JPH02293811A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPH02293811A
JPH02293811A JP11569089A JP11569089A JPH02293811A JP H02293811 A JPH02293811 A JP H02293811A JP 11569089 A JP11569089 A JP 11569089A JP 11569089 A JP11569089 A JP 11569089A JP H02293811 A JPH02293811 A JP H02293811A
Authority
JP
Japan
Prior art keywords
polygon mirror
seat
rotating shaft
revolving shaft
annular member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11569089A
Other languages
Japanese (ja)
Inventor
Yoshihiko Hirose
広瀬 吉彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11569089A priority Critical patent/JPH02293811A/en
Publication of JPH02293811A publication Critical patent/JPH02293811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To prevent the degradation in the accuracy of the reflecting surfaces of a rotary polygon mirror by thermal expansion while adopting the constitution to fix the polygon mirror to the seat of a revolving shaft by using screws by screwing the polygon mirror to the thread parts formed to an annular member and the seat of the revolving shaft by passing screws to the polygon mirror. CONSTITUTION:The polygon mirror 1 is fitted to the revolving shaft 2 and after a balance ring 3 is fitted thereon 4, pieces of the external threads 4 are passed into small holes 14 and mounting holes 12 from above the balance ring 3 and are finally screwed in internal threads 13 provided on the seat 2a of the revolving shaft 2. Consequently, the polygon mirror 1 is held between the head 4a of the make screws 4 and the seat 2a of the revolving shaft 2 thus fixed to the revolving shaft 2. The generation of strains is minimized in this way even if the polygon mirror 1 is thermally expanded by a temp. rise and the fluctuation in the scanning position of a beam by the degraded accuracy of the reflecting surface 1a of the polygon mirror 1 is minimized.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、光源からの光束を波照射体上に走査させる為
の光偏向装置に関し、特に回転多面鏡を用いた光偏向装
置に関する. [従来の技術] 近年、レーザービームを走査しこのレーザービームの明
滅により感光体上に静@潜像を形成して所望の画像を記
Hするレーザービームプリンタ(LBP)や、フィルム
状の感光体上にLBPと同様に明滅するレーザービーム
を走査して銀塩写真方法を用いて画像を記録する装置が
広《一般に使用されてきてぃるこの従来からの光偏向装
置すなわちレーザ一スキャナ装置の一構成例が第5図に
示されている.同図において、画像信号を受けたレーザ
ードライバ10lは所定のタイミングで固体レーザー素
子102を明滅させ、この固体レーザー素子102から
放射されたレーザービームはコリメータレンズ系103
によって平行光に変換されて矢印八方向に回転する多面
1m1 04に入射する.そして、この多面鏡1 04
で反射されたレーザービームはf・θレンズ群105に
よって被走査面(感光体ドラムの表面)106上にスポ
ット状に結像される. こうした構成において,多面m 1 0 4は、通常、
アルミ(AI2)を主原料とした金属から構成され反射
面には酸化防止の為に金g.蒸着膜などが形成され、そ
れによって強度、加工性,重量等の諸特性を満足させて
いる.更に,こうしたレーザースキャナ装置においては
、多面鏡の回転時にこれの反射面が振れて各反射面ごと
にビームの走査位置が変わってしまわない様に、多面鏡
と回転軸に高精度なバランス調整が施されている。また
、多面鏡に等角間隔で複数(2〜6程度)のねじ挿入穴
が設けられ、ここに雄ねじが通されて回転軸の座に設け
られた複数の雌ねじ部に蝉人されることにより、雄ねじ
のねじ頭と上記座の間で,回転軸と多面鏡の位置関係が
回転の加減速でずれない様に,多面鏡が扶持されている
. このねじを用いた固定方法は強度的に優れ、大型の多面
鏡を用いた場合や2000Orpmといった高速で多面
鏡を回転させる場合においても回転軸の座と回転鏡との
ずれを生じさせない利点を有している。 [発明が解決しようとする課題] しかし乍ら,多面鏡を回転軸の座に固定する為の圧力は
、等角間隔で分布して締められた各雄ねじの頭を中心と
して多面鏡に加えられている.従って,装置が作動し温
度上昇が起こることにより多面鏡が熱膨張すると,上記
ねじ頭にて加圧された多面鏡の部分と圧力が左程加わっ
ていない上記ねじ頭間の多面鏡の部分において、膨張の
程度に差ができて歪が生じ、高精度に仕上げられた反射
面精度が著し《悪化するという欠点がある. この様に、熱膨張による歪が多面鏡に生じると,回転の
バランスを完全に取っていても多面鏡の反射面毎にビー
ムの走査位置がずれてしまい,得られる画像品位は著し
《低下することになる。 特に、高速回転が必要とされる装置においては,回転駆
動力を生じさせるモータ部で高周波鉄損や風損等のエネ
ルギ損失が多《なって,モータ部の発熱量が極端に多く
なり、上記多面鏡の熱膨張の歪による画像品位低下が大
きな問題となる. 従って、本発明の目的は、上記課題に鑑み,ねじを用い
て多面請を回転軸の座に止める.構成を取りつつ,熱膨
張により多面鏡の反射面精度が悪化しない様にされた光
偏向装置を提供することにある.
