JPH0377908A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPH0377908A
JPH0377908A JP21382089A JP21382089A JPH0377908A JP H0377908 A JPH0377908 A JP H0377908A JP 21382089 A JP21382089 A JP 21382089A JP 21382089 A JP21382089 A JP 21382089A JP H0377908 A JPH0377908 A JP H0377908A
Authority
JP
Japan
Prior art keywords
polygon mirror
seat
pressure
buffer member
spacer member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21382089A
Other languages
Japanese (ja)
Inventor
Yoshihiko Hirose
広瀬 吉彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP21382089A priority Critical patent/JPH0377908A/en
Publication of JPH0377908A publication Critical patent/JPH0377908A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress the degradation in the accuracy of the reflecting surfaces of a polygon mirror and to obtain high-grade output images, etc., by loading the polygon mirror by means of a washer provided on a revolving shaft, a spacer member 3 and a buffer member having rubber elasticity, etc. CONSTITUTION:The polygon mirror 1 is held by the seat 2a provided to the revolving shaft 2, the spacer member 3 and the buffer member 4, such as urethane sheet, having the rubber elasticity. Screws 5 are passed through the spacer member 3, the buffer member 4 and the polygon mirror 1 and are screwed to the female thread parts formed on the seat 2a of the revolving shaft to fix the polygon mirror 1 to revolving shaft 2. The buffer member 4 deflects and acts to internally disperse the pressure when the nonuniform pressure from the screw heads works on the same; therefore, the polygon mirror 1 is eventually pressed by the uniform pressure. The generation of strains is minimized even if the polygon mirror 1 is thermally expanded by the temp. rise. The fluctuation in the scanning position of the beam by the degradation in the accuracy of the reflecting surface of the polygon mirror 1 is suppressed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光源からの光束を被照射体上に走査させる為
の光偏向装置に関し、特に回転多面鏡を用いた光偏向装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical deflection device for scanning an irradiated object with a light beam from a light source, and particularly to an optical deflection device using a rotating polygon mirror.

[従来の技術] 近年、レーザービームな走査しこのレーザービームの明
滅により感光体上に静電潜像を形成して所望の画像を記
録するレーザービームプリンタ(LBP)や、フィルム
状の感光体上にLBPと同様に明滅するレーザービーム
を走査して銀塩写真方法を用いて画像を記録する装置が
広く一般に使用されてきているこの従来からの光偏向装
置すなわちレーザースキャナ装置の一構成例が第6図に
示されている。同図において、画像信号を受けたレーザ
ードライバ101は所定のタイミングで固体レーザー素
子102を明滅させ、この固体レーザー素子102から
放射されたレーザ−ビームはコリメータレンズ系103
によって平行光に変換されて矢印B方向に回転する多面
m 104に入射する。そして、この多面鏡104で反
射されたレーザービームはf・θレノ1群105によっ
て被走査面(感光体ドラムの表面)106上にスポット
状に結像される。
[Prior Art] In recent years, laser beam printers (LBPs) that record a desired image by scanning a laser beam and flickering the laser beam to form an electrostatic latent image on a photoreceptor, and a laser beam printer (LBP) that records a desired image by scanning a laser beam and flickering the laser beam, and The following is an example of the configuration of a conventional optical deflection device, that is, a laser scanner device, which has been widely used to record an image by scanning a flickering laser beam and using silver halide photography, similar to the LBP. It is shown in Figure 6. In the figure, a laser driver 101 that receives an image signal blinks a solid-state laser element 102 at a predetermined timing, and the laser beam emitted from this solid-state laser element 102 is transmitted to a collimator lens system 103.
The light is converted into parallel light by , and is incident on the polygonal surface m 104 which rotates in the direction of arrow B. The laser beam reflected by this polygonal mirror 104 is imaged into a spot on a scanned surface (the surface of the photoreceptor drum) 106 by an f/theta lens group 105.

