JPH02293810A - Optical deflector and rotary polygon mirror used therein - Google Patents

Optical deflector and rotary polygon mirror used therein

Info

Publication number
JPH02293810A
JPH02293810A JP11568989A JP11568989A JPH02293810A JP H02293810 A JPH02293810 A JP H02293810A JP 11568989 A JP11568989 A JP 11568989A JP 11568989 A JP11568989 A JP 11568989A JP H02293810 A JPH02293810 A JP H02293810A
Authority
JP
Japan
Prior art keywords
polygon mirror
mounting hole
hole
deflection device
mounting holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11568989A
Other languages
Japanese (ja)
Inventor
Yoshihiko Hirose
広瀬 吉彦
Hiroshi Sato
浩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11568989A priority Critical patent/JPH02293810A/en
Publication of JPH02293810A publication Critical patent/JPH02293810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To prevent the degradation in the accuracy of the reflecting surfaces of the polygon mirror by thermal expansion while adopting the constitution to fix the polygon mirror by using screws to the seat of a revolving shaft by providing mounting holes in which external threads pass and spaces which are not used as the mounting holes on approximately the concentrical region of the rotary polygon mirror. CONSTITUTION:For example, 8 pieces of small holes 12 are formed at equal angular intervals on the approximate circle around the center of the polygon mirror 1 on the outer side of a hole 11. These holes maintain the coaxiality with the hole 11. Of 8 pieces of the small holes 12, the four small holes 12a existing at every other point are used as the mounting holes with internal threads cut in which the screws 4 pass. The spaces not used as the mounting holes are provided together with the mounting holes 12a on the polygon mirror 1. The form of suppressing the strains occurring in the difference in the degree of thermal expansion and to relieve stresses is, therefore, attained, even when the polygon mirror 1 expands thermally. The accuracy of the reflecting surfaces of the polygon mirror 1 is maintained as constant as possible and the fluctuation in the scanning position of a beam is suppressed as far as possible.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、光源からの光束を波照射体上に走査させる為
の光偏向装置に関し、特に回転多面鏡を用いた光偏向装
置に関する. [従来の技術] 近年,レーザービームな走丘しこのレーザ−ビームの明
滅により感光体上に静″IM潜像を形成して所望の画像
を記録するレーザービームプリンタ(LBP)や、フィ
ルム状の感光体上にLBPと同様に明滅するレーザービ
ームを走査して銀塩写真方法を用いて画像を記録する装
置が広く一般に使用されてきているこの従来からの光偏
向装置すなわちレーザースキャナ装置の一構成例が第3
図に示されている.同図において,画像信号を受けたレ
ーザードライバ101は所定のタイミングで固体レーザ
ー素子102を明滅させ、この固体レーザー素子102
から放射されたレーザービームはコリメータレンズ系1
03によって平行光に変換されて矢印八方向に回転する
多面[9104に入射する.そして、この多面m l 
O 4で反射されたレーザービームはf・θレンズ群1
05によって被走査面(感光体ドラムの表面)106上
にスポット状に結像される. こうした構成において、多面m l O 4は、通常、
アルミ(八2)を主原料・とじた金属から構成され反射
面には酸化防止のために金属蒸着膜などが形成され、そ
れによって強度,加工性、重量等の諸特性を満足させて
いる.更に,こうしたレーザースキャナ装置においては
、多面鏡の回転時にこれの反射面が振れて各反射面ごと
にビームの走査位置が変わってしまわない様に、多面鏡
と回転軸に高精度なバランス調整が施されている.この
為に、多面鏡に等角間隔で複数(2〜6程度)のねじ挿
入穴が設けられ、ここに雄ねじが通されて回転軸の座に
設けられた複数の雌ねじ部に螺入されることにより,雄
ねじのねじ頭と上記座の間で、回転軸と多面鏡の位置関
係が回転の加減速でずれない様に、多面鏡が挾持されて
いる. このねじを用いた固定方法は強度的に優れ、大型の多面
鏡を用いた場合や2000Orpmといった高速で多面
鏡を回転させる場合においても回転軸の座と回転鏡との
ずれを生じさせない利点を有している.
[Industrial Field of Application] The present invention relates to a light deflection device for scanning a light beam from a light source onto a wave irradiation body, and more particularly to a light deflection device using a rotating polygon mirror. [Prior Art] In recent years, laser beam printers (LBP), which record a desired image by forming a static IM latent image on a photoconductor by flickering a laser beam, and film-like printers have been developed. This is a configuration of a conventional optical deflection device, that is, a laser scanner device, which has been widely used to record an image by scanning a flickering laser beam on a photoreceptor, similar to LBP, using silver halide photography. Example is the third
It is shown in the figure. In the figure, a laser driver 101 that receives an image signal blinks a solid-state laser element 102 at a predetermined timing.
The laser beam emitted from the collimator lens system 1
It is converted into parallel light by 03 and enters the multifaceted surface [9104] which rotates in the eight directions of arrows. And this multifaceted m l
The laser beam reflected by O4 passes through f/θ lens group 1.
05, a spot image is formed on the scanned surface (the surface of the photoreceptor drum) 106. In such a configuration, the polyhedral m l O 4 is typically