[Industrial Field of Application] The present invention relates to a light deflection device for scanning a light beam from a light source onto a wave irradiation body, and more particularly to a light deflection device using a rotating polygon mirror. [Prior Art] In recent years, laser beam printers (LBPs) that record a desired image by scanning a laser beam and forming a static latent image on a photoreceptor by flickering the laser beam, and film-like photoreceptors have been developed. A device that records an image using silver halide photography by scanning a blinking laser beam on the surface of the laser beam, similar to the LBP, is widely used. An example configuration is shown in Figure 5. In the figure, a laser driver 10l that receives an image signal blinks a solid-state laser element 102 at a predetermined timing, and the laser beam emitted from this solid-state laser element 102 is transmitted to a collimator lens system 103.
The light is converted into parallel light by , and is incident on a polygonal surface 1m104 that rotates in the eight directions of the arrows. And this polygon mirror 1 04
The laser beam reflected by the f/theta lens group 105 forms a spot image on the surface to be scanned (the surface of the photoreceptor drum) 106. In such a configuration, the polygon m 1 0 4 is typically
It is composed of a metal whose main material is aluminum (AI2), and the reflective surface is coated with gold to prevent oxidation. A vapor deposited film is formed, which satisfies various properties such as strength, workability, and weight. Furthermore, in such laser scanner devices, highly accurate balance adjustment is required for the polygon mirror and the rotation axis to prevent the reflecting surface from swinging when the polygon mirror rotates, causing the beam scanning position to change for each reflecting surface. It has been subjected. In addition, the polygon mirror has multiple screw insertion holes (about 2 to 6) at equal angular intervals, and the male screws are passed through these holes and inserted into the multiple female screw holes provided on the seat of the rotating shaft. A polygon mirror is supported between the screw head of the male screw and the above seat so that the positional relationship between the rotation axis and the polygon mirror does not shift due to acceleration and deceleration of rotation. This fixing method using screws has excellent strength and has the advantage of not causing misalignment between the rotating shaft seat and the rotating mirror even when using a large polygon mirror or rotating the polygon mirror at high speeds such as 2000 rpm. are doing. [Problem to be Solved by the Invention] However, the pressure for fixing the polygon mirror to the seat of the rotating shaft is applied to the polygon mirror centering on the heads of the male screws which are distributed at equal angular intervals and tightened. ing. Therefore, when the polygon mirror thermally expands due to the temperature rise caused by the operation of the device, the part of the polygon mirror that is pressurized by the screw head and the part of the polygon mirror between the screw heads where no pressure is applied to the left. The disadvantage is that the degree of expansion differs, causing distortion, and the precision of the highly-finished reflective surface is significantly degraded. In this way, when distortion occurs in a polygon mirror due to thermal expansion, the scanning position of the beam shifts for each reflective surface of the polygon mirror even if the rotation is perfectly balanced, and the quality of the image obtained is significantly reduced. I will do it. In particular, in equipment that requires high-speed rotation, energy loss such as high-frequency iron loss and wind loss increases in the motor section that generates the rotational driving force, and the amount of heat generated in the motor section becomes extremely large. A major problem is the degradation of image quality due to distortion due to thermal expansion of the polygon mirror. Therefore, in view of the above-mentioned problems, the object of the present invention is to fix a multi-sided bracket to a rotating shaft seat using a screw. It is an object of the present invention to provide an optical deflection device having a structure that prevents the accuracy of the reflecting surface of a polygon mirror from deteriorating due to thermal expansion.