こうした構成において、多面鏡104は、通常、アルミ
(/l)を主原料とした金属から構成され反射面には酸
化防止の為に金属蒸@膜などが形成され、それによって
強度、加工性、重量等の諸特性を満足させている。
In such a configuration, the polygon mirror 104 is usually made of a metal whose main material is aluminum (/L), and a metal vapor film or the like is formed on the reflective surface to prevent oxidation, thereby improving strength, workability, and It satisfies various characteristics such as weight.

更に、こうしたレーザースキャナ装置においては、多面
鏡の回転時にこれの反射面が振れて各反射面ごとにビー
ムの走査位置が変わってしまわない様に、多面鏡と回転
軸に高精度なバランス調整が施されている。また、多面
鏡に等角間隔で複数(2〜6程度)のねじ挿入穴が設け
られ、ここに雄ねじが通されて回転軸の座に設けられた
複数の雌ねじ部に螺入されることにより、雄ねじのねじ
頭と上記座の間で、回転軸と多面鏡の位置関係が回転の
加減速でずれない様に、多面鏡が挟持されている。
Furthermore, in such laser scanner devices, highly accurate balance adjustment is required for the polygon mirror and the rotation axis to prevent the reflective surface from swinging when the polygon mirror rotates, causing the beam scanning position to change for each reflective surface. It has been subjected. In addition, the polygon mirror is provided with multiple screw insertion holes (approximately 2 to 6) at equal angular intervals, and the male screws are passed through these holes and screwed into the multiple female screw holes provided on the seat of the rotating shaft. A polygon mirror is held between the screw head of the male screw and the seat so that the positional relationship between the rotating shaft and the polygon mirror does not shift due to acceleration and deceleration of rotation.

このねじを用いた固定方法は強度的に優れ、大型の多面
鏡を用いた場合や2000Orpmといった高速で多面
鏡な回転させる場合においても回転軸の座と回転鏡との
ずれを生じさせない利点を有している。
This fixing method using screws has excellent strength, and has the advantage of not causing misalignment between the rotating shaft seat and the rotating mirror even when using a large polygon mirror or rotating the polygon mirror at high speeds such as 2000 rpm. are doing.

[発明が解決しようとする課題1 しかし乍ら、多面鏡を回転軸の座に固定する為の圧力は
、等角間隔で分布して締められた各雄ねじの頭を中心と
して多面鏡に加えられている。従って、装置が作動し温
度上昇が起こることにより多面鏡が熱膨張すると、上記
ねじ頭にて加圧された多面鏡の部分と圧力が左程加わっ
ていない上記ねじ顧問の多面鏡の部分において、膨張の
程度に差ができて歪が生じ、高精度に仕上げられた反射
面精度が著しく悪化するという欠点がある。
[Problem to be solved by the invention 1 However, the pressure for fixing the polygon mirror to the seat of the rotating shaft is applied to the polygon mirror centering on the heads of the male screws that are tightened at equal angular intervals. ing. Therefore, when the polygon mirror thermally expands as the device operates and the temperature rises, the portion of the polygon mirror pressurized by the screw head and the portion of the polygon mirror of the screw advisor to which no pressure is applied to the left, The disadvantage is that the difference in the degree of expansion causes distortion, which significantly deteriorates the accuracy of the highly precisely finished reflective surface.

この様に、熱膨張による歪が多面鏡に生じると、回転の
バランスを完全に取っていても多面鏡の反肘面毎にビー
ムの走査位置がずれてしまい、得られる画像品位は著し
く低下することになる。
In this way, when distortion occurs in a polygon mirror due to thermal expansion, even if the rotation is perfectly balanced, the scanning position of the beam will shift for each facet of the polygon mirror opposite the elbow, and the quality of the image obtained will deteriorate significantly. It turns out.

特に、高速回転が必要とされる装置においては、回転駆
動力を生じさせるモータ部で高周波鉄損や風損等のエネ
ルギ損失が多くなって、モータ部の発熱量が極端に多く
なり、上記多面鏡の熱膨張の歪による画像品位低下が大
きな問題となる。
In particular, in devices that require high-speed rotation, energy losses such as high-frequency iron loss and wind loss increase in the motor section that generates the rotational driving force, and the amount of heat generated in the motor section becomes extremely large. A major problem is deterioration of image quality due to distortion due to thermal expansion of the mirror.

