28の出力
は、入力信号に所要の歪を与えた歪信号である。 In FIG. 4, the input signal is amplified by an amplifier 21, then passed through a hybrid 22 and divided into two parts, a variable attenuator 23 and a variable phase shifter 2, respectively.
4 is input. The variable attenuator 23 is a coefficient unit 32
After applying attenuation to the input signal according to the control voltage from the input signal, the input signal is input to the distortion signal generating section 34. In the distortion signal generator 34, the input signal is divided into two by the hybrid 25. hybrid 25
One of the two signals is amplified in the amplifier 26 to have the same characteristics as the amplifier 1, the frequency converter 3, and the pre-IF amplifier 5, producing similar distortion components. This distortion component passes through a fixed attenuator 27 and is given the required attenuation. Also hybrid 25
The other signal divided into two is transmitted via the transmission line 29 with an appropriate fixed delay. The hybrid 28 connects the signal of the fixed attenuator 27 and the transmission line 29
signal. The output of the hybrid 28 is a distorted signal obtained by applying the required distortion to the input signal.
一方、ハイブリツド22で2分された他方の信
号は、可変移相器24において係数器33からの
制御電圧に応じた位相変化を与えられたのち、伝
送線30を経て適当な位相遅延を与えられて伝送
される。ハイブリツド31は伝送線30を経て伝
送された伝送信号に、ハイブリツド28の歪信号
を減算的に合成して出力信号を発生する。 On the other hand, the other signal divided into two by the hybrid 22 is given a phase change according to the control voltage from the coefficient multiplier 33 in the variable phase shifter 24, and then given an appropriate phase delay via the transmission line 30. transmitted. The hybrid 31 subtractively combines the distortion signal of the hybrid 28 with the transmission signal transmitted via the transmission line 30 to generate an output signal.
第4図において、増幅器26の特性と、減衰器
27の減衰量とを適当に選択することによつて、
ハイブリツド31において伝送信号に合成される
歪信号を、入力信号における歪を補償するのに適
当な成分を有するようにすることができる。 In FIG. 4, by appropriately selecting the characteristics of the amplifier 26 and the amount of attenuation of the attenuator 27,
The distortion signal that is combined with the transmission signal in hybrid 31 can have components suitable for compensating for distortion in the input signal.
さらに係数器32は、DC増幅器15から供給
されるAGC電圧に応じて可変減衰器23の減衰
量を変化させることによつて、歪信号発生部34
の入力レベルを変化させ、これによつてハイブリ
ツド31において合成される歪信号のレベルを、
入力信号のレベルに応じて変化させる。また係数
器33はAGC電圧に応じて可変移相器24の移
相量を変化させることによつて、入力レベルの変
化に応じて生じる、ハイブリツド31の入力にお
ける歪信号と伝送信号との位相差を補償するよう
に動作する。 Furthermore, the coefficient unit 32 changes the amount of attenuation of the variable attenuator 23 according to the AGC voltage supplied from the DC amplifier 15, so that the distortion signal generator 34
The level of the distortion signal synthesized in the hybrid 31 is changed by changing the input level of the hybrid 31.
Change according to the level of the input signal. In addition, the coefficient multiplier 33 changes the phase shift amount of the variable phase shifter 24 according to the AGC voltage, thereby adjusting the phase difference between the distorted signal at the input of the hybrid 31 and the transmission signal, which occurs in response to a change in the input level. works to compensate.
以上説明したように本発明の混変調補償装置で
は、入力信号中におけるパイロツト信号のレベル
によつてAGC電圧を発生して、このAGC電圧に
応じてAGC制御を行つている無線装置において、
入力信号から作成した歪成分の信号によつて入力
信号中の歪を補償する際に、AGC電圧に応じて
歪補償手段における歪補償量を制御するようにし
たので、フエージング等に基づいて信号レベルが
変動して信号中の混変調歪量が変動する場合に
も、出力における歪量の変化を防止することがで
きる。
As explained above, the cross-modulation compensator of the present invention generates an AGC voltage depending on the level of a pilot signal in an input signal, and performs AGC control according to this AGC voltage.
When compensating the distortion in the input signal using the distortion component signal created from the input signal, the amount of distortion compensation in the distortion compensation means is controlled according to the AGC voltage, so the signal is adjusted based on fading etc. Even when the level fluctuates and the amount of cross-modulation distortion in the signal fluctuates, it is possible to prevent the amount of distortion in the output from changing.