【課題を解決する為の千段1 上記目的を達成する為の本発明においては、光源からの
光束を感光体などの被照射体に走査する為の回転多面鏡
が、回転軸に設けた座と円板などのぶ状部材にて挾持さ
れ、環状部材と多面鏡にねじを貫通させそして回転軸の
座に形成した雌ねじ部に螺合させることにより、回転軸
に固定されている. 上記環状部材は回転軸の座と略同一外径を有する円板で
あったり、この座の厚みと環状部材の厚みは略同一であ
ったりする. また、回転軸の座の材料と環状部材の材料との弾性率は
多面鏡の材料の弾性率より大きいのが好ましい. [作用】 上基本発明の構成では、環状部材と回転軸の座により多
面鏡を比較的均一な分布の圧力で扶持可能となっている
ので,温度上昇により多面鏡が熱膨張しても歪の発生が
最小限に抑えられ,多面鏡の反射面精度低下によるビー
ムの走査位置のばらつきが極力抑えられる[実施例1 第1図は本発明の実施例を示す.同図において、■は8
面の反射面1aを有するアルミ(Aβ)合金製の多面鏡
、2は多面境1を座2a上に固定して回転させる為の回
転軸,3は多面Palと回転軸2を固定したときに回転
バランス取り用のバランスウエイ1・を取り付ける為の
バランスリングであり上記座2aと略同一外径を有し、
4は雄ねじである.回転軸2とバランスリング3は軟鋼
製であり,表面に化学ニッケルメッキが施されている。 多面境1の中心には,回転軸2と嵌合する為の孔1lが
開けられており、回転軸2と多面鏡1の回転中心を合わ
せる機能を有する。 孔11の外側には、多面fatの中心を中心とする略円
上に等角間隔で4個の取付孔l2が形成され、これらは
孔11と同軸度(孔の中心軸が平行であること)を保っ
ている。 多面鏡lを受ける為の回転軸2の座2aぱ、高精度に平
面が出され、多面falに形成された小孔l2と同径の
位置に等角間隔で4個所雌ねじl3が切られている。 バランスリング3は,回転軸2に設けられた座2aの外
径と略同一外径に仕上げられ、回転軸2に切られた雌ね
じl3と同径位置に等角間隔で4個所小孔l4が穿設さ
れると共に、中心部には多面鏡1の孔11と同径の孔1
5が開けられている。更に、中心の孔l5と同軸度を保
って、上記バランスウェイトを取り付ける為の円形溝1
6が設けられてぃる上記の構成部品の組立ては次の様に
行なわれる。先ず,多面鏡1を回転軸2に嵌合させ、次
にバランスリング3をその上に嵌合させた後、バランス
リング3上から4本の雄ねじ4を小孔l4、取付孔12
に通し最後に回転軸2の座2aに設けられた雌ねじl3
に螺合させる.これにより、雄ねじ4の頭4aと回転軸
2の座2aにて多面鏡1が扶持されて、回転軸2に固定
される。 以上の構成においては、雄ねじ40頭4aと回転軸2の
座2aの間で、回転軸2と多面境1の位置関係が回転の
加減速でずれない様に、多面filが確実に固定されて
いる。 次に,上記実施例と、バランスリング3の材料を多面F
D1と同一材料であるAff合金にした例とを比較しつ
つ、多面鏡挟持而での圧力分市を第2図と第3図に示す
.第2図,第3図において、ねじ4の締めトルクは12
kg”cmとし,バランスリング3の肉厚は5mm、多
面鏡lの肉厚は7mmに設定した。 第2図(a)は鉄製(弾性率約20500kg/mm2
の軟鋼製)はバランスリング3と多面鏡1間の圧力分布
、第2図(b)は多顔鏡lと座2aの間の圧力分布を示
し、第3図においても,同様に、(a)は八2合金製バ
ランスリングと多面鏡開、(b)は多面鏡と座の間の圧
力分布を示す。この圧力分布はマイクロカプセル利用の
感圧フィルムを用いてホ11定を行ったものであり、図
中斜線の部分は比較的圧力が高く、白くなった部分や斜
線中の白ぬきの部分は比較的圧力が低いことを表わす. 第2図(a)においては,バランスリング3が弾性率の
高い,即ち応力に対して変形しづらい材料にて作成され
ている為、ねじ4により圧力が加えられてもほとんど変
形することな《バランスリング3全体で均一に圧力を多
面鏡1に加えていることが分かる.第2図(b)では、
座2aの面に,分布が均一に圧力が伝えられていること
が分かる. これに対し,第3図の例では,バランスリングを多面鏡
1と同一材質の弾性率約7000 k g / m11
1 ”のAR合金で作成しているので.M3ねじ4から
の圧力によりバランスリングが歪み、ねじ頭4aから受
けた圧力は肉厚5mmのバランスリング内で左程分敗せ
ずに多面talに加わる.従って、バランスリングから
多面Mlへは,ねじ頭4aの部分で強くその間では弱く
なった分布の圧力が第3図(a)で示す如く加えられる
.そして、不均一に多面illに加わった圧力(第3図
(a))は多面ml内で分敗しつつ座2aの面に伝えら
れている(第3図(b)). 第3図において、バランスリング3の材質の弾性率が多
面mlの材質の弾性率よりも低い場合は,バランスリン
グが更に歪み易くなり、圧力の不均一は更に顕著となる
. 更に比較の為に、バランスリングを用いないで直接ねじ
の頭で多面mlを押えた従来例の場合を第4図に示す.