一方、上述のねじ止めによる圧力不均一を直す為にねじ
頭と多面鏡の間にスペーサを挾ませ、ねじ頭からの多面
鏡に伝わる圧力を緩和させる方法が考えられているが、
スペーサに多面鏡の肉厚なみの肉厚が無いと均一な圧力
を得ることが出来ず、スペーサ厚による装置の大型化、
回転モーメント増大に伴う消費電力増大及びモータ部の
発熱、更には多面鏡を支える回転軸の重心が高くなり回
転バランスが不安定になって多面鏡の高速回転を妨げる
等といった欠点を有している。
On the other hand, in order to correct the uneven pressure caused by the screw fixation described above, a method has been considered in which a spacer is inserted between the screw head and the polygon mirror to alleviate the pressure transmitted from the screw head to the polygon mirror.
If the spacer is not as thick as the polygon mirror, it will not be possible to obtain uniform pressure, and the thickness of the spacer will increase the size of the device.
This has drawbacks such as increased power consumption and heat generation in the motor due to increased rotational moment, and the center of gravity of the rotating shaft that supports the polygon mirror becomes high, making the rotational balance unstable and hindering high-speed rotation of the polygon mirror. .

従って、本発明の目的は、上記課題に鑑み、ねじを用い
て多面鏡を回転軸の座に止める構成を取りつつ、熱膨張
により多面鏡の反射面精度が悪化しない様にされた光偏
向装置を提供することにある。
Therefore, in view of the above-mentioned problems, an object of the present invention is to provide an optical deflection device that uses screws to fix the polygon mirror on the seat of the rotating shaft, while preventing deterioration of the precision of the reflective surface of the polygon mirror due to thermal expansion. Our goal is to provide the following.

[課題を解決する為の手段] 上記目的を達成する本発明では、半導体レーザーなどの
光源からの光束を被蝉射体に走査する為に回転多面鏡を
用いる光偏向装置において、回転軸に設けた座と、スペ
ーサ部材及びこのスペーサ部材と多面鏡開に挟まれるゴ
ム弾性を有するウレタンシートなどの緩衝部材とで多面
鏡を挟持し、スペーサ部材と緩衝部材と多面鏡にねじを
貫通させそして回転軸の座に形成した雌ねじ部に螺合さ
せることにより、多面鏡が回転軸に固定されている。
[Means for Solving the Problems] In the present invention, which achieves the above object, in an optical deflection device that uses a rotating polygon mirror to scan a light beam from a light source such as a semiconductor laser onto a cicada object, A polygon mirror is held between a seat, a spacer member, and a cushioning member such as a urethane sheet having rubber elasticity that is sandwiched between the spacer member and the polygon opening, a screw is passed through the spacer member, the buffer member, and the polygon mirror, and then the polygon mirror is rotated. The polygon mirror is fixed to the rotating shaft by screwing into a female thread formed on the seat of the shaft.

より具体的には、スペーサ部材は回転軸の座と略同一外
径を有する円板であったり、緩術部材は同じくこの座と
略同一外径を有するゴム弾性を有するシートであったり
、またスペーサ部材と緩衝部材は別体になっていてもよ
いし一体成形されていてもよい。
More specifically, the spacer member is a disk having an outer diameter that is approximately the same as the seat of the rotating shaft, the relaxation member is a rubber elastic sheet that also has an outer diameter that is approximately the same as the seat, or The spacer member and the buffer member may be separate members or may be integrally molded.