It is made of aluminum (82) as the main raw material, and a metal vapor deposition film is formed on the reflective surface to prevent oxidation, thereby satisfying various properties such as strength, workability, and weight. Furthermore, in such laser scanner devices, highly accurate balance adjustment is required for the polygon mirror and the rotation axis to prevent the reflecting surface from swinging when the polygon mirror rotates, causing the beam scanning position to change for each reflecting surface. It has been subjected. For this purpose, multiple screw insertion holes (approximately 2 to 6) are provided at equal angular intervals on the polygon mirror, and the male screws are passed through these holes and screwed into the multiple female screw holes provided on the seat of the rotating shaft. As a result, the polygon mirror is held between the screw head of the male screw and the seat so that the positional relationship between the rotating shaft and the polygon mirror does not shift due to rotational acceleration or deceleration. This fixing method using screws has excellent strength and has the advantage of not causing misalignment between the rotating shaft seat and the rotating mirror even when using a large polygon mirror or rotating the polygon mirror at high speeds such as 2000 rpm. are doing.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし乍ら、多面鏡な回転軸の座に固定する為の圧力は
、等角間隔で分布して締められた各雄ねじの頭を中心と
して多面鏡に加えられている.従って,装置が作動し温
度上昇が起こることにより多面鏡が#I膨張すると、上
記ねじ頭にて加圧された多面鏡の部分と圧力が左程加わ
っていない上記ねじ頭間の多面鏡の部分において、膨張
の程度に差ができて歪が生じ、高精度に仕上げられた反
射面精度が著しく悪化するという欠点がある. この様に、熱膨張による歪が多面鏡に生じると,回転の
バランスを完全に取っていても多面鏡の反射面ごとにビ
ームの走査位置がずれてしまい、得られる画像品位は著
し《低下することになる. 上述のねじ止めによる圧力不均一を直す為に,ねじ頭と
多面鏡の間にスペーサを挾みねじ頭からの圧力を緩和さ
せることが考えられるが、多面鏡の肉厚程度のスペーサ
の肉厚が無いと均一な圧力を得ることができない.従っ
て、スペーサ厚による装置の大型化,多面鏡の回転モー
メントの増大を来し、それにより多面鏡回転の為に消費
する電力が増加し延ではモータ部の発熱を招来する.更
には,多面鏡を支える回転軸の重心が高くなり回転バラ
ンスが不安定になって多面鏡の高速回転を妨げることに
もなる. 従って,本発明の目的は、上記課題に鑑み、ねじを用い
て多面鏡を回転軸の座に止める構成を取りつつ,熱膨張
により多面鎖の反射面精度が悪化しない様にされた光偏
向装置及びそこに用いられる回転多面鏡を提供すること
にある. 【課題を解決する為の手段] 上配目的を達成する為の本発明においては,回転軸に設
けた座と複数の雄ねじにより挾持される回転多面鏡に、
この多面鏡の中心を中心とする略同心円領域上に上記雄
ねじが通る取付孔及び取付孔として用い゛られない空間
が設けられている. 上記空間は,典型的には,取付孔と同径又は異径の孔で
あり,取付孔と上記空間は等角間隔で設けられたり、同
数ずつ設けられたり、交互に設けられたりする. また、取付孔と上記空間は同径上に設けられたり、また
略同心円領域上ではあるが異なる径上に設けられたりす
る。 [作用J 上記の構成を有する本発明では、多面鏡に取付孔と共に
取付孔として用いられない空間が設けられているので、
多面鏡が熱膨張した際でも,熱膨張の程度の差に起因す
る歪を抑えて応力を緩和させる形態となり,多面鏡の反
射面の精度が極力一定に保たれてビームの走査位置のば
らつきが極力抑えられる。 [実施例] 第1図は本麺明の第1の実施例を示す。同図において、
lは8面の反射面1aを有する多面鏡、2は多面mlを
座2a・上に固定して回転させるための回転軸、3は多
面境1と回転軸2を固定したときに回転バランス取り用
のバランスウェイトを取り付ける為のバランスリング、
4は4個の雄ねじである. 多面鏡1の中心には,回転軸2と嵌合する為の孔l1が
開けられており、回転軸2と多面鏡lの回転中心を合わ
せる機能を有する.孔l1の外側には、多面jQ lの
中心を中心とする略円上に等角間隔で8個の小孔l2が
形成され、これらは孔l1と同軸度(孔の中心軸が平行
であること)を保っている.8個の小孔12のうち% 
1つ置きにある4つの小孔12aはねじ4が通る雌ねじ
が切られた取付孔として用いられる. 多面鏡1を受ける為の回転軸2の座2aは、高精度に平
面が出され、多面鏡lに形成された小孔12と同径の位
置に等角間隔で4個所雌ねじl3が切られている. バランスリング3は.回転軸2に設けられた座2aの外
径と略同一外径に仕上げられ,回転軸2に切られた雌ね
じ13と同径位置に等角間隔で4個所小孔14が穿設さ
れると共に、中心部には多面鏡lの孔11と同径の孔l
5が開けられている.更に、中心の孔l5と同軸度を保
って,上紀バランスウェイトを取り付ける為の円形満1
6が設けられている上記の構成部品の組立ては次の様に
行なわれる.先ず、多面illを回転軸2に嵌合させ,
次にバランスリング3をその上に嵌合させた後、バラン
スリング3上から4本の雄ねじ4を小孔l4、取付孔1
2aに通し最後に回転軸2の座2aに設けられた雌ねじ
l3に螺合させる.これにより,雄ねじ4の頭4aと回
転軸2の座2aにて多面撓1が挾持されて,回転軸2に
固定される. バランスリング3は、多面鏡lに加わる雄ねじ4からの
圧力を多少緩和させる機能を有する. 以上の構成においては、雄ねじ4の頭4aと回転軸2の
座2aの間で、回転軸2と多面atの位置関係が回転の
加減速でずれない様に、多面鏡lが確実に固定されてい
る.更に,上記の多面[1では、取付孔12aの間に,
取付孔としては用いられない孔12が形成されているの
で,多面mlが熱膨張した際、圧力がねじ頭にて加圧さ
れた部分程加わってなくて膨張の程度が大きく最も歪の
影響を受ける部分が除去されていることになる.従って
、高精度に仕上げられた反射面1aの精度の悪化が抑え
られ、ビームの走査位置のばらつきが極力抑えられる. 上記実施例では取付け用のねじ孔と取付け用でない孔と
が多面falの同じ径上に同径の寸法でもって形成され
ているが、取付け用でない孔ないし空間の開け方は各偏
向装置別に最適な形態を取ればよい.即ち,熱膨張によ
る多面境の歪み方,量は多面鏡の材質、厚み,取付け用
ねじ孔の位置、ねじの大きさ、ねじ締めトルク等により
変化す唇ので,これらのファクターを考膚して多面鏡反
射面の精度が極力一定に保たれる様にすればよい.孔の
開け方の他の例が第2図(a)、(b)に示されている
. 第2図(a)の第2実施例では,多面鏡lを固定する為
の取付け用ねじ孔22aと同じ径上に、等角間隔を保っ
て径の異なる孔22が形成されている. 第2図(b)の第3実施例では、多面鏡1を固定する為
の取付け用ねじ孔32aと同径の孔32が,このねじ孔
32aと異なる径上に等角間隔を保って形成されている
. [発明の効果] 以上説明した様に、本発明によれば、多面鏡が熱膨張し
た際,最も歪の影響を受ける部分を除去した構成となっ
ているので、光偏向装置の作!jJ温度が変化してもビ
ームの走査位置のばらつきが極力抑えられ,高品質の出
力画像等を得ることができる.