第4図(a)はねじ頭と多面鏡開の圧力分布、第4図(
blは多面鏡と座の間の圧力分布を表わす.第2図、第
3図と比較して圧力分布の不均一が著しいことが分かる
.第4図(a)では多面鏡とねじ頭が接している所のみ
高い圧力が加えられており、第4図(b)に示す如《.
多面鏡を介しても圧力分布の不均一は更正されないまま
座面に伝えられている. 次に、多面鏡lを常温から30度昇渥させ反射面1aの
平面度がどの様に変化したかを、干渉縞を用いた測定で
行なった結果を示す. 上記実施例の第2図の多面鏡固定方法では、30度昇温
時においても平面度は常温時に比べ約1.4倍の悪化に
止まったのに対し、第3図の例では約2.5@、第4図
の従来例では約3.1倍にまで歪が生じた. ところで、多面鏡lと同一材料のA2合金を使用して第
2図と同様な圧力分布を得る為には、バランスリングの
肉厚を約1 3mmまで厚くしなければならなかったが
、1 2kg・cmのトルクでねじを締めた際、圧力が
バランスリング内で内部分敗して軟鋼製バランスリング
3程多面atに対する圧力は上がらなかった. 上記実施例において、回転軸2に設けられた座2aの厚
みとバランスリング3の厚みは略同一であるのが強度上
好ましい. また,多面鏡lの弾性率に対し、座2a及びバランスリ
ング3の弾性率は少なくとも同程度以上である必要があ
るが、2倍以上にする方が座2a及びバランスリング3
の肉厚を薄《することが出来て、装置のコンパクト化が
可能となる。 例として、多面鎧lをAn(弾性率=6500kg/m
m”)製とすれば,バランスリング3や座2aはステン
レス(SUS)(弾性率=2 1 000kg/mm”
 )や鉄(弾性率=2 1 000kg/mm” )製
などにすればよい. [発明の効果1 以上説明した様に、本発明によれば,多面鏡を比較的均
一なる圧力で押えることが可能となり、作動時などにモ
ータ発熱等により昇温しても多面鏡の反射面精度低下が
極力抑えられる.従って、ビームの走査位置のばらりき
が極力抑えられる為、高品位な出力画像等を得ることが
可能となる.