[作用J 上記構成を有する本発明によれば、上記ねじの頭からの
圧力を緩和させるスペーサ部材と多面鏡との間にゴム弾
性などを有する緩衝部材を挾ませているので、ねじ頭か
らの不均一な圧力が加わった際、緩衝部材が撓んで圧力
を内部分散させる様に働くので多面鏡は均一な圧力で押
えられることになる。よって温度上昇により多面鏡が熱
膨張しても歪の発生が最小限に押えられ、多面鏡の反射
面精度低下によるビームの走査位置のばらつきが極力抑
えられる。
[Operation J] According to the present invention having the above configuration, a buffer member having rubber elasticity or the like is interposed between the spacer member that relieves the pressure from the screw head and the polygon mirror, so that the pressure from the screw head is reduced. When uneven pressure is applied, the buffer member bends and works to internally disperse the pressure, so the polygon mirror is held down with uniform pressure. Therefore, even if the polygon mirror thermally expands due to a rise in temperature, the occurrence of distortion is suppressed to a minimum, and variations in the beam scanning position due to a decrease in the precision of the reflective surface of the polygon mirror are suppressed to the utmost.

[実施例] 第1図は本発明の実施例を示す、同図において、1は8
面の反射面1aを有するアルミ(Aβ)合金製の多面鏡
、2は多面jQ1を座2a上に固定して回転させる為の
回転軸、3は多面atと回転軸2を固定したときに回転
バランス取り用のバランスウェイトを取りつける為のス
ペーサ部材としてのバランスリングであり上記塵2aと
略同一外径を有し、4はゴム弾性を有する緩衝部材であ
るウレタンシートであり、ゴム硬度75度、肉厚1mm
のウレタンシートを打ち抜いて作成したもの、5は雄ね
じである0回転軸2とバランスリング3は軟鋼製であり
、表面に化学ニッケルメッキが施されている。
[Example] Figure 1 shows an example of the present invention. In the figure, 1 is 8.
A polygon mirror made of aluminum (Aβ) alloy having a reflective surface 1a, 2 a rotating shaft for rotating the polygon jQ1 fixed on the seat 2a, 3 rotating when the polygon at and the rotation axis 2 are fixed. It is a balance ring as a spacer member for attaching a balance weight for balancing, and has approximately the same outer diameter as the above-mentioned dust 2a, and 4 is a urethane sheet that is a buffer member with rubber elasticity, and has a rubber hardness of 75 degrees. Wall thickness 1mm
The 0-rotation shaft 2 and the balance ring 3 are made of mild steel, and the surface is chemically nickel plated.

多面鏡1の中心には、回転軸2と嵌合する為の孔11が
開けられており、回転軸2と多面鏡1の回転中心を合わ
せる機能を有する。
A hole 11 for fitting the rotating shaft 2 is formed in the center of the polygonal mirror 1, and has the function of aligning the rotational center of the rotating shaft 2 and the polygonal mirror 1.

孔11の外側には、多面鏡1の中心を中心とする略円上
に等角間隔で4個の取付孔12が形成され、これらは孔
11と同軸度(孔の中心軸が平行であること)を保って
いる。
On the outside of the hole 11, four mounting holes 12 are formed at equal angular intervals on a substantially circle centered on the center of the polygon mirror 1, and these are coaxial with the hole 11 (the center axis of the hole is parallel to (that is) maintained.

多面[1を受ける為の回転軸2の座2aは、高精度に平
面が出され、多面atに形成された小孔12と同径の位
置に等角間隔で4個所雌ねじ13が切られている。
The seat 2a of the rotating shaft 2 for receiving the multi-face [1] has a highly accurate flat surface, and female threads 13 are cut in four places at equal angular intervals at positions with the same diameter as the small holes 12 formed on the multi-face [1]. There is.

バランスリング3は、回転軸2に設けられた座2aの外
径と略同一外径に仕上げられ。
The balance ring 3 is finished to have an outer diameter that is approximately the same as the outer diameter of the seat 2a provided on the rotating shaft 2.