However, the pressure required to fix the polygon mirror to the seat of the rotating shaft is applied to the polygon mirror centering on the heads of the male screws, which are distributed at equal angular intervals and tightened. Therefore, when the polygon mirror expands #I due to the temperature rise caused by the operation of the device, the part of the polygon mirror that is pressurized by the screw head and the part of the polygon mirror between the screw heads where no pressure is applied to the left. However, the disadvantage is that the difference in the degree of expansion causes distortion, which significantly deteriorates the accuracy of the highly precisely finished reflective surface. As described above, when distortion occurs in a polygon mirror due to thermal expansion, even if the rotation is perfectly balanced, the scanning position of the beam shifts for each reflective surface of the polygon mirror, and the quality of the image obtained is significantly reduced. I will do it. In order to correct the uneven pressure caused by screw fastening mentioned above, it is possible to insert a spacer between the screw head and the polygon mirror to relieve the pressure from the screw head, but if the spacer's wall thickness is about the same as that of the polygon mirror, Without it, it is not possible to obtain uniform pressure. Therefore, the thickness of the spacer increases the size of the device and increases the rotational moment of the polygon mirror, which increases the power consumed to rotate the polygon mirror and eventually causes heat generation in the motor section. Furthermore, the center of gravity of the rotation axis that supports the polygon mirror becomes high, making the rotational balance unstable and hindering the high-speed rotation of the polygon mirror. Therefore, in view of the above-mentioned problems, it is an object of the present invention to provide an optical deflection device which uses a screw to fix a polygon mirror to a seat on a rotating shaft, while preventing deterioration of the precision of the reflective surface of the polygon chain due to thermal expansion. and to provide a rotating polygon mirror used therein. [Means for Solving the Problems] In order to achieve the above object, the present invention includes a rotating polygon mirror held by a seat provided on a rotating shaft and a plurality of male screws.
A mounting hole through which the male screw passes and a space that is not used as a mounting hole are provided on a substantially concentric area centered on the center of the polygon mirror. The above-mentioned space is typically a hole with the same diameter as the mounting hole or a different diameter, and the mounting hole and the above-mentioned space are provided at equal angular intervals, the same number are provided, or they are provided alternately. Further, the mounting hole and the space may be provided on the same diameter, or may be provided on substantially concentric areas but on different diameters. [Operation J] In the present invention having the above configuration, the polygon mirror is provided with a space that is not used as a mounting hole along with a mounting hole.
Even when the polygon mirror thermally expands, it suppresses the distortion caused by the difference in the degree of thermal expansion and relieves stress, and the accuracy of the polygon mirror's reflection surface is kept as constant as possible, reducing variations in the beam scanning position. It can be suppressed as much as possible. [Example] Fig. 1 shows a first example of Honmen Akira. In the same figure,
1 is a polygon mirror with 8 reflecting surfaces 1a, 2 is a rotation axis for fixing the polygon ML on the seat 2a and rotating it, and 3 is a rotation balance when the polygon 1 and the rotation axis 2 are fixed. Balance ring for attaching the balance weight for
4 is four male screws. A hole l1 is formed in the center of the polygon mirror 1 to fit the rotating shaft 2, and has the function of aligning the center of rotation of the rotating shaft 2 and the polygon mirror l. Outside the hole l1, eight small holes l2 are formed at equal angular intervals on a substantially circle centered on the center of the polygon jQ l, and these are coaxial with the hole l1 (the central axis of the hole is parallel to ). % of 8 small holes 12
The four small holes 12a located every other place are used as mounting holes with internal threads through which the screws 4 pass. The seat 2a of the rotating shaft 2 for receiving the polygon mirror 1 has a highly accurate flat surface, and female threads l3 are cut in four places at equal angular intervals at positions with the same diameter as the small holes 12 formed in the polygon mirror l. ing. Balance ring 3. The outer diameter is approximately the same as the outer diameter of the seat 2a provided on the rotating shaft 2, and four small holes 14 are bored at equal angular intervals at the same diameter positions as the female threads 13 cut on the rotating shaft 2. , in the center there is a hole l with the same diameter as the hole 11 of the polygon mirror l.