[1,000 Steps to Solve the Problems] In the present invention to achieve the above object, a rotating polygon mirror for scanning a light beam from a light source onto an irradiated object such as a photoreceptor is mounted on a rotating shaft. It is held by a tab-shaped member such as a disk, and is fixed to the rotating shaft by passing a screw through the annular member and the polygon mirror and screwing it into the female thread formed in the seat of the rotating shaft. The annular member may be a disk having approximately the same outer diameter as the seat of the rotating shaft, or the thickness of the seat may be approximately the same as the thickness of the annular member. Further, it is preferable that the elastic modulus of the material of the seat of the rotating shaft and the material of the annular member is larger than the elastic modulus of the material of the polygon mirror. [Function] In the configuration of the above basic invention, the polygon mirror can be supported with a relatively uniform pressure distribution by the annular member and the seat of the rotating shaft, so even if the polygon mirror thermally expands due to temperature rise, distortion will not occur. The occurrence of this phenomenon is minimized, and variations in the beam scanning position due to a decrease in the precision of the reflecting surface of the polygon mirror are suppressed as much as possible [Embodiment 1 Figure 1 shows an embodiment of the present invention. In the same figure, ■ is 8
A polygon mirror made of aluminum (Aβ) alloy having a reflective surface 1a, 2 a rotation axis for fixing the polygon 1 on the seat 2a and rotating it, 3 a rotation axis when the polygon Pal and the rotation axis 2 are fixed. It is a balance ring for attaching the balance way 1 for rotational balancing, and has approximately the same outer diameter as the seat 2a,
4 is a male screw. The rotating shaft 2 and balance ring 3 are made of mild steel, and have chemical nickel plating applied to their surfaces. A hole 1l for fitting the rotating shaft 2 is formed in the center of the polygonal boundary 1, and has the function of aligning the rotational centers of the rotating shaft 2 and the polygonal mirror 1. On the outside of the hole 11, four mounting holes l2 are formed at equal angular intervals on a substantially circle centered on the center of the multifaceted fat. ) is maintained. The seat 2a of the rotating shaft 2 for receiving the polygonal mirror l has a highly accurate flat surface, and four internal threads l3 are cut at equal angular intervals at positions with the same diameter as the small holes l2 formed in the polygonal fal. There is. The balance ring 3 is finished to have an outer diameter that is approximately the same as the outer diameter of the seat 2a provided on the rotating shaft 2, and has four small holes l4 at equal angular intervals at the same diameter positions as the female threads l3 cut on the rotating shaft 2. At the same time, a hole 1 with the same diameter as the hole 11 of the polygon mirror 1 is provided in the center.
5 is open. Furthermore, a circular groove 1 is provided for attaching the balance weight while maintaining coaxiality with the center hole l5.
The assembly of the above-mentioned components provided with 6 is carried out as follows. First, the polygon mirror 1 is fitted onto the rotating shaft 2, and then the balance ring 3 is fitted onto it, and then the four male screws 4 are inserted from the top of the balance ring 3 into the small hole l4 and the mounting hole 12.
and finally a female screw l3 provided on the seat 2a of the rotating shaft 2.
Screw it together. As a result, the polygon mirror 1 is supported by the head 4a of the male screw 4 and the seat 2a of the rotating shaft 2, and is fixed to the rotating shaft 2. In the above configuration, the multifaceted fil is securely fixed between the male screw 40 heads 4a and the seat 2a of the rotating shaft 2 so that the positional relationship between the rotating shaft 2 and the multifaceted boundary 1 does not shift due to acceleration and deceleration of rotation. There is. Next, we will change the material of the balance ring 3 from the above example to the multifaceted F.
Figures 2 and 3 show the pressure distribution between the polygon mirrors and the comparison with an example made of Aff alloy, which is the same material as D1. In Figures 2 and 3, the tightening torque for screw 4 is 12
kg" cm, the wall thickness of the balance ring 3 was set to 5 mm, and the wall thickness of the polygon L was set to 7 mm.
(made of mild steel) shows the pressure distribution between the balance ring 3 and the polygon mirror 1, and FIG. 2(b) shows the pressure distribution between the polygon mirror l and the seat 2a. ) shows the balance ring made of 82 alloy and the opening of the polygon mirror, and (b) shows the pressure distribution between the polygon mirror and the seat. This pressure distribution was determined using a pressure-sensitive film that uses microcapsules. This indicates that the pressure is low. In FIG. 2(a), the balance ring 3 is made of a material with a high elastic modulus, that is, it is difficult to deform under stress, so it hardly deforms even when pressure is applied by the screw 4. It can be seen that the entire balance ring 3 applies pressure uniformly to the polygon mirror 1. In Figure 2(b),
It can be seen that the pressure is evenly distributed on the surface of seat 2a. On the other hand, in the example shown in Fig. 3, the balance ring is made of the same material as polygon mirror 1 and has an elastic modulus of approximately 7000 kg/m11.