回転軸2に切られた雌ねじ13と同径位置に等角間隔で
4個所小孔14が穿設されると共に、中心部には多面鏡
lの孔1.1と同径の孔15が開けられている。更に、
中心の孔15と同軸度を保って、上記バランスウェイト
を取り付ける為の円形溝16が設けられている緩衝部材
であるウレタンシート4も座2aの外径と略同一外径に
仕上げられ、そしてバランスリング3の小孔14と同形
状の小孔17が等角間隔で4個所穿設されている。
Four small holes 14 are drilled at equal angular intervals at positions with the same diameter as the female thread 13 cut in the rotating shaft 2, and a hole 15 with the same diameter as the hole 1.1 of the polygon mirror L is drilled in the center. It is being Furthermore,
The urethane sheet 4, which is a buffer member, is provided with a circular groove 16 for attaching the balance weight while maintaining coaxiality with the center hole 15, and is finished to have an outer diameter that is approximately the same as the outer diameter of the seat 2a. Four small holes 17 having the same shape as the small holes 14 of the ring 3 are bored at equal angular intervals.

上記の構成部品の組み立ては次の様に行なわれる。先ず
、多面鏡1を回転軸2に嵌合させ、次にウレタンシート
4、続いてバランスリング3をその上に嵌合させた後、
バランスリング3上から4本の雄ねじ5を小孔14、小
孔17、取付孔12に通し最後に回転軸20座2aに設
けられた雌ねじ13に螺合させる。これにより、雄ねじ
5の頭5aと回転軸2の座2aにて多面鏡1が挟持され
て、回転軸2に固定される。
The above components are assembled as follows. First, the polygon mirror 1 is fitted onto the rotating shaft 2, then the urethane sheet 4 is fitted onto it, and then the balance ring 3 is fitted onto it.
Four male screws 5 from above the balance ring 3 are passed through the small hole 14, the small hole 17, and the mounting hole 12, and finally screwed into the female screw 13 provided on the rotating shaft 20 seat 2a. As a result, the polygon mirror 1 is held between the head 5a of the male screw 5 and the seat 2a of the rotating shaft 2, and is fixed to the rotating shaft 2.

以上の構成に右いては、雄ねじ5の頭5aと回転軸2の
座2aの間で、回転軸2と多面鏡1の位置関係が回転の
加減速でずれない様に、多面鏡lが確実に固定されてい
る。
In the above configuration, between the head 5a of the male screw 5 and the seat 2a of the rotary shaft 2, the polygon mirror 1 is securely mounted so that the positional relationship between the rotary shaft 2 and the polygon mirror 1 does not shift due to acceleration or deceleration of rotation. Fixed.

次に、上記実施例と、バランスリング3と多面鏡1の間
にウレタンシート4などの緩衝部材を挟まない例との多
面鏡挟持面での圧力分布を比較して第2図と第3図に示
す。第2図、第3図において、ねじ5の締めトルクは1
2kg−cmで行ない、バランスリング3の肉厚は3m
m、多面Itの肉厚は7mmに設定した。
Next, FIGS. 2 and 3 compare the pressure distribution on the polygon mirror holding surface between the above embodiment and an example in which a buffer member such as the urethane sheet 4 is not sandwiched between the balance ring 3 and the polygon mirror 1. Shown below. In Figures 2 and 3, the tightening torque of the screw 5 is 1
2 kg-cm, and the wall thickness of balance ring 3 is 3 m.
m, and the wall thickness of the multifaceted It was set to 7 mm.

第2図(a)はウレタンシート4と多面鏡lの間の圧力
分布、第2図(’b)は多面鏡lと座2aの間の圧力分
布を示し5、第3図においても同様に、同図(a)はバ
ランスリング3と多面鏡1の間、同図(b)は多面鏡1
と座2aの間の圧力分布を示す。
Figure 2 (a) shows the pressure distribution between the urethane sheet 4 and the polygon mirror l, Figure 2 ('b) shows the pressure distribution between the polygon mirror l and the seat 2a5, and the same applies to Figure 3. , the figure (a) shows the space between the balance ring 3 and the polygon mirror 1, and the figure (b) shows the space between the balance ring 3 and the polygon mirror 1.
The pressure distribution between and seat 2a is shown.

更に、比較の為に、第4図に、バランスリング3を用い
ず直接ねじ50頭で多面鏡1を12kg−Cmのトルク
で押えた例を示し、同図(a)はねじ頭と多面鏡1の間
、同図(b)は多面鏡1と座2aの間の圧力分布を示す
Furthermore, for comparison, Fig. 4 shows an example in which the polygon mirror 1 is directly held down with a torque of 12 kg-Cm using 50 screws without using the balance ring 3, and Fig. 4 (a) shows the screw head and polygon mirror. 1, the same figure (b) shows the pressure distribution between the polygon mirror 1 and the seat 2a.