5 is open. Furthermore, keeping the coaxiality with the center hole 15, a circular full 1 hole is made for attaching the Joki balance weight.
The assembly of the above-mentioned components provided with 6 is carried out as follows. First, the multifaceted ill is fitted onto the rotating shaft 2,
Next, after fitting the balance ring 3 onto it, insert the four male screws 4 from the top of the balance ring 3 into the small hole l4 and the mounting hole 1.
2a and finally screwed into the female thread l3 provided on the seat 2a of the rotating shaft 2. As a result, the multifaceted flexure 1 is clamped between the head 4a of the male screw 4 and the seat 2a of the rotating shaft 2, and is fixed to the rotating shaft 2. The balance ring 3 has the function of somewhat relieving the pressure from the male screw 4 applied to the polygon mirror l. In the above configuration, the polygon mirror l is securely fixed between the head 4a of the male screw 4 and the seat 2a of the rotating shaft 2 so that the positional relationship between the rotating shaft 2 and the polygon at does not shift due to acceleration and deceleration of rotation. ing. Furthermore, in the above multiface [1], between the mounting holes 12a,
Since the hole 12 which is not used as a mounting hole is formed, when the multifaceted ML thermally expands, the pressure is not applied as much as the part pressurized by the screw head, and the degree of expansion is large and the effect of strain is the largest. This means that the receiving part has been removed. Therefore, deterioration in the accuracy of the highly precisely finished reflective surface 1a is suppressed, and variations in the scanning position of the beam are suppressed as much as possible. In the above embodiment, the mounting screw hole and the non-mounting hole are formed on the same diameter of the multifaceted fal with the same diameter dimensions, but the method of opening the non-mounting hole or space is optimal for each deflection device. It can take any form. In other words, the degree and amount of distortion of the polygonal boundary due to thermal expansion varies depending on the material and thickness of the polygon mirror, the position of the mounting screw hole, the size of the screw, the screw tightening torque, etc., so consider these factors. The accuracy of the polygonal mirror reflection surface should be kept as constant as possible. Other examples of how to make holes are shown in Figures 2(a) and (b). In the second embodiment shown in FIG. 2(a), holes 22 of different diameters are formed at equal angular intervals on the same diameter as the mounting screw hole 22a for fixing the polygon mirror l. In the third embodiment shown in FIG. 2(b), holes 32 having the same diameter as the mounting screw hole 32a for fixing the polygon mirror 1 are formed at equiangular intervals on a diameter different from the screw hole 32a. It has been done. [Effects of the Invention] As explained above, according to the present invention, the part that is most affected by distortion when the polygon mirror is thermally expanded is removed, so that the construction of the optical deflection device is improved. Even if the jJ temperature changes, variations in the beam scanning position are minimized, making it possible to obtain high-quality output images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を説明する為の図、第2図
(a)、(b)は、夫々,第2実施例と第3実施例の多
面鏡を示す図,第3図は従来例の光偏向装置を示す図で
ある.l・・・・・回転多面tQ. 2・・・・・回転
軸,2a・・・・・回転軸の座,3・・・・・バランス
リング、4・・・・・雄ねじ、4a − − − − 
*ねじ頭.12a.22a,32a・・・・・取付孔、
l2、22、32・・・・・取付孔でない孔、l3・・
・・・回転軸の雌ねじ、l4・・・・・バランスリング
の孔
FIG. 1 is a diagram for explaining the first embodiment of the present invention, and FIGS. 2(a) and (b) are diagrams showing polygon mirrors of the second and third embodiments, respectively. The figure shows a conventional optical deflection device. l...Rotating polygon tQ. 2...Rotating shaft, 2a...Rotating shaft seat, 3...Balance ring, 4...Male thread, 4a - - - -
*Screw head. 12a. 22a, 32a...Mounting hole,
l2, 22, 32...Hole that is not a mounting hole, l3...
...Female thread of rotating shaft, l4...Balance ring hole