第1図は本発明の原理的構成を示す図、第2図
は本発明の一実施例を示す図、第3図は周波数多
重されたSSB信号を示す図、第4図は歪補償器と
歪成分制御回路の構成例を示す図である。
1……低雑音増幅器、2……受信帯域フイル
タ、3……周波数変換器、4……受信局部発振
器、5……前置中間周波(IF)増幅器、6……
IF帯域フイルタ、7……AGC増幅器、8……IF
増幅器、9〜11……パイロツト信号抽出フイル
タ、12〜14……パイロツト信号検波器、15
……直流(DC)増幅器、16……歪補償器、1
7……歪成分制御回路。
Fig. 1 is a diagram showing the basic configuration of the present invention, Fig. 2 is a diagram showing an embodiment of the invention, Fig. 3 is a diagram showing a frequency multiplexed SSB signal, and Fig. 4 is a diagram showing a distortion compensator. FIG. 2 is a diagram illustrating a configuration example of a distortion component control circuit. 1...Low noise amplifier, 2...Receiving band filter, 3...Frequency converter, 4...Receiving local oscillator, 5...Pre-intermediate frequency (IF) amplifier, 6...
IF band filter, 7...AGC amplifier, 8...IF
Amplifier, 9-11...Pilot signal extraction filter, 12-14...Pilot signal detector, 15
... Direct current (DC) amplifier, 16 ... Distortion compensator, 1
7...Distortion component control circuit.
Claims (1)
を検出してAGC電圧を発生するAGC電圧発生手
段101を具え、該AGC電圧に応じてAGC制御
を行つて出力信号レベルを安定化する無線装置に
おいて、 入力信号から歪成分の信号を発生し該歪信号に
よつて入力信号中の歪を補償する歪補償手段10
2と、 前記AGC電圧に応じて該歪補償手段102に
おける歪補償量を制御する制御手段103とを設
けてなることを特徴とする混変調補償装置。[Claims] 1. AGC voltage generation means 101 that detects the level of a pilot signal in an input signal and generates an AGC voltage, and performs AGC control according to the AGC voltage to stabilize the output signal level. In a wireless device, distortion compensation means 10 generates a distortion component signal from an input signal and compensates for distortion in the input signal using the distortion signal.
2; and a control means 103 for controlling the amount of distortion compensation in the distortion compensation means 102 according to the AGC voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27860485A JPS62137927A (en) | 1985-12-11 | 1985-12-11 | Cross modulation compensating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27860485A JPS62137927A (en) | 1985-12-11 | 1985-12-11 | Cross modulation compensating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62137927A JPS62137927A (en) | 1987-06-20 |
JPH0378010B2 true JPH0378010B2 (en) | 1991-12-12 |
Family
ID=17599585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27860485A Granted JPS62137927A (en) | 1985-12-11 | 1985-12-11 | Cross modulation compensating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62137927A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08139632A (en) * | 1994-11-15 | 1996-05-31 | Uniden Corp | Narrow band communication equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5484413A (en) * | 1977-12-19 | 1979-07-05 | Nippon Telegr & Teleph Corp <Ntt> | Heterodyne repeating system |
JPS5921138A (en) * | 1982-07-27 | 1984-02-03 | Sumitomo Electric Ind Ltd | Transmitting system having amplitude-frequency characteristic variation compensating circuit |
-
1985
- 1985-12-11 JP JP27860485A patent/JPS62137927A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5484413A (en) * | 1977-12-19 | 1979-07-05 | Nippon Telegr & Teleph Corp <Ntt> | Heterodyne repeating system |
JPS5921138A (en) * | 1982-07-27 | 1984-02-03 | Sumitomo Electric Ind Ltd | Transmitting system having amplitude-frequency characteristic variation compensating circuit |
Also Published As
Publication number | Publication date |
---|---|
JPS62137927A (en) | 1987-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5770971A (en) | Distortion compensation control for a power amplifier | |
US5113525A (en) | Linear-modulation type radio transmitter | |
US6647073B2 (en) | Linearisation and modulation device | |
KR100421145B1 (en) | Compensating method and circuit of non-linear distortion | |
US6922552B2 (en) | Linearization method and signal processing device | |
JPH0923119A (en) | Prior strain circuit and mobile machine using this circuit | |
JP3352929B2 (en) | Feed forward amplifier | |
JPS60106209A (en) | Microwave power amplifier device | |
JPH03198511A (en) | Low distortion high frequency amplifier | |
KR20000035116A (en) | Distortion compensation circuit | |
US4016497A (en) | Feedbackward distortion compensating circuit | |
GB2381162A (en) | Wireless transmitter and device for mobile station | |
JPH0378010B2 (en) | ||
US5396652A (en) | Transmitting power control unit having a constant output level throughout a predetermined frequency band | |
JP2937866B2 (en) | Wireless transmission device | |
JP3367745B2 (en) | Distortion compensator | |
JPH05268117A (en) | Transmission power control system | |
US20030179043A1 (en) | Method and apparatus for providing carrier cancellation in a feed forward amplifier circuit | |
JP2003198271A (en) | Distortion compensation circuit | |
JP3160081B2 (en) | Distortion compensation circuit | |
JPS60171831A (en) | Cross modulation compensating device | |
JPH08125554A (en) | Automatic distortion compensation circuit | |
JP3152553B2 (en) | Linear transmission circuit | |
JPH06244647A (en) | Non-linear distortion compensation control circuit for amplifier | |
JPH0447804A (en) | Distortion compensating circuit |