この圧力分布はマイクロカプセル利用の感圧フィルムを
用いて測定を行なったものであり、図中斜線の部分は比
較的圧力が高(、白(なった部分や斜線中の白ぬきの部
分は比較的圧力が低いことを表わす。
This pressure distribution was measured using a pressure-sensitive film that uses microcapsules. Indicates that the physical pressure is low.

第2図に示す上記実施例では、ねじ5の頭より圧力を加
えられたバランスリング3は歪を生じて不均一にウレタ
ンシート4に圧力を伝えるが、ウレタンシート4に加え
られた圧力はウレタンシート4を変形させ応力を拡散さ
せる。従って、ウレタンシート4の変形により多面鏡1
に加えられる圧力は第2図(a)に示す如くほぼ均一な
分布を持つことになり、そして第2図(b)に示す如く
、回転軸2の座2aの面に分布が均一になって圧力が伝
えられることが分かる。
In the above embodiment shown in FIG. 2, the balance ring 3 subjected to pressure from the head of the screw 5 is distorted and unevenly transmits pressure to the urethane sheet 4; however, the pressure applied to the urethane sheet 4 is The sheet 4 is deformed to diffuse stress. Therefore, due to the deformation of the urethane sheet 4, the polygon mirror 1
As shown in FIG. 2(a), the pressure applied to the pressure has a nearly uniform distribution, and as shown in FIG. It can be seen that pressure is transmitted.

これに対し、第3図のバランスリング3にて直接多面鏡
1を押している場合は、ねじ頭の圧力によりアルミ製バ
ランスリング3は若干の歪を生じて内部において多少の
圧力分散を行なうが、はとんどの圧力は直接ねじ頭の下
の多面鏡1に局部的に加わることになる。
On the other hand, when the polygon mirror 1 is directly pushed by the balance ring 3 shown in Fig. 3, the aluminum balance ring 3 is slightly distorted due to the pressure of the screw head, and the pressure is dispersed to some extent inside. Most of the pressure will be applied locally to the polygon mirror 1 directly under the screw head.

よって、バランスリング3から多面鏡1には第3図(a
)に示すように不均一に圧力が加わり、その圧力は、第
3図(b)に示す如(、多面鏡1内部にて拡散しつつ回
転軸2の座2aの面に伝えられる。
Therefore, from the balance ring 3 to the polygon mirror 1, as shown in FIG.
As shown in FIG. 3(b), pressure is applied non-uniformly, and the pressure is transmitted to the surface of the seat 2a of the rotating shaft 2 while being diffused inside the polygon mirror 1, as shown in FIG. 3(b).

更に、第4図の例では、多面鏡lとねじ頭が接している
所のみ高い圧力が生じており(第4図(a))、多面鏡
1を介しても圧力分布は不均一のまま座2aの面に伝え
られる(第4図(b))。
Furthermore, in the example shown in Fig. 4, high pressure is generated only where the polygon mirror 1 and the screw head are in contact (Fig. 4 (a)), and the pressure distribution remains uneven even through the polygon mirror 1. It is transmitted to the surface of the seat 2a (Fig. 4(b)).

次に、本実施例、第3図、・及び第4図の多面鏡固定方
法を用いて回転軸2に固定した多面鏡lを常温から30
度昇温させ、多面鏡1の反射面1aの平面度がどの様に
変化するかを干渉縞測定法を用いて測定した結果は次の
様になった。
Next, the polygon mirror l fixed to the rotating shaft 2 using the polygon mirror fixing method shown in this embodiment, FIGS.
The results of measuring how the flatness of the reflecting surface 1a of the polygon mirror 1 changes by increasing the temperature using an interference fringe measurement method are as follows.

本発明に従った第2図の固定方法では、30度昇温した
ときにおいても上記反射面1aの平面度は常温時に比べ
約1.2倍の悪化に留まったのに対して、第3図の例で
は約2゜5倍、第4図の例では約3.1倍にまで歪を生
じた。
In the fixing method of FIG. 2 according to the present invention, even when the temperature was raised by 30 degrees, the flatness of the reflecting surface 1a was only about 1.2 times worse than that at room temperature, whereas in FIG. In the example shown in Fig. 4, the distortion was approximately 2.5 times, and in the example shown in Fig. 4, the distortion was approximately 3.1 times.

こうした結果から、本発明による実施例では、多面鏡を
均一な圧力で押えることが可能となり、昇温しても多面
鏡の反射面精度の低下が抑えられることが分かる。
From these results, it can be seen that in the examples according to the present invention, it is possible to press the polygon mirror with uniform pressure, and a decrease in the precision of the reflective surface of the polygon mirror can be suppressed even when the temperature rises.

第5図は、バランスリング23と緩衝部材24を別体に
しているのではな(、一体成形した例を示す。
FIG. 5 shows an example in which the balance ring 23 and the buffer member 24 are not separate bodies (but are integrally molded).

成形方法としては、緩衝部材24であるCRゴムシート
、ポリウレタンゴムシート等をを抜きした後、バランス
リング23に接着する方法や、CRゴム等を24をバラ
ンスリング3に焼き付けた後、表面を研磨して平面度を
出す方法などがある。
As for the molding method, after cutting out the CR rubber sheet, polyurethane rubber sheet, etc. which is the buffer member 24, it is glued to the balance ring 23, or after baking the CR rubber etc. 24 on the balance ring 3, the surface is polished. There are methods to obtain flatness.

[発明の効果J 以上説明した様に、本発明によれば、回転軸に設けた座
とスペーサ部材及びゴム弾性などを有する緩衝部材とで
多面鏡を挟持することにより、多面鏡を均一な圧力で押
えられることが可能となり、作動時のモータ発熱等によ
り昇温しても、多面鏡の反射面精度低下が抑えられ光束
の走査位置のばらつきが極力押えられる。その為、高品
位な出力画像等を得ることが可能となる。
[Effect of the Invention J As explained above, according to the present invention, by sandwiching the polygon mirror between the seat provided on the rotating shaft, the spacer member, and the buffer member having rubber elasticity, the polygon mirror can be held under uniform pressure. Even if the temperature rises due to heat generated by the motor during operation, deterioration in the precision of the reflective surface of the polygon mirror is suppressed, and variations in the scanning position of the light beam are suppressed to the utmost. Therefore, it is possible to obtain high-quality output images.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による実施例を示す斜視分解図、第2図
(a)、(b)は本発明による光偏向装置の多面鏡表裏
面の圧力分布を示す図、第3図(a)、(b)は緩衝部
材を使用しない例の多面鏡表裏面の圧力分布を示す図、
第4図(a)、(b)は直接ねじを用いて多面鏡を回転
軸に固定した例の多面鏡表裏面の圧力分布を示す図、第
5図は本発明による他の実施例を示す図、第6図は光偏
向装置の作動説明図である。 l・・・・・多面鏡、2・・・・・回転軸、2a・・・
・・座、3.23・・・・・バランスリング、4.24
・・・・・緩衝部材。 5・・・・・ねじ
FIG. 1 is a perspective exploded view showing an embodiment according to the present invention, FIGS. 2(a) and (b) are views showing pressure distribution on the front and back surfaces of a polygon mirror of an optical deflection device according to the present invention, and FIG. 3(a) , (b) is a diagram showing the pressure distribution on the front and back surfaces of the polygon mirror in an example where no buffer member is used,
FIGS. 4(a) and 4(b) are diagrams showing the pressure distribution on the front and back surfaces of the polygon mirror in an example in which the polygon mirror is fixed to the rotating shaft using direct screws, and FIG. 5 is a diagram showing another embodiment according to the present invention. 6 are explanatory diagrams of the operation of the optical deflection device. l...Polygon mirror, 2...Rotation axis, 2a...
... Seat, 3.23 ... Balance ring, 4.24
...Buffer member. 5...screw