Claims (1)

【特許請求の範囲】 1、光源からの光束を被照射体に走査する為に回転多面
鏡を用いる光偏向装置において、回転軸に設けた座と複
数の雄ねじにより挾持された回転多面鏡に、該多面鏡の
中心を中心とする略同心円領域上に該雄ねじが通る取付
孔及び取付孔として用いられない空間が設けられている
ことを特徴とする光偏向装置。 2、前記取付孔及び前記取付孔として用いられない空間
が等角間隔で設けられている請求項1記載の光偏向装置
。 3、前記取付孔として用いられない空間が孔である請求
項1記載の光偏向装置。 4、前記取付孔と前記取付孔として用いられない空間が
同数ずつ設けられている請求項1記載の光偏向装置。 5、前記取付孔と前記取付孔として用いられない空間が
交互に設けられている請求項1記載の光偏向装置。 6、前記取付孔と前記取付孔として用いられない孔が略
同径である請求項3記載の光偏向装置。 7、前記取付孔と前記取付孔として用いられない孔が異
なる径である請求項3記載の光偏向装置。 8、複数の反射面を有する回転多面鏡において、該多面
鏡の中心を中心とする略同心円領域上に、雄ねじが通る
為の取付孔及び取付孔として用いられない空間が設けら
れていることを特徴とする回転多面鏡。
[Claims] 1. In an optical deflection device that uses a rotating polygon mirror to scan a light beam from a light source onto an irradiated object, the rotating polygon mirror is held between a seat provided on a rotating shaft and a plurality of male screws, An optical deflection device characterized in that a mounting hole through which the male screw passes and a space not used as a mounting hole are provided on a substantially concentric circle region centered on the center of the polygon mirror. 2. The light deflection device according to claim 1, wherein the mounting hole and a space not used as the mounting hole are provided at equal angular intervals. 3. The light deflection device according to claim 1, wherein the space not used as the mounting hole is a hole. 4. The light deflection device according to claim 1, wherein the same number of the mounting holes and spaces not used as the mounting holes are provided. 5. The light deflection device according to claim 1, wherein the mounting holes and spaces not used as the mounting holes are provided alternately. 6. The optical deflection device according to claim 3, wherein the mounting hole and the hole not used as the mounting hole have substantially the same diameter. 7. The optical deflection device according to claim 3, wherein the mounting hole and the hole not used as the mounting hole have different diameters. 8. In a rotating polygon mirror having a plurality of reflective surfaces, a mounting hole for a male screw to pass through and a space that is not used as a mounting hole are provided on a substantially concentric area centered on the center of the polygon mirror. Features a rotating polygon mirror.
JP11568989A 1989-05-09 1989-05-09 Optical deflector and rotary polygon mirror used therein Pending JPH02293810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11568989A JPH02293810A (en) 1989-05-09 1989-05-09 Optical deflector and rotary polygon mirror used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11568989A JPH02293810A (en) 1989-05-09 1989-05-09 Optical deflector and rotary polygon mirror used therein