Since it is made of 1" AR alloy, the balance ring is distorted by the pressure from the M3 screw 4, and the pressure received from the screw head 4a is not divided to the left within the balance ring with a wall thickness of 5 mm, and is multifaceted. Therefore, a distributed pressure is applied from the balance ring to the multiface Ml, as shown in Fig. 3(a), which is stronger at the screw head 4a and weaker there. The pressure (Fig. 3 (a)) is transmitted to the surface of the seat 2a while being divided within the multifaceted ml (Fig. 3 (b)). In Fig. 3, the elastic modulus of the material of the balance ring 3 is If the elastic modulus is lower than the elastic modulus of the material of the multifaceted ml, the balance ring will become more easily distorted, and the unevenness of pressure will become even more pronounced.Furthermore, for comparison, the multifaceted ml will be directly attached to the head of the screw without using a balance ring. Figure 4 shows a conventional example in which the
Figure 4(a) shows the pressure distribution between the screw head and the polygon opening.
bl represents the pressure distribution between the polygon mirror and the seat. It can be seen that the pressure distribution is significantly uneven compared to Figures 2 and 3. In Fig. 4(a), high pressure is applied only where the polygon mirror and the screw head are in contact, and as shown in Fig. 4(b).
Even through the polygon mirror, the uneven pressure distribution is transmitted to the seat without being corrected. Next, we will show the results of measurements using interference fringes to determine how the flatness of the reflecting surface 1a changes when the polygon mirror 1 is raised 30 degrees from room temperature. In the polygon mirror fixing method shown in FIG. 2 of the above embodiment, even when the temperature was raised by 30 degrees, the flatness was only about 1.4 times worse than at room temperature, whereas in the example shown in FIG. 5@, in the conventional example shown in Figure 4, distortion occurred to approximately 3.1 times. By the way, in order to obtain the same pressure distribution as shown in Fig. 2 using A2 alloy, which is the same material as the polygon L, the thickness of the balance ring had to be increased to about 13 mm, but the thickness of the balance ring had to be increased to about 12 kg. - When tightening the screw with a torque of cm, the pressure broke internally within the balance ring, and the pressure against the multifaceted AT did not increase as much as the mild steel balance ring 3. In the above embodiment, it is preferable in terms of strength that the thickness of the seat 2a provided on the rotating shaft 2 and the thickness of the balance ring 3 are approximately the same. In addition, the elastic modulus of the seat 2a and the balance ring 3 must be at least the same as the elastic modulus of the polygon mirror l, but it is better to make the elastic modulus of the seat 2a and the balance ring 3 twice or more.
The wall thickness can be made thinner, making it possible to make the device more compact. As an example, let's take multifaceted armor l as An (elastic modulus = 6500 kg/m
If the balance ring 3 and seat 2a are made of stainless steel (SUS) (modulus of elasticity = 2 1 000 kg/mm)
) or iron (elastic modulus = 21 000 kg/mm"). [Effect 1 of the invention As explained above, according to the present invention, it is possible to press the polygon mirror with relatively uniform pressure. This makes it possible to minimize deterioration in the accuracy of the reflective surface of the polygon mirror even if the temperature rises due to motor heat generation during operation, etc. Therefore, variations in the beam scanning position are minimized, making it possible to produce high-quality output images, etc. It becomes possible to obtain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を説明する為の図,第2図はこ
の実施例による多面鏡固定方法における多面鏡表裏面の
圧力分布を示す図、第3図は他の例による同様の多面鏡
表裏面の圧力分布を示す図、第4図は従来例による同様
の多面境表裏面の圧力分布を示す図、第5図は従来の光
偏向装置を説明する図である。 l・・・・・多面m.ta・・・・・反射面,2・・・
・・回転軸.2a・・・・・座、3・・・・・バランス
リング、4・・・・・雄ねじ、4a・・・・・ねじ頭、
l2・・・・・取付孔.13・−・・・雌ねじ、l4・
・・・・小孔,16・・・・・溝
Fig. 1 is a diagram for explaining an embodiment of the present invention, Fig. 2 is a diagram showing the pressure distribution on the front and back surfaces of the polygon mirror in the polygon mirror fixing method according to this embodiment, and Fig. 3 is a diagram for explaining a similar method according to another example. FIG. 4 is a diagram showing the pressure distribution on the front and back surfaces of a polygon mirror, FIG. 4 is a diagram showing the pressure distribution on the front and back surfaces of a similar polygon mirror according to a conventional example, and FIG. 5 is a diagram illustrating a conventional optical deflection device. l...Multi-sided m. ta... Reflective surface, 2...
··Axis of rotation. 2a...Seat, 3...Balance ring, 4...Male thread, 4a...Screw head,
l2...Mounting hole. 13.--Female thread, l4.