Claims (1)

【特許請求の範囲】 1、光源からの光束を被照射体に走査する為に回転多面
鏡を用いる光偏向装置において、回転軸に設けた座と、
スペーサ部材及び該スペーサ部材と該多面鏡間に挟まれ
る緩衝部材とで該多面鏡を挟持し、スペーサ部材と緩衝
部材と多面鏡にねじを貫通させそして回転軸の座に形成
した雌ねじ部に螺合させることにより、多面鏡が回転軸
に固定されていることを特徴とする光偏向装置。 2、前記スペーサ部材は前記座と略同一外径を有する円
板である請求項1記載の光偏向装置。 3、前記緩衝部材はゴム弾性を有する材料から形成され
ている請求項1記載の光偏向装置。 4、前記緩衝部材と前記スペーサ部材とは一体成形され
ている請求項1記載の光偏向装置。
[Scope of Claims] 1. In an optical deflection device using a rotating polygon mirror for scanning a light beam from a light source onto an irradiated object, a seat provided on a rotating shaft;
The polygon mirror is held between a spacer member and a buffer member sandwiched between the spacer member and the polygon mirror, a screw is passed through the spacer member, the buffer member, and the polygon mirror, and a screw is inserted into the female thread formed in the seat of the rotating shaft. An optical deflection device characterized in that a polygon mirror is fixed to a rotating shaft by aligning the polygon mirrors together. 2. The optical deflection device according to claim 1, wherein the spacer member is a disc having substantially the same outer diameter as the seat. 3. The optical deflection device according to claim 1, wherein the buffer member is made of a material having rubber elasticity. 4. The optical deflection device according to claim 1, wherein the buffer member and the spacer member are integrally molded.
JP21382089A 1989-08-18 1989-08-18 Optical deflector Pending JPH0377908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21382089A JPH0377908A (en) 1989-08-18 1989-08-18 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21382089A JPH0377908A (en) 1989-08-18 1989-08-18 Optical deflector

Publications (1)

Publication Number Publication Date
JPH0377908A true JPH0377908A (en) 1991-04-03

Family

ID=16645571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21382089A Pending JPH0377908A (en) 1989-08-18 1989-08-18 Optical deflector

Country Status (1)

Country Link
JP (1) JPH0377908A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113213A (en) * 2004-10-13 2006-04-27 Ricoh Co Ltd Optical deflector, optical scanner, and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006113213A (en) * 2004-10-13 2006-04-27 Ricoh Co Ltd Optical deflector, optical scanner, and image forming apparatus
JP4488862B2 (en) * 2004-10-13 2010-06-23 株式会社リコー Optical deflector, optical scanning device, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2951842B2 (en) Optical scanning device
US5559320A (en) Mounting and balancing system for rotating polygon mirror in a bar code scanner
JP2928552B2 (en) Scanning optical device
US5134511A (en) Optical unit for use in laser beam printer or the like
JPH0377908A (en) Optical deflector
CA2037858C (en) Polygon scanner with predictable facet deformation characteristics
JPH03179420A (en) Optical apparatus
JP2931181B2 (en) Optical scanning device
JPH02293811A (en) Optical deflector
JPH09288245A (en) Optical scanner
JPH02293810A (en) Optical deflector and rotary polygon mirror used therein
JP3702678B2 (en) Optical deflection device
JPH0377909A (en) Optical deflector
JPS6326806Y2 (en)
JP3702676B2 (en) Optical deflection device
JP2000275558A (en) Optical deflecting scanner
JPS59197009A (en) Optical scanner
JPH05257077A (en) Rotary polygon mirror
JPH06160754A (en) Rotary polygon mirror fitting device
JPH02293813A (en) Optical deflector
US20040233492A1 (en) Light beam deflecting device
JPH05150178A (en) Optical scanning device
JPH06160752A (en) Rotary polygon mirror fitting device
JPH09197326A (en) Optical scanner
JPS60217329A (en) Rotary polyhedral mirror assembly body