Publications (1)

Publication Number Publication Date
JPH02293810A true JPH02293810A (en) 1990-12-05

Family

ID=14668820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11568989A Pending JPH02293810A (en) 1989-05-09 1989-05-09 Optical deflector and rotary polygon mirror used therein

Country Status (1)

Country Link
JP (1) JPH02293810A (en)

Similar Documents

Publication Publication Date Title
US5367399A (en) Rotationally symmetric dual reflection optical beam scanner and system using same
JPS5818653A (en) Recording device
US5046794A (en) Hologon scanner system
GB2264182A (en) Optical beam scanners and systems using same
JPH02293810A (en) Optical deflector and rotary polygon mirror used therein
JPH0749463A (en) Optical deflector
JPH02293811A (en) Optical deflector
JPH0377908A (en) Optical deflector
JPH0377909A (en) Optical deflector
JPH02293813A (en) Optical deflector
JPH09288245A (en) Optical scanner
JPH0915521A (en) Laser light source device
US20220197019A1 (en) Optical scanning apparatus
JP2000275558A (en) Optical deflecting scanner
JP2591257B2 (en) Rotating mirror
JPS63167328A (en) Method for locking polygon mirror
JPH04338915A (en) Manufacture of optical deflecting element
JP3702678B2 (en) Optical deflection device
JP3702676B2 (en) Optical deflection device
JPH07230054A (en) Light detector
JPH01140115A (en) Polygonal mirror device of laser scanner
JPH01289909A (en) Scanning optical device
JPH01297616A (en) Rotary polygonal mirror device
JPH05273487A (en) Laser beam scanner
JPS5930513A (en) Rotary polyhedral mirror body