...Small hole, 16...Groove

Claims (1)

【特許請求の範囲】 1、光源からの光束を被照射体に走査する為に回転多面
鏡を用いた光偏向装置において、回転軸に設けた座と環
状部材にて多面鏡を挾持し、該環状部材と多面鏡にねじ
を貫通させそして該回転軸の座に形成した雌ねじ部に螺
合させることにより、多面鏡が回転軸に固定されている
ことを特徴とする光偏向装置。 2、前記環状部材は前記座と略同一外径を有する円板で
ある請求項1記載の光偏向装置。 3、前記回転軸の座と環状部材を構成する材料め弾性率
が多面鏡の材料の弾性率よりも大きい請求項1記載の光
偏向装置。 4、前記回転軸の座と環状部材を構成する材料の弾性率
が多面鏡の材料の弾性率の2倍以上である請求項3記載
の光偏向装置。 5、前記回転軸に設けられた座の厚みと前記環状部材の
厚みとが略同一である請求項1記載の光偏向装置。 6、前記多面鏡はアルミ合金製であり、前記回転軸と環
状部材は軟鋼製である請求項1記載の光偏向装置。
[Claims] 1. In an optical deflection device using a rotating polygon mirror for scanning a light beam from a light source onto an irradiated object, the polygon mirror is held between a seat provided on a rotating shaft and an annular member, and An optical deflection device characterized in that a polygon mirror is fixed to a rotating shaft by passing a screw through the annular member and the polygon mirror and screwing it into a female screw portion formed in a seat of the rotating shaft. 2. The optical deflection device according to claim 1, wherein the annular member is a disc having substantially the same outer diameter as the seat. 3. The optical deflection device according to claim 1, wherein the elastic modulus of the material constituting the seat of the rotating shaft and the annular member is greater than the elastic modulus of the material of the polygon mirror. 4. The optical deflection device according to claim 3, wherein the elastic modulus of the material constituting the seat of the rotating shaft and the annular member is at least twice the elastic modulus of the material of the polygon mirror. 5. The optical deflection device according to claim 1, wherein the thickness of the seat provided on the rotating shaft and the thickness of the annular member are substantially the same. 6. The optical deflection device according to claim 1, wherein the polygon mirror is made of aluminum alloy, and the rotating shaft and the annular member are made of mild steel.
JP11569089A 1989-05-09 1989-05-09 Optical deflector Pending JPH02293811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11569089A JPH02293811A (en) 1989-05-09 1989-05-09 Optical deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11569089A JPH02293811A (en) 1989-05-09 1989-05-09 Optical deflector

Publications (1)

Publication Number Publication Date
JPH02293811A true JPH02293811A (en) 1990-12-05

Family

ID=14668838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11569089A Pending JPH02293811A (en) 1989-05-09 1989-05-09 Optical deflector

Country Status (1)

Country Link
JP (1) JPH02293811A (en)

Similar Documents

Publication Publication Date Title
JP2000131637A (en) Rotatable mirror assembly and image exposure device
JPH02293811A (en) Optical deflector
US5083138A (en) Polygon scanner with predictable facet deformation characteristics
JPH0749463A (en) Optical deflector
JPH0377908A (en) Optical deflector
JPH02293810A (en) Optical deflector and rotary polygon mirror used therein
JPH0377909A (en) Optical deflector
JPH09288245A (en) Optical scanner
JPH02293813A (en) Optical deflector
JPS63167328A (en) Method for locking polygon mirror
JP3702678B2 (en) Optical deflection device
JPS6326806Y2 (en)
JP3702676B2 (en) Optical deflection device
JPH04333816A (en) Fixing method for rotary polygon mirror
JPH10186265A (en) Polygon mirror type optical deflector
JP2591257B2 (en) Rotating mirror
JPS63131120A (en) Method for fitting rotary mirror
JPH04338915A (en) Manufacture of optical deflecting element
JP2002048996A (en) Motor and method for manufacturing optical deflection device, image forming device, and motor
JPS5930513A (en) Rotary polyhedral mirror body
JPH068581Y2 (en) Light deflection device
JPH0516575Y2 (en)
JPS63220207A (en) Attaching method for rotary polygonal mirror deflecting device
JPH01297616A (en) Rotary polygonal mirror device
JPH04333817A (en) Fixing method for rotary polygon